Givaro
File List
Here is a list of all documented files with brief descriptions:
 all_field.C
 chineseremainder.hChinese Remainder Algorithm for 2 Elements
 domain_to_operatorstyle.C
 exponentiation.C
 extension.hNO DOX
 ff_arith.C
 GF128.C
 GFirreducible.C
 gfq.hArithmetic on GF(p^k), with p a prime number less than 2^16
 gfq_atomic.C
 gfqext.hArithmetic on GF(p^k), with p a prime number less than 2^15. Specialized for fast conversions to floating point numbers. Main difference in interface is init/convert
 gfqkronecker.hArithmetic on GF(p^k), with dynamic Kronecker substitution
 givaromm.hMemory management in Givaro two memory managers:
 givarray0.hArray of type T with reference mecanism
 givarrayallocator.hNO DOC
 givarrayfixed.hArrayFixed of type T with fixed dimension
 givbasictype.hNO DOC
 givbits.hField of n bits, for any n
 givcaster.hNO DOC
 givconfig.hConfiguration file for Givaro
 givdegree.hNO DOC opaque class for Degree of polynomial. Degree of polynomial 0 is Degree::deginfty with value DEGPOLYZERO
 givelem.hDefinition of a reference to an object
 giverror.hError exception
 givgenarith.hDomain definition for basic type of the language
 givhashtable.hHash table
 givindeter.hIndeterminates for polynomial manipulation
 givinit.hNO DOC
 givinteger.hInteger Domain class definition
 givinterp.hNO DOC
 givinterpgeom-multip.hInterpolation at geometric points
 givinterpgeom.hInterpolation at geometric points
 givintfactor.hFactorisation
 givintnumtheo.hNum theory
 givintprime.hPrimes
 givintrns.hArithmetic for RNS representations. Modular arithmetic for GIVARO. Here is defined arithmetic functions on rns representation with Givaro Integers
 givintrsa.hRSA scheme
 givintsqrootmod.hModular square roots
 givlist0.hList of type T with double link and various insert/get/rmv method. Used reference counting on each node of the list
 givmodule.hNO DOC
 givperf.hPerformance analysis
 givpointer.hAuto ptr management
 givpoly1.hNO DOC
 givpoly1crt.hPolynomial Chinese Remaindering of degree 1
 givpoly1dense.hUnivariate polynomial over T. we assume that T is a ring (0,1,+,*)
 givpoly1factor.hNO DOC
 givpoly1padic.hNO DOC
 givpower.hNO DOC
 givprimes16.hSet of primes less than 2^16
 givprint.h
 givranditer.hNO DOC Givaro ring Elements generator
 givrandom.hNO DOC
 givrational.hRationals (and domain), composed of an integer (numerator), and a positive integer (denominator) NO DOC
 givref_count.hDefinition of the Counter class, Counter. This class definition objects to handle reference counter for memory allocation (eg array0)
 givrns.hModular arithmetic for GIVARO. Here is defined arithmetic functions on rns representation and interface between RNS and Integer, all is done via the Chinese Remainder Algorithm
 givrnsfixed.hChinese Remainder Algorithm
 givstack.hNo doc
 givtimer.hTimer
 gmp++_int.h
 gmp++_int_add.C
 gmp++_int_compare.CRoutines to compare integers
 gmp++_int_cstor.C
 gmp++_int_div.C
 gmp++_int_gcd.C
 gmp++_int_io.C
 gmp++_int_lib.C
 gmp++_int_misc.C
 gmp++_int_mod.C
 gmp++_int_mul.C
 gmp++_int_pow.C
 gmp++_int_rand.inl
 gmp++_int_sub.C
 highorder.C
 iexponentiation.C
 ifactor.C
 ifactor_lenstra.C
 igcd.C
 igcdext.C
 ilcm.C
 interpolate.C
 iratrecon.C
 isirred.C
 ispower.C
 isprimitive.C
 isproot.C
 lambda.C
 lambda_inv.C
 modular-implem.hGeneric implementation of Modular
 modular-integral.hRepresentation of Z/mZ over int types
 modular.hFamily of arithmetics over Zpz ( $\mathbf{Z}/p\mathbf{Z}$)
 ModularSquareRoot.C
 montgomery.hFamily of arithmetics over Zpz ( $\mathbf{Z}/p\mathbf{Z}$)
 nb_primes.C
 nextprime.C
 order.C
 phi.C
 pol_arith.C
 pol_eval.C
 pol_factor.C
 polydouble.C
 PolynomialCRT.C
 prevprime.C
 primitiveelement.C
 primitiveroot.C
 probable_primroot.C
 ProbLucas.C
 RSA_breaking.C
 RSA_decipher.C
 RSA_encipher.C
 RSA_keys_generator.C
 StaticElement.hNO DOC
 test-crt.CNO DOC
 test-integer.C
 test-modsqroot.CNO DOC
 test-random.CWe test bounds for random Integers
 Test_Extension.C
 trunc_arith.C
 zpz_atomic.C