For subschemes X,Y of ℙn1x...xℙnm this command computes the Segre class s(X,Y) of X in Y as a class in the Chow ring of ℙn1x...xℙnm.
R = makeProductRing({3,3}) |
x = gens(R) |
D = minors(2,matrix{{x_0..x_3},{x_4..x_7}}) |
X = ideal(x_0*x_1,x_1*x_2,x_0*x_2) |
segre(X,D) |
A = makeChowRing(R) |
s = segre(X,D,A) |