Given an element x in an NCRing R, this method returns true if Rx=xR.
i1 : A = QQ{a,b,c} o1 = A o1 : NCPolynomialRing |
i2 : I = ncIdeal {a*b+b*a,a*c+c*a,b*c+c*b} o2 = Two-sided ideal {ba+ab, ca+ac, cb+bc} o2 : NCIdeal |
i3 : B = A/I --Calling Bergman for NCGB calculation. --running: bergman -i /var/folders/46/9b86vqxj4hjcngvy7kd7sb140000gn/T/M2-12476-0/0.init -on-error exit --silent > /var/folders/46/9b86vqxj4hjcngvy7kd7sb140000gn/T/M2-12476-0/3.ter ... Complete! o3 = B o3 : NCQuotientRing |
i4 : sigma = ncMap(B,B,{b,c,a}) o4 = NCRingMap B <--- B o4 : NCRingMap |
i5 : isWellDefined sigma o5 = true |
i6 : C = oreExtension(B,sigma,w) --Calling Bergman for NCGB calculation. --running: bergman -i /var/folders/46/9b86vqxj4hjcngvy7kd7sb140000gn/T/M2-12476-0/5.init -on-error exit --silent > /var/folders/46/9b86vqxj4hjcngvy7kd7sb140000gn/T/M2-12476-0/8.ter ... Complete! o6 = C o6 : NCQuotientRing |
i7 : isCentral w o7 = false |
i8 : isNormal w o8 = true |