Actual source code: ct_vdp_imex.c
1: /*
2: * ex_vdp.c
3: *
4: * Created on: Jun 1, 2012
5: * Author: Hong Zhang
6: */
7: static char help[] = "Solves the van der Pol equation. \n Input parameters include:\n";
9: /*
10: * Processors:1
11: */
13: /*
14: * This program solves the van der Pol equation
15: * y' = z (1)
16: * z' = (((1-y^2)*z-y)/eps (2)
17: * on the domain 0<=x<=0.5, with the initial conditions
18: * y(0) = 2,
19: * z(0) = -2/3 + 10/81*eps - 292/2187*eps^2-1814/19683*eps^3
20: * IMEX schemes are applied to the splitted equation
21: * [y'] = [z] + [0 ]
22: * [z'] [0] [(((1-y^2)*z-y)/eps]
23: *
24: * F(x)= [z]
25: * [0]
26: *
27: * G(x)= [y'] - [0 ]
28: * [z'] [(((1-y^2)*z-y)/eps]
29: *
30: * JG(x) = G_x + a G_xdot
31: */
33: #include <petscdmda.h>
34: #include <petscts.h>
36: typedef struct _User *User;
37: struct _User {
38: PetscReal mu; /*stiffness control coefficient: epsilon*/
39: };
41: static PetscErrorCode RHSFunction(TS,PetscReal,Vec,Vec,void*);
42: static PetscErrorCode IFunction(TS,PetscReal,Vec,Vec,Vec,void*);
43: static PetscErrorCode IJacobian(TS,PetscReal,Vec,Vec,PetscReal,Mat,Mat,void*);
45: int main(int argc, char **argv)
46: {
47: TS ts;
48: Vec x; /*solution vector*/
49: Mat A; /*Jacobian*/
50: PetscInt steps,mx,eimex_rowcol[2],two;
51: PetscErrorCode ierr;
52: PetscScalar *x_ptr;
53: PetscReal ftime,dt,norm;
54: Vec ref;
55: struct _User user; /* user-defined work context */
56: PetscViewer viewer;
58: PetscInitialize(&argc,&argv,NULL,help);if (ierr) return ierr;
59: /* Initialize user application context */
60: PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"van der Pol options","");
61: user.mu = 1e0;
62: PetscOptionsReal("-eps","Stiffness controller","",user.mu,&user.mu,NULL);
63: PetscOptionsEnd();
65: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
66: Set runtime options
67: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
68: /*
69: PetscOptionsGetBool(NULL,NULL,"-monitor",&monitor,NULL);
70: */
72: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
73: Create necessary matrix and vectors, solve same ODE on every process
74: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
75: MatCreate(PETSC_COMM_WORLD,&A);
76: MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,2,2);
77: MatSetFromOptions(A);
78: MatSetUp(A);
79: MatCreateVecs(A,&x,NULL);
81: MatCreateVecs(A,&ref,NULL);
82: VecGetArray(ref,&x_ptr);
83: /*
84: * [0,1], mu=10^-3
85: */
86: /*
87: x_ptr[0] = -1.8881254106283;
88: x_ptr[1] = 0.7359074233370;*/
90: /*
91: * [0,0.5],mu=10^-3
92: */
93: /*
94: x_ptr[0] = 1.596980778659137;
95: x_ptr[1] = -1.029103015879544;
96: */
97: /*
98: * [0,0.5],mu=1
99: */
100: x_ptr[0] = 1.619084329683235;
101: x_ptr[1] = -0.803530465176385;
103: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
104: Create timestepping solver context
105: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
106: TSCreate(PETSC_COMM_WORLD,&ts);
107: TSSetType(ts,TSEIMEX);
108: TSSetRHSFunction(ts,NULL,RHSFunction,&user);
109: TSSetIFunction(ts,NULL,IFunction,&user);
110: TSSetIJacobian(ts,A,A,IJacobian,&user);
112: dt = 0.00001;
113: ftime = 1.1;
114: TSSetTimeStep(ts,dt);
115: TSSetMaxTime(ts,ftime);
116: TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);
117: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
118: Set initial conditions
119: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
120: VecGetArray(x,&x_ptr);
121: x_ptr[0] = 2.;
122: x_ptr[1] = -2./3. + 10./81.*(user.mu) - 292./2187.* (user.mu) * (user.mu)
123: -1814./19683.*(user.mu)*(user.mu)*(user.mu);
124: TSSetSolution(ts,x);
125: VecGetSize(x,&mx);
127: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
128: Set runtime options
129: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
130: TSSetFromOptions(ts);
132: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
133: Solve nonlinear system
134: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
135: TSSolve(ts,x);
136: TSGetTime(ts,&ftime);
137: TSGetStepNumber(ts,&steps);
139: VecAXPY(x,-1.0,ref);
140: VecNorm(x,NORM_2,&norm);
141: TSGetTimeStep(ts,&dt);
143: eimex_rowcol[0] = 0; eimex_rowcol[1] = 0; two = 2;
144: PetscOptionsGetIntArray(NULL,NULL,"-ts_eimex_row_col",eimex_rowcol,&two,NULL);
145: PetscPrintf(PETSC_COMM_WORLD,"order %11s %18s %37s\n","dt","norm","final solution components 0 and 1");
146: VecGetArray(x,&x_ptr);
147: PetscPrintf(PETSC_COMM_WORLD,"(%D,%D) %10.8f %18.15f %18.15f %18.15f\n",eimex_rowcol[0],eimex_rowcol[1],(double)dt,(double)norm,(double)PetscRealPart(x_ptr[0]),(double)PetscRealPart(x_ptr[1]));
148: VecRestoreArray(x,&x_ptr);
150: /* Write line in convergence log */
151: PetscViewerCreate(PETSC_COMM_WORLD,&viewer);
152: PetscViewerSetType(viewer,PETSCVIEWERASCII);
153: PetscViewerFileSetMode(viewer,FILE_MODE_APPEND);
154: PetscViewerFileSetName(viewer,"eimex_nonstiff_vdp.txt");
155: PetscViewerASCIIPrintf(viewer,"%D %D %10.8f %18.15f\n",eimex_rowcol[0],eimex_rowcol[1],(double)dt,(double)norm);
156: PetscViewerDestroy(&viewer);
158: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
159: Free work space.
160: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
161: MatDestroy(&A);
162: VecDestroy(&x);
163: VecDestroy(&ref);
164: TSDestroy(&ts);
165: PetscFinalize();
166: return ierr;
167: }
169: static PetscErrorCode RHSFunction(TS ts,PetscReal t,Vec X,Vec F,void *ptr)
170: {
171: PetscErrorCode ierr;
172: PetscScalar *f;
173: const PetscScalar *x;
176: VecGetArrayRead(X,&x);
177: VecGetArray(F,&f);
178: f[0] = x[1];
179: f[1] = 0.0;
180: VecRestoreArrayRead(X,&x);
181: VecRestoreArray(F,&f);
182: return(0);
183: }
185: static PetscErrorCode IFunction(TS ts,PetscReal t,Vec X,Vec Xdot,Vec F,void *ptr)
186: {
187: User user = (User)ptr;
188: PetscScalar *f;
189: const PetscScalar *x,*xdot;
190: PetscErrorCode ierr;
193: VecGetArrayRead(X,&x);
194: VecGetArrayRead(Xdot,&xdot);
195: VecGetArray(F,&f);
196: f[0] = xdot[0];
197: f[1] = xdot[1]-((1.-x[0]*x[0])*x[1]-x[0])/user->mu;
198: VecRestoreArrayRead(X,&x);
199: VecRestoreArrayRead(Xdot,&xdot);
200: VecRestoreArray(F,&f);
201: return(0);
202: }
204: static PetscErrorCode IJacobian(TS ts,PetscReal t,Vec X,Vec Xdot,PetscReal a,Mat A,Mat B,void *ptr)
205: {
206: PetscErrorCode ierr;
207: User user = (User)ptr;
208: PetscReal mu = user->mu;
209: PetscInt rowcol[] = {0,1};
210: PetscScalar J[2][2];
211: const PetscScalar *x;
214: VecGetArrayRead(X,&x);
215: J[0][0] = a;
216: J[0][1] = 0;
217: J[1][0] = (2.*x[0]*x[1]+1.)/mu;
218: J[1][1] = a - (1. - x[0]*x[0])/mu;
219: MatSetValues(B,2,rowcol,2,rowcol,&J[0][0],INSERT_VALUES);
220: VecRestoreArrayRead(X,&x);
222: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
223: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
224: if (A != B) {
225: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
226: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
227: }
228: return(0);
229: }
231: /*TEST
233: test:
234: args: -ts_type eimex -ts_adapt_type none -pc_type lu -ts_dt 0.01 -ts_max_time 10 -ts_eimex_row_col 3,3 -ts_monitor_lg_solution
235: requires: x
237: test:
238: suffix: adapt
239: args: -ts_type eimex -ts_adapt_type none -pc_type lu -ts_dt 0.01 -ts_max_time 10 -ts_eimex_order_adapt -ts_eimex_max_rows 7 -ts_monitor_lg_solution
240: requires: x
242: test:
243: suffix: loop
244: args: -ts_type eimex -ts_adapt_type none -pc_type lu -ts_dt {{0.005 0.001 0.0005}separate output} -ts_max_steps {{100 500 1000}separate output} -ts_eimex_row_col {{1,1 2,1 3,1 2,2 3,2 3,3}separate output}
245: requires: x
247: TEST*/