next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Cremona :: graph(RingMap)

graph(RingMap) -- closure of the graph of a rational map

Synopsis

Description

i1 : phi = map(QQ[x_0..x_3],QQ[y_0..y_2],{-x_1^2+x_0*x_2,-x_1*x_2+x_0*x_3,-x_2^2+x_1*x_3})

                                               2                           2
o1 = map(QQ[x , x , x , x ],QQ[y , y , y ],{- x  + x x , - x x  + x x , - x  + x x })
             0   1   2   3      0   1   2      1    0 2     1 2    0 3     2    1 3

o1 : RingMap QQ[x , x , x , x ] <--- QQ[y , y , y ]
                 0   1   2   3           0   1   2
i2 : graph phi

               QQ[x , x , x , x , y , y , y ]                             
                   0   1   2   3   0   1   2                              
o2 = (map(----------------------------------------,QQ[x , x , x , x ],{x ,
          (x y  - x y  + x y , x y  - x y  + x y )     0   1   2   3    0 
            3 0    2 1    1 2   2 0    1 1    0 2                         
     ------------------------------------------------------------------------
                            QQ[x , x , x , x , y , y , y ]
                                0   1   2   3   0   1   2
     x , x , x }), map(----------------------------------------,QQ[y , y ,
      1   2   3        (x y  - x y  + x y , x y  - x y  + x y )     0   1 
                         3 0    2 1    1 2   2 0    1 1    0 2
     ------------------------------------------------------------------------
     y ],{y , y , y }))
      2    0   1   2

o2 : Sequence

See also