Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[AL70] Atkin, A. and Lehner, J., Hecke operators on Γ_0(m) , Math. Ann. , 185 (1970), 134--160.

[BCNS15] Braun, O., Coulangeon, R., Nebe, G. and Schoennenbeck, S., Computing in arithmetic groups with Voronoï’s algorithm, J. Algebra , 435 (2015), 263--285.

[BE14] Bui, A. and Ellis, G., The homology of SL_2( Z[1/m]) for small m , Journal of Algebra, 408 (2014), 102--108.

[Ber16] Bergeron, N., Torsion homology growth in arithmetic groups , EuropeanMathematical Society, European Congress of Mathematicians, July 18-22 (2016).

[BL87] Brown, R. and Loday, J.-L., Van Kampen theorems for diagrams of spaces , Topology, 26 (1987), 311--335.

[EHS06] Ellis, G., Harris, J. and Skoldberg, E., Polytopal resolutions for finite groups , J. Reine Angew. Math., 598 (2006), 131--137.

[Eic57] Eichler, M., Eine Verallgemeinerung der Abelschen Integrale , Mathematische Zeitschrift , 67 (1957), 267--298.

[Hat01] Hatcher, A., Algebraic Topology , Available online (2001).

[KFM08] Kauffman, L. H. and Faria Martins, J., Invariants of welded virtual knots via crossed module invariants of knotted surfaces, Compos. Math., 144 (4) (2008), 1046--1080.

[Kso00] Ksontini, R., Proprietes homotopiques du complexe de Quillen du groupe symetrique, These de doctorat, Universitet de Lausanne (2000).

[Kul91] Kulkarni, R., An arithmetic-geometric method in the study of the subgroups of the modular group , American Journal of Mathematics , 113, No. 6 (1991), 1053--1133.

[Mil58] Milnor, J., On simply connected 4-manifolds, International symposium on algebraic topology, Universidad Nacional Autonoma de Mexico and UNESCO, Mexico City (1958).

[Rah10] Rahm, A., Cohomologies and K-theory of Bianchi groups using computational geometric models , These de doctorat, Universite Joseph-Fourier -- Grenoble I (2010).

[Sat00] Satoh, S., Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications, 9 (4) (2000), 531--542.

[Sen11] Sengun, M. H., On the Integral Cohomology of Bianchi Groups , Experimental Mathematics , 20(4) (2011), 487--505.

[Shi59] Shimura, G., Sur les integrales attachees aux formes automorphes , Journal of the Mathematical Society of Japan , 67 (1959), 291--311.

[SK11] Spreer, J. and Khuenel, W., Combinatorial properties of the K3 surface: Simplicial blowups and slicings, Experimental Mathematics Volume 20 Issue 2 (2011).

[Ste07] Stein, W., Modular forms, a computational approach , AMS Graduate Studies in Mathematics , 79 (2007).

[Swa71] Swan, R., Generators and relations for certain general linear groups , Advances in Mathematics , 6 (1971), 1--77.

[TZ08] Tomoda, S. and Zvengrowski, P., Remarks on the cohomology of finite fundamental groups of 3-manifolds, Geometry and Topology Monographs 14, 519-556 (2008).

[Wie78] Wieser, G., Computational arithmetic of modular forms , Universitat Duisburg-Essen (2007/8).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 Bib Ind

generated by GAPDoc2HTML