
SAM Documentation
Release 0.1.0

AWS

Jan 06, 2022

CONTENTS

1 What’s New? 1
1.1 Globals Section . 1
1.2 Safe Lambda deployments . 6
1.3 Policy Templates . 12
1.4 SAM Internals . 13
1.5 FAQ . 24

i

ii

CHAPTER

ONE

WHAT’S NEW?

• Globals section

• Support for Traffic Shifting Lambda deployments

• Refer to resources automatically created by SAM

• FAQ section

1.1 Globals Section

Contents

• Globals Section

– Supported Resources and Properties

∗ Implicit APIs

∗ Unsupported Properties

– Overridable

∗ Primitive Values are replaced

∗ Maps are merged

∗ Lists are additive

Resources in a SAM template tend to have shared configuration such as Runtime, Memory, VPC Settings, Environment
Variables, Cors, etc. Instead of duplicating this information in every resource, you can write them once in the Globals
section and let all resources inherit it.

Example:

Globals:
Function:
Runtime: nodejs6.10
Timeout: 180
Handler: index.handler
Environment:
Variables:
TABLE_NAME: data-table

(continues on next page)

1

SAM Documentation, Release 0.1.0

(continued from previous page)

Resources:
HelloWorldFunction:
Type: AWS::Serverless::Function
Properties:
Environment:
Variables:
MESSAGE: "Hello From SAM"

ThumbnailFunction:
Type: AWS::Serverless::Function
Properties:
Events:
Thumbnail:
Type: Api
Properties:
Path: /thumbnail
Method: POST

In the above example, both HelloWorldFunction and ThumbnailFunction will use nodejs6.10 runtime, 180 sec-
onds timeout and index.handler Handler. HelloWorldFunction adds MESSAGE environment variable in addition to
the inherited TABLE_NAME. ThumbnailFunction inherits all the Globals properties and adds an API Event source.

1.1.1 Supported Resources and Properties

Currently, the following resources and properties are being supported:

Globals:
Function:
Properties of AWS::Serverless::Function
Handler:
Runtime:
CodeUri:
DeadLetterQueue:
Description:
MemorySize:
Timeout:
VpcConfig:
Environment:
Tags:
Tracing:
KmsKeyArn:
Layers:
AutoPublishAlias:
DeploymentPreference:
PermissionsBoundary:
ReservedConcurrentExecutions:
EventInvokeConfig:
Architectures:

Api:
Properties of AWS::Serverless::Api

(continues on next page)

2 Chapter 1. What’s New?

SAM Documentation, Release 0.1.0

(continued from previous page)

Also works with Implicit APIs
Auth:
Name:
DefinitionUri:
CacheClusterEnabled:
CacheClusterSize:
Variables:
EndpointConfiguration:
MethodSettings:
BinaryMediaTypes:
MinimumCompressionSize:
Cors:
GatewayResponses:
AccessLogSetting:
CanarySetting:
TracingEnabled:
OpenApiVersion:
Domain:

HttpApi:
Properties of AWS::Serverless::HttpApi
Also works with Implicit APIs
Auth:
CorsConfiguration:
AccessLogSettings:
Tags:
DefaultRouteSettings:
RouteSettings:
Domain:

SimpleTable:
Properties of AWS::Serverless::SimpleTable
SSESpecification:

Implicit APIs

APIs created by SAM when you have an API declared in the Events section are called “Implicit APIs”. You can use
Globals to override all properties of Implicit APIs as well.

Unsupported Properties

Following properties are not supported in Globals section. We made the explicit call to not support them because it
either made the template hard to understand or opened scope for potential security issues.

AWS::Serverless::Function:

• Role

• Policies

• FunctionName

• Events

1.1. Globals Section 3

SAM Documentation, Release 0.1.0

AWS::Serverless::Api:

• StageName

• DefinitionBody

AWS::Serverless::HttpApi:

• StageName

• DefinitionBody

• DefinitionUri

1.1.2 Overridable

Properties declared in the Globals section can be overriden by the resource. For example, you can add new Variables
to environment variable map or override globally declared variables. But the resource cannot remove a property
specified in globals environment variables map. More generally, Globals declare properties shared by all your resources.
Some resources can provide new values for globally declared properties but cannot completely remove them. If some
resources use a property but others do not, then you must not declare them in the Globals section.

Here is how overriding works for various data types:

Primitive Values are replaced

String, Number, Boolean etc

Value specified in the resource will replace Global value

Example:

Runtime of MyFunction will be set to python3.6

Globals:
Function:
Runtime: nodejs4.3

Resources:
MyFunction:
Type: AWS::Serverless::Function
Properties:
Runtime: python3.6

Maps are merged

Maps are also known as dictionaries or collections of key/value pairs

Map entries in the resource will be merged with global map entries. In case of duplicates the resource entry will
override the global entry.

Example:

Globals:
Function:
Environment:
Variables:

(continues on next page)

4 Chapter 1. What’s New?

SAM Documentation, Release 0.1.0

(continued from previous page)

STAGE: Production
TABLE_NAME: global-table

Resources:
MyFunction:
Type: AWS::Serverless::Function
Properties:
Environment:
Variables:
TABLE_NAME: resource-table
NEW_VAR: hello

In the above example the environment variables of MyFunction will be set to:

{
"STAGE": "Production",
"TABLE_NAME": "resource-table",
"NEW_VAR": "hello"

}

Lists are additive

Lists are also known as arrays

Global entries will be prepended to the list in the resource.

Example:

Globals:
Function:
VpcConfig:
SecurityGroupIds:
- sg-123
- sg-456

Resources:
MyFunction:
Type: AWS::Serverless::Function
Properties:
VpcConfig:
SecurityGroupIds:
- sg-first

In the above example the Security Group Ids of MyFunction’s VPC Config will be set to:

["sg-123", "sg-456", "sg-first"]

1.1. Globals Section 5

SAM Documentation, Release 0.1.0

1.2 Safe Lambda deployments

Contents

• Safe Lambda deployments

– Instant traffic shifting using Lambda Aliases

– Traffic shifting using CodeDeploy

∗ Traffic Shifting Configurations

∗ PreTraffic & PostTraffic Hooks

∗ Internals

∗ Production errors preventing deployments

Pushing to production can be nerve-wracking even if you have 100% unit test coverage and a state-of-art full CD system.
It is a good practice to expose your new code to a small percentage of production traffic, run tests, watch for alarms and
dial up traffic as you gain more confidence. The goal is to minimize production impact as much as possible.

To enable traffic shifting deployments for Lambda functions, we will use Lambda Aliases, which can balance incoming
traffic between two different versions of your function, based on preassigned weights. Before deployment, the alias
sends 100% of invokes to the version used in production. During deployment, we will upload the code to Lambda,
publish a new version, send a small percentage of traffic to the new version, monitor, and validate before shifting 100%
of traffic to the new version. You can do this manually by calling Lambda APIs or let AWS CodeDeploy automate it
for you. CodeDeploy will shift traffic, monitor alarms, run validation logic and even trigger an automatic rollback if
something goes wrong.

SAM comes built-in with CodeDeploy support. You can enable automated traffic shifting Lambda deployments by
adding the following lines to your AWS::Serverless::Function resource property or in the Globals section.

AutoPublishAlias: live
DeploymentPreference:
Type: Linear10PercentEvery10Minutes

The rest of this document dives deep into how this snippet works, available configurations, and debugging techniques
when deployments don’t work as expected.

1.2.1 Instant traffic shifting using Lambda Aliases

Every Lambda function can have any number of Versions and Aliases associated with them. Versions are immutable
snapshots of a function including code & configuration. If you are familiar with git, they are similar to commits. In
general, it is a good practice to publish a new version every time you update your function code. When you invoke a
specific version (using the function name + version number combination) you are guaranteed to get the same code &
configuration irrespective of the state of the function. This protects you against accidentally updating production code.

To effectively use the versions, you should create an Alias which is literally a pointer to a version. Aliases have a name
and an ARN similar to the function and are accepted by the Invoke APIs. If you invoke an Alias, Lambda will in turn
invoke the version that the Alias is pointing to.

In production, you will first update your function code, publish a new version, invoke the version directly to run tests
against it, and, after you are satisfied, flip the Alias to point to the new version. Traffic will instantly shift from using
your old version to using the new version.

6 Chapter 1. What’s New?

globals.rst

SAM Documentation, Release 0.1.0

SAM provides a simple primitive to do this for you. Add the following property to your
AWS::Serverless::Function resource:

AutoPublishAlias: <alias-name>

This will:

• Create an Alias with <alias-name>

• Create & publish a Lambda version with the latest code & configuration derived from the CodeUri property.
Optionally it is possible to specify property AutoPublishCodeSha256 that will override the hash computed for
Lambda CodeUri property.

• Point the Alias to the latest published version

• Point all event sources to the Alias & not to the function

• When the CodeUri property of AWS::Serverless::Function changes, SAM will automatically publish a
new version & point the alias to the new version

In other words, your traffic will shift “instantly” to your new code.

NOTE: AutoPublishAlias will publish a new version only when the CodeUri changes. Updates to
other configuration (ex: MemorySize, Timeout) etc will not publish a new version. Hence your Alias will
continue to point to old version that uses the old configurations.

1.2.2 Traffic shifting using CodeDeploy

For production deployments, you may want more controlled traffic shifting from an old version to a new version which
monitors alarms and triggers a rollback if necessary. CodeDeploy is an AWS service which can do this for you. It uses
Lambda Alias’ ability to route a percentage of traffic to two different Lambda Versions. To use this feature, set the
DeploymentPreference property of AWS::Serverless::Function resource:

MyLambdaFunction:
Type: AWS::Serverless::Function
Properties:
Handler: index.handler
Runtime: nodejs12.x
AutoPublishAlias: live
DeploymentPreference:
Type: Linear10PercentEvery10Minutes
Alarms:
A list of alarms that you want to monitor
- !Ref AliasErrorMetricGreaterThanZeroAlarm
- !Ref LatestVersionErrorMetricGreaterThanZeroAlarm

Hooks:
Validation Lambda functions that are run before & after traffic shifting
PreTraffic: !Ref PreTrafficLambdaFunction
PostTraffic: !Ref PostTrafficLambdaFunction

Provide a custom role for CodeDeploy traffic shifting here, if you don't supply␣
↪→one

SAM will create one for you with default permissions
Role: !Ref IAMRoleForCodeDeploy # Parameter example, you can pass an IAM ARN

AliasErrorMetricGreaterThanZeroAlarm:
Type: "AWS::CloudWatch::Alarm"

(continues on next page)

1.2. Safe Lambda deployments 7

SAM Documentation, Release 0.1.0

(continued from previous page)

Properties:
AlarmDescription: Lambda Function Error > 0
ComparisonOperator: GreaterThanThreshold
Dimensions:
- Name: Resource
Value: !Sub "${MyLambdaFunction}:live"

- Name: FunctionName
Value: !Ref MyLambdaFunction

EvaluationPeriods: 2
MetricName: Errors
Namespace: AWS/Lambda
Period: 60
Statistic: Sum
Threshold: 0

LatestVersionErrorMetricGreaterThanZeroAlarm:
Type: "AWS::CloudWatch::Alarm"
Properties:
AlarmDescription: Lambda Function Error > 0
ComparisonOperator: GreaterThanThreshold
Dimensions:
- Name: Resource
Value: !Sub "${MyLambdaFunction}:live"

- Name: FunctionName
Value: !Ref MyLambdaFunction

- Name: ExecutedVersion
Value: !GetAtt MyLambdaFunction.Version.Version

EvaluationPeriods: 2
MetricName: Errors
Namespace: AWS/Lambda
Period: 60
Statistic: Sum
Threshold: 0

PreTrafficLambdaFunction:
Type: AWS::Serverless::Function
Properties:
Handler: preTrafficHook.handler
Policies:
- Version: "2012-10-17"
Statement:
- Effect: "Allow"
Action:
- "codedeploy:PutLifecycleEventHookExecutionStatus"

Resource:
!Sub 'arn:${AWS::Partition}:codedeploy:${AWS::Region}:${AWS::AccountId}

↪→:deploymentgroup:${ServerlessDeploymentApplication}/*'
- Version: "2012-10-17"
Statement:
- Effect: "Allow"
Action:
- "lambda:InvokeFunction"

(continues on next page)

8 Chapter 1. What’s New?

SAM Documentation, Release 0.1.0

(continued from previous page)

Resource: !GetAtt MyLambdaFunction.Arn
Runtime: nodejs12.x
FunctionName: 'CodeDeployHook_preTrafficHook'
DeploymentPreference:
Enabled: False
Role: ""

Environment:
Variables:
CurrentVersion: !Ref MyLambdaFunction.Version

When you update your function code and deploy the SAM template using CloudFormation, the following happens:

• CloudFormation publishes a new Lambda Version from the new code

• Since a deployment preference is set, CodeDeploy takes over the job of actually shifting traffic from old version
to new version.

• Before traffic shifting starts, CodeDeploy will invoke the PreTraffic Hook Lambda function. This Lambda
function must call back to CodeDeploy with an explicit status of Success or Failure, via the PutLifecy-
cleEventHookExecutionStatus API. On Failure, CodeDeploy will abort and report a failure back to CloudForma-
tion. On Success, CodeDeploy will proceed with the specified traffic shifting. Here is a sample Lambda Hook
function.

• Type: Linear10PercentEvery10Minutes instructs CodeDeploy to start with 10% traffic on new version
and add 10% every 10 minutes. It will complete traffic shifting in 100 minutes.

• During traffic shifting, if any of the CloudWatch Alarms go to Alarm state, CodeDeploy will immediately flip
the Alias back to old version and report a failure to CloudFormation.

• After traffic shifting completes, CodeDeploy will invoke the PostTraffic Hook Lambda function. This is similar
to PreTraffic Hook where the function must callback to CodeDeploy to report a Success or a Failure. PostTraffic
hook is a great place to run integration tests or other validation actions.

• If everything went well, the Alias will be pointing to the new Lambda Version.

• If you supply the “Role” argument to the DeploymentPreference, it will prevent SAM from creating a role and
instead use the provided CodeDeploy role for traffic shifting

NOTE: Verify that your AWS SDK version supports PutLifecycleEventHookExecutionStatus. For example, Python
requires SDK version 1.4.8 or newer.

Traffic Shifting Configurations

In the above example Linear10PercentEvery10Minutes is one of several preselected traffic shifting configurations
available in CodeDeploy. You can pick the configuration that best suits your application. See docs for the complete
list:

• Canary10Percent30Minutes

• Canary10Percent5Minutes

• Canary10Percent10Minutes

• Canary10Percent15Minutes

• AllAtOnce

• Linear10PercentEvery10Minutes

• Linear10PercentEvery1Minute

1.2. Safe Lambda deployments 9

https://docs.aws.amazon.com/codedeploy/latest/APIReference/API_PutLifecycleEventHookExecutionStatus.html
https://docs.aws.amazon.com/codedeploy/latest/APIReference/API_PutLifecycleEventHookExecutionStatus.html
https://github.com/aws/serverless-application-model/blob/d168f371f494196a57032313075db9faae5587e4/examples/2016-10-31/lambda_safe_deployments/src/preTrafficHook.js
https://github.com/awslabs/serverless-application-model/blob/master/docs/safe_lambda_deployments.rst#traffic-shifting-configurations

SAM Documentation, Release 0.1.0

• Linear10PercentEvery2Minutes

• Linear10PercentEvery3Minutes

They work as follows:

• LinearXPercentYMinutes: Traffic to new version will linearly increase in steps of X percentage every Y min-
utes.

Ex: Linear10PercentEvery10Minutes will add 10 percentage of traffic every 10 minute to complete in 100
minutes.

• CanaryXPercentYMinutes: X percent of traffic will be routed to new version for Y minutes. After Y minutes,
100 percent of traffic will be sent to new version. Some people call this as Blue/Green deployment.

Ex: Canary10Percent15Minutes will send 10 percent traffic to new version and 15 minutes later complete
deployment by sending all traffic to new version.

• AllAtOnce: This is an instant shifting of 100% of traffic to new version. This is useful if you want to run run
pre/post hooks but don’t want a gradual deployment. If you have a pipeline, you can set Beta/Gamma stages to
deploy instantly because the speed of deployments matter more than safety here.

• Custom: Aside from Above mentioned Configurations, Custom Codedeploy configuration are also supported.
(Example. Type: CustomCodeDeployConfiguration)

PreTraffic & PostTraffic Hooks

CodeDeploy allows you to run an arbitrary Lambda function before traffic shifting actually starts (PreTraffic Hook) and
after it completes (PostTraffic Hook). With either hook, you have the opportunity to run logic that determines whether
the deployment must succeed or fail. For example, with PreTraffic hook you could run integration tests against the
newly created Lambda version (but not serving traffic). With PostTraffic hook, you could run end-to-end validation
checks.

Hooks are extremely powerful because:

• Not limited by Lambda function duration: CodeDeploy invokes the hook function asynchronously. The func-
tion will receive a deploymentId and lifecycleEventHookExecutionId that should be used with a call
to the CodeDeploy API to report success or failure. Therefore you can build a workflow that runs for several
minutes or hours before completing the hook by calling the CodeDeploy API.

• New Version is created before PreTraffic Hook runs: Before PreTraffic hook runs, the Lambda Version con-
taining the new code has been created but this version is not serving any traffic yet. Therefore, in your hook
function, you can directly invoke the Version to run integration tests or even pre-warm the Lambda containers
before exposing it to production traffic.

NOTE: The event payload delivered to the Hook function will not contain the Lambda ARN to be
tested. We recommend adding an Environment variable to the Hook function that maintains the cur-
rent Version of the Lambda requiring safe deployments

Environment:
Variables:
CurrentVersion: !Ref MySafeLambdaFunction.Version

• Hooks are executed per-function: Each Lambda function gets its own PreTraffic and PostTraffic hook (techni-
cally speaking hooks are executed once per DeploymentGroup, but in this case the DeploymentGroup contains
only one Lambda Function). So you can customize the hooks logic to the function that is being deployed.

NOTE: If the Hook functions are created by the same SAM template that is deployed, then make
sure to turn off traffic shifting deployments for the hook functions. Also, the Role SAM generates

10 Chapter 1. What’s New?

SAM Documentation, Release 0.1.0

for a Lambda Execution Role does not include all permissions needed for Pre and Post hook func-
tions, since it will not contain the necessary permissions to call the CodeDeploy APIs or Invoke your
new Lambda function for testing. Instead, use the Policies attribute to provide the CodeDeploy and
Lambda permissions needed. The example also shows a Policy that provides access to the CodeDe-
ploy resource that SAM automatically generates. Finally, use the FunctionName property to control
the exact name of the Lambda function CloudFormation creates. Otherwise, CloudFormation will
create your Lambda function with the Stack name and a unique ID added as part of the name.

FunctionName: 'CodeDeployHook_preTrafficHook'
DeploymentPreference:

Enabled: False
Policies:

- Version: "2012-10-17"
Statement:
- Effect: "Allow"
Action:
- "codedeploy:PutLifecycleEventHookExecutionStatus"

Resource: "*"
- Version: "2012-10-17"
Statement:
- Effect: "Allow"
Action:
- "lambda:InvokeFunction"

Resource: !GetAtt MyLambdaFunction.Arn

Checkout the lambda_safe_deployments folder for an example for how to create SAM template that contains a hook
function.

Internals

Internally, SAM will create the following resources in your CloudFormation stack to make all of this work:

• One AWS::CodeDeploy::Application per stack, that is referencable via ${ServerlessDeploymentApplica-
tion}

• One AWS::CodeDeploy::DeploymentGroup per AWS::Serverless::Function resource. Each Lambda
Function in your SAM template belongs to its own Deployment Group.

• Adds UpdatePolicy on AWS::Lambda::Alias resource that is connected to the function’s Deployment Group
resource.

• One AWS::IAM::Role called “CodeDeployServiceRole”, if no custom role is provided

CodeDeploy assumes that there are no dependencies between Deployment Groups and hence will deploy them in
parallel. Since every Lambda function is to its own CodeDeploy DeploymentGroup, they will be deployed in parallel.
The CodeDeploy service will assume the new CodeDeployServiceRole to Invoke any Pre/Post hook functions and
perform the traffic shifting and Alias updates.

NOTE: The CodeDeployServiceRole only allows InvokeFunction on functions with names pre-
fixed with CodeDeployHook_. For example, you should name your Hook functions as such:
CodeDeployHook_PreTrafficHook.

1.2. Safe Lambda deployments 11

https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md#resource-types
https://github.com/awslabs/serverless-application-model/blob/master/examples/2016-10-31/lambda_safe_deployments

SAM Documentation, Release 0.1.0

Production errors preventing deployments

In some situations, an issue that is happening in production may prevent you from deploying a fix. This may happen
when a deployment happens when traffic is too low to register enough errors to trigger a roll back, or where someone
is sending malicious traffic through to a lambda and you haven’t accounted for the scenario where they do.

When this happens, the alarm for errors in the current lambda version is in an error state, which will cause code deploy
to roll back any attempted deploys straight away.

To release code in this situation, you need to

• Go into the CodeDeploy console

• Select the application you want to deploy to

• Select the corresponding Deployment Group

• Select “Edit”

• Select “Advanced - optional”

• Select “ignore alarm configuration”

• Save the changes

Run your deployment as usual

Then once deployment has successfully run, return to the CodeDeploy console, and follow the above steps but this time
deselect “ignore alarm configuration”.

1.3 Policy Templates

When you define a Serverless Function, SAM automatically creates the IAM Role required to run the function. Let’s
say your function needs to access couple of DynamoDB tables, you need to give your function explicit permissions to
access the tables. You can do this by adding AWS Managed Policies to Serverless Function resource definition in your
SAM template.

For Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Policies:
Give DynamoDB Full Access to your Lambda Function
- AmazonDynamoDBFullAccess

...

MyTable:
Type: AWS::Serverless::SimpleTable

Behind the scenes, AmazonDynamoDBFullAccess will give your function access to all DynamoDB APIs against all
DynamoDB tables in all regions. This is excessively permissive when all that your function does is Read & Write
values from the MyTable created in the stack.

SAM provides a tighter and more secure version of AWS Managed Policies called Policy Templates. This are a set
of readily available policies that can be scoped to a specific resource in the same region where your stack exists. Let’s
modify the above example to use a policy template called DynamoDBCrudPolicy:

12 Chapter 1. What’s New?

SAM Documentation, Release 0.1.0

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Policies:

Give just CRUD permissions to one table
- DynamoDBCrudPolicy:

TableName: !Ref MyTable

...

MyTable:
Type: AWS::Serverless::SimpleTable

1.3.1 How to Use

Policy Templates are specified in Policies property of AWS::Serverless::Function resource. You can mix policy
templates with AWS Managed Policies, custom managed policies or inline policy statements. Behind the scenes SAM
will expand the policy template to an inline policy statement based on the definition listed in policy_templates.json file.

Every policy template requires zero or more parameters, which are the resource that this policy is scoped to. Your tem-
plate will fail to deploy if the value for a required parameter is not specified. You can consult the policy_templates.json
file for name of the policy templates, parameter names as well as the actual policy statement it represents.

If you want a quick reference of all policies, checkout the all_policy_templates.yaml SAM template in examples folder.

NOTE: If a policy template does not require a parameter, you should still specify the value to be an empty
dictionary like this:

Policies:
- CloudWatchPutMetricPolicy: {}

1.4 SAM Internals

Explore the topics in this section to learn more about the internals of how SAM works.

1.4.1 CloudFormation Resources Generated By SAM

• AWS::Serverless::Function

– With AutoPublishAlias Property

– With DeploymentPreference Property

– With Events

∗ API

∗ HTTP API

∗ Cognito

1.4. SAM Internals 13

https://github.com/awslabs/serverless-application-model/blob/develop/samtranslator/policy_templates_data/policy_templates.json
https://github.com/awslabs/serverless-application-model/blob/develop/samtranslator/policy_templates_data/policy_templates.json
https://github.com/awslabs/serverless-application-model/blob/develop/tests/translator/input/all_policy_templates.yaml

SAM Documentation, Release 0.1.0

∗ S3

∗ SNS

∗ Kinesis

∗ MQ

∗ MSK

∗ SQS

∗ DynamoDb

∗ Schedule

∗ CloudWatchEvent (superseded by EventBridgeRule, see below)

∗ EventBridgeRule

• AWS::Serverless::Api

When you create a Serverless Function or a Serverless API, SAM will create additional AWS resources to wire ev-
erything up. For example, when you create a AWS::Serverless::Function, SAM will create a Lambda Function
resource along with an IAM Role resource to give appropriate permissions for your function. This document describes
all such generated resources, how they are named, and how to refer to them in your SAM template.

AWS::Serverless::Function

Given a Function defined as follows:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...

Following resources will be generated:

CloudFormation Resource Type Logical ID
AWS::Lambda::Function MyFunction
AWS::IAM::Role MyFunctionRole

With AutoPublishAlias Property

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
AutoPublishAlias: live
...

Additional generated resources:

14 Chapter 1. What’s New?

SAM Documentation, Release 0.1.0

CloudFormation Resource Type Logical ID
AWS::Lambda::Version MyFunctionVersionSHA (10 digits of SHA256 of CodeUri)
AWS::Lambda::Alias MyFunctionAliaslive

With DeploymentPreference Property

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
AutoPublishAlias: live
DeploymentPreference:
Type: Linear10PercentEvery10Minutes
Role: "arn"

...

Additional generated resources:

CloudFormation Resource Type Logical ID
AWS::CodeDeploy::Application ServerlessDeploymentApplication (only one per stack)
AWS::CodeDeploy::DeploymentGroup MyFunctionDeploymentGroup
AWS::IAM::Role CodeDeployServiceRole

NOTE: AWS::IAM::Role resources are only generated if no Role parameter is supplied for Deployment-
Preference

With Events

A common theme with all Events is SAM will generate a AWS::Lambda::Permission resource to give event source
permission to invoke the function. Other generated resources depend on the specific event type.

API

This is called an “Implicit API”. There can be many functions in the template that define these APIs. Behind the
scenes, SAM will collect all implicit APIs from all Functions in the template, generate a Swagger, and create an
implicit AWS::Serverless::Api using this Swagger. This API defaults to a StageName called “Prod” that cannot be
configured.

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
ThumbnailApi:
Type: Api
Properties:
Path: /thumbnail

(continues on next page)

1.4. SAM Internals 15

SAM Documentation, Release 0.1.0

(continued from previous page)

Method: GET
...

Additional generated resources:

CloudFormation Resource
Type

Logical ID

AWS::ApiGateway::RestApi ServerlessRestApi
AWS::ApiGateway::Stage ServerlessRestApiProdStage
AWS::ApiGateway::Deployment ServerlessRestApiDeploymentSHA (10 Digits of SHA256 of Swagger)
AWS::Lambda::Permission MyFunctionThumbnailApiPermissionProd (Prod is the default Stage Name for

implicit APIs)

NOTE: ServerlessRestApi* resources are generated one per stack.

HTTP API

This is called an “Implicit HTTP API”. There can be many functions in the template that define these APIs. Behind
the scenes, SAM will collect all implicit HTTP APIs from all Functions in the template, generate an OpenApi doc,
and create an implicit AWS::Serverless::HttpApi using this OpenApi. This API defaults to a StageName called
“$default” that cannot be configured.

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
ThumbnailApi:
Type: HttpApi
Properties:
Path: /thumbnail
Method: GET

...

Additional generated resources:

CloudFormation Resource Type Logical ID
AWS::ApiGatewayV2::Api ServerlessHttpApi
AWS::ApiGatewayV2::Stage ServerlessHttpApiApiGatewayDefaultStage
AWS::Lambda::Permission MyFunctionThumbnailApiPermission

NOTE: ServerlessHttpApi* resources are generated one per stack.

16 Chapter 1. What’s New?

SAM Documentation, Release 0.1.0

Cognito

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
CognitoTrigger:
Type: Cognito
Properties:
UserPool: !Ref MyUserPool
Trigger: PreSignUp

...

MyUserPool:
Type: AWS::Cognito::UserPool

Additional generated resources:

CloudFormation Re-
source Type

Logical ID

AWS::Lambda::PermissionsMyFunctionCognitoPermission
AWS::Cognito::UserPool Existing MyUserPool resource is modified to append LambdaConfig property where

the Lambda function trigger is defined

NOTE: You must refer to a Cognito UserPool defined in the same template. This is for two reasons:

1. SAM needs to add a LambdaConfig property to the UserPool resource by reading and modifying the
resource definition

2. Lambda triggers are specified as a property on the UserPool resource. Since CloudFormation cannot
modify a resource created outside of the stack, this bucket needs to be defined within the template.

S3

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
S3Trigger:
Type: S3
Properties:
Bucket: !Ref MyBucket
Events: s3:ObjectCreated:*

...

MyBucket:
Type: AWS::S3::Bucket

1.4. SAM Internals 17

SAM Documentation, Release 0.1.0

Additional generated resources:

CloudFormation Re-
source Type

Logical ID

AWS::Lambda::PermissionMyFunctionS3TriggerPermission
AWS::S3::Bucket Existing MyBucket resource is modified to append NotificationConfiguration prop-

erty where the Lambda function trigger is defined

NOTE: You must refer to an S3 Bucket defined in the same template. This is for two reasons:

1. SAM needs to add a NotificationConfiguration property to the bucket resource by reading and
modifying the resource definition

2. Lambda triggers are specified as a property on the bucket resource. Since CloudFormation cannot
modify a resource created outside of the stack, this bucket needs to be defined within the template.

SNS

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
MyTrigger:
Type: SNS
Properties:
Topic: arn:aws:sns:us-east-1:123456789012:my_topic
SqsSubscription:
QueuePolicyLogicalId: CustomQueuePolicyLogicalId
QueueArn: !GetAtt MyCustomQueue.Arn
QueueUrl: !Ref MyCustomQueue
BatchSize: 5
Enabled: true

...

Additional generated resources:

CloudFormation Resource Type Logical ID
AWS::Lambda::Permission MyFunctionMyTriggerPermission
AWS::Lambda::EventSourceMapping MyFunctionMyTriggerEventSourceMapping
AWS::SNS::Subscription MyFunctionMyTrigger
AWS::SQS::Queue MyFunctionMyTriggerQueue
AWS::SQS::QueuePolicy MyFunctionMyTriggerQueuePolicy

NOTE: AWS::Lambda::Permission resources are only generated if SqsSubscription is false.
AWS::Lambda::EventSourceMapping, AWS::SQS::Queue, AWS::SQS::QueuePolicy resources are
only generated if SqsSubscription is true.

AWS::SQS::Queue resources are only generated if SqsSubscription is true.

Example:

18 Chapter 1. What’s New?

SAM Documentation, Release 0.1.0

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
MyTrigger:
Type: SNS
Properties:
Topic: arn:aws:sns:us-east-1:123456789012:my_topic
SqsSubscription: true

...

Kinesis

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
MyTrigger:
Type: Kinesis
Properties:
Stream: arn:aws:kinesis:us-east-1:123456789012:stream/my-stream
StartingPosition: TRIM_HORIZON

...

Additional generated resources:

CloudFormation Resource Type Logical ID
AWS::Lambda::Permission MyFunctionMyTriggerPermission
AWS::Lambda::EventSourceMapping MyFunctionMyTrigger

MQ

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
MyTrigger:
Type: MQ
Properties:
Broker: arn:aws:mq:us-east-2:123456789012:broker:MyBroker:b-1234a5b6-78cd-901e-

↪→2fgh-3i45j6k178l9
SourceAccessConfigurations:
Type: BASIC_AUTH

(continues on next page)

1.4. SAM Internals 19

SAM Documentation, Release 0.1.0

(continued from previous page)

URI: arn:aws:secretsmanager:us-west-2:123456789012:secret:my-path/my-secret-
↪→name-1a2b3c

...

Additional generated resources:

CloudFormation Resource Type Logical ID
AWS::Lambda::Permission MyFunctionMyTriggerPermission
AWS::Lambda::EventSourceMapping MyFunctionMyTrigger

MSK

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
MyTrigger:
Type: MSK
Properties:
Stream: arn:aws:kafka:us-east-1:123456789012:cluster/mycluster/6cc0432b-8618-

↪→4f44-bccc-e1fbd8fb7c4d-2
StartingPosition: TRIM_HORIZON

...

Additional generated resources:

CloudFormation Resource Type Logical ID
AWS::Lambda::Permission MyFunctionMyTriggerPermission
AWS::Lambda::EventSourceMapping MyFunctionMyTrigger

SQS

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
MyTrigger:
Type: SQS
Properties:
Queue: arn:aws:sqs:us-east-1:123456789012:my-queue

...

Additional generated resources:

20 Chapter 1. What’s New?

SAM Documentation, Release 0.1.0

CloudFormation Resource Type Logical ID
AWS::Lambda::Permission MyFunctionMyTriggerPermission
AWS::Lambda::EventSourceMapping MyFunctionMyTrigger

DynamoDb

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
MyTrigger:
Type: DynamoDb
Properties:
Stream: arn:aws:dynamodb:us-east-1:123456789012:table/TestTable/stream/2016-08-

↪→11T21:21:33.291
StartingPosition: TRIM_HORIZON

...

Additional generated resources:

CloudFormation Resource Type Logical ID
AWS::Lambda::Permission MyFunctionMyTriggerPermission
AWS::Lambda::EventSourceMapping MyFunctionMyTrigger

Schedule

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
MyTimer:
Type: Schedule
Properties:
Input: rate(5 minutes)
DeadLetterConfig:
Type: SQS

...

Additional generated resources:

CloudFormation Resource Type Logical ID
AWS::Lambda::Permission MyFunctionMyTimerPermission
AWS::Events::Rule MyFunctionMyTimer
AWS::SQS::Queue MyFunctionMyTimerQueue
AWS::SQS::QueuePolicy MyFunctionMyTimerQueuePolicy

1.4. SAM Internals 21

SAM Documentation, Release 0.1.0

CloudWatchEvent (superseded by EventBridgeRule, see below)

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
OnTerminate:
Type: CloudWatchEvent
Properties:
Pattern:
source:
- aws.ec2

detail-type:
- EC2 Instance State-change Notification

detail:
state:
- terminated

...

Additional generated resources:

CloudFormation Resource Type Logical ID
AWS::Lambda::Permission MyFunctionOnTerminatePermission
AWS::Events::Rule MyFunctionOnTerminate

EventBridgeRule

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
OnTerminate:
Type: EventBridgeRule
Properties:
Pattern:
source:
- aws.ec2

detail-type:
- EC2 Instance State-change Notification

detail:
state:
- terminated

DeadLetterConfig:
Type: SQS

RetryPolicy:
MaximumEventAgeInSeconds: 600

(continues on next page)

22 Chapter 1. What’s New?

SAM Documentation, Release 0.1.0

(continued from previous page)

MaximumRetryAttempts:3
...

Additional generated resources:

CloudFormation Resource Type Logical ID
AWS::Lambda::Permission MyFunctionOnTerminatePermission
AWS::Events::Rule MyFunctionOnTerminate
AWS::SQS::Queue MyFunctionOnTerminateQueue
AWS::SQS::QueuePolicy MyFunctionOnTerminateQueuePolicy

AWS::Serverless::Api

In contrast to Implict APIs, you can explicitly define your API resource by providing an entire Swagger definition of
your API.

Example:

MyApi:
Type: AWS::Serverless::Api
Properties:
...
DefinitionUri: s3://bucket/swagger.json
StageName: dev
...

Generated resources:

CloudFormation Resource
Type

Logical ID

AWS::ApiGateway::RestApi MyApi
AWS::ApiGateway::Stage MyApidevStage
AWS::ApiGateway::Deployment MyApiDeploymentSHA (10 Digits of SHA256 of DefinitionUri or Definition-

Body value)

NOTE: By just specifying AWS::Serverless::Api resource, SAM will not add permission for API Gateway
to invoke the the Lambda Function backing the APIs. You should explicitly re-define all APIs under
Events section of the AWS::Serverless::Function resource but include a RestApiId property that references
the AWS::Serverless::Api resource. SAM will add permission for these APIs to invoke the function.

Example:

MyFunction:
Type: AWS::Serverless::Function
Properties:
...
Events:
GetApi:
Type: Api
Properties:
Path: /
Method: GET

(continues on next page)

1.4. SAM Internals 23

SAM Documentation, Release 0.1.0

(continued from previous page)

This is the property that instructs SAM to just add permissions␣
↪→for an explicitly defined API

RestApiId: !Ref MyApi

1.5 FAQ

Frequently Asked Questions

• How to manage multiple environments?

• How to enable API Gateway Logs

• How to deploy Lambda@Edge functions with SAM?

1.5.1 How to manage multiple environments?

Terminology clarification: Environment and Stage can normally be used interchangeably but since AWS
API Gateway relies on a concrete concept of Stages we’ll use the term Environment here to avoid confusion.

We recommend a one-to-one mapping of environment to Cloudformation Stack.

This means having a separate CloudFormation stack per environment, using a single template file with a dynamically
set target stack via the --stack-name parameter in the aws cloudformation deploy command.

For example, lets say we have 3 environments (dev, test, and prod). Each of those would have their own CloudFormation
stack — dev-stack, test-stack, prod-stack. Our CI/CD system will deploy to dev-stack, test-stack, and then prod-stack
but will be pushing one template through all of these stacks.

This approach limits the ‘blast radius’ for any given deployment since all resources for each environment are scoped to
a different CloudFormation Stack, so we will never be editing production resources on accident.

If we need to bring up separate stacks for different reasons (multiple region deployments, developer/branch stacks) it
will be straightforward to do so with this approach since the same template can be used to bring up and manage a new
stack independent of any others.

In cases where you need to manage different stages differently this can be done through a combination of Stack Param-
eters, Conditions, and Fn::If statements.

1.5.2 How to enable API Gateway Logs

Work is underway to make this functionality part of the SAM specification. Until then a suggested workaround is to
use the aws cli update-stage command to enable it.

aws apigateway update-stage \
--rest-api-id <api-id> \
--stage-name <stage-name> \
--patch-operations \
op=replace,path=/*/*/logging/dataTrace,value=true \
op=replace,path=/*/*/logging/loglevel,value=Info \
op=replace,path=/*/*/metrics/enabled,value=true

24 Chapter 1. What’s New?

SAM Documentation, Release 0.1.0

The command above can be run as a post deployment CI step or it could be triggered by a custom resource within the
same CloudFormation template.

Please note that in either case you will see metric gaps between the time CloudFormation updates API Gateway and
the time this command runs.

1.5.3 How to deploy Lambda@Edge functions with SAM?

At present, SAM doesn’t support Lambda@Edge as a native event. However you can follow this example to ease
deployment: Lambda Edge Example.

1.5. FAQ 25

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html/
https://aws.amazon.com/lambda/edge/
https://github.com/awslabs/serverless-application-model/tree/master/examples/2016-10-31/lambda_edge

	What’s New?
	Globals Section
	Supported Resources and Properties
	Implicit APIs
	Unsupported Properties

	Overridable
	Primitive Values are replaced
	Maps are merged
	Lists are additive

	Safe Lambda deployments
	Instant traffic shifting using Lambda Aliases
	Traffic shifting using CodeDeploy
	Traffic Shifting Configurations
	PreTraffic & PostTraffic Hooks
	Internals
	Production errors preventing deployments

	Policy Templates
	How to Use

	SAM Internals
	CloudFormation Resources Generated By SAM
	AWS::Serverless::Function
	With AutoPublishAlias Property
	With DeploymentPreference Property
	With Events
	API
	HTTP API
	Cognito
	S3
	SNS
	Kinesis
	MQ
	MSK
	SQS
	DynamoDb
	Schedule
	CloudWatchEvent (superseded by EventBridgeRule, see below)
	EventBridgeRule

	AWS::Serverless::Api

	FAQ
	How to manage multiple environments?
	How to enable API Gateway Logs
	How to deploy Lambda@Edge functions with SAM?

