Advanced usage¶
ASN.1 and SNMP¶
What is ASN.1?¶
Note
This is only my view on ASN.1, explained as simply as possible. For more theoretical or academic views, I’m sure you’ll find better on the Internet.
ASN.1 is a notation whose goal is to specify formats for data exchange. It is independent of the way data is encoded. Data encoding is specified in Encoding Rules.
The most used encoding rules are BER (Basic Encoding Rules) and DER (Distinguished Encoding Rules). Both look the same, but the latter is specified to guarantee uniqueness of encoding. This property is quite interesting when speaking about cryptography, hashes, and signatures.
ASN.1 provides basic objects: integers, many kinds of strings, floats, booleans, containers, etc. They are grouped in the so-called Universal class. A given protocol can provide other objects which will be grouped in the Context class. For example, SNMP defines PDU_GET or PDU_SET objects. There are also the Application and Private classes.
Each of these objects is given a tag that will be used by the encoding rules. Tags from 1 are used for Universal class. 1 is boolean, 2 is an integer, 3 is a bit string, 6 is an OID, 48 is for a sequence. Tags from the Context
class begin at 0xa0. When encountering an object tagged by 0xa0, we’ll need to know the context to be able to decode it. For example, in SNMP context, 0xa0 is a PDU_GET object, while in X509 context, it is a container for the certificate version.
Other objects are created by assembling all those basic brick objects. The composition is done using sequences and arrays (sets) of previously defined or existing objects. The final object (an X509 certificate, a SNMP packet) is a tree whose non-leaf nodes are sequences and sets objects (or derived context objects), and whose leaf nodes are integers, strings, OID, etc.
Scapy and ASN.1¶
Scapy provides a way to easily encode or decode ASN.1 and also program those encoders/decoders. It is quite laxer than what an ASN.1 parser should be, and it kind of ignores constraints. It won’t replace neither an ASN.1 parser nor an ASN.1 compiler. Actually, it has been written to be able to encode and decode broken ASN.1. It can handle corrupted encoded strings and can also create those.
ASN.1 engine¶
Note: many of the classes definitions presented here use metaclasses. If you don’t look precisely at the source code and you only rely on my captures, you may think they sometimes exhibit a kind of magic behavior.
``
Scapy ASN.1 engine provides classes to link objects and their tags. They inherit from the ASN1_Class
. The first one is ASN1_Class_UNIVERSAL
, which provide tags for most Universal objects. Each new context (SNMP
, X509
) will inherit from it and add its own objects.
class ASN1_Class_UNIVERSAL(ASN1_Class):
name = "UNIVERSAL"
# [...]
BOOLEAN = 1
INTEGER = 2
BIT_STRING = 3
# [...]
class ASN1_Class_SNMP(ASN1_Class_UNIVERSAL):
name="SNMP"
PDU_GET = 0xa0
PDU_NEXT = 0xa1
PDU_RESPONSE = 0xa2
class ASN1_Class_X509(ASN1_Class_UNIVERSAL):
name="X509"
CONT0 = 0xa0
CONT1 = 0xa1
# [...]
All ASN.1 objects are represented by simple Python instances that act as nutshells for the raw values. The simple logic is handled by ASN1_Object
whose they inherit from. Hence they are quite simple:
class ASN1_INTEGER(ASN1_Object):
tag = ASN1_Class_UNIVERSAL.INTEGER
class ASN1_STRING(ASN1_Object):
tag = ASN1_Class_UNIVERSAL.STRING
class ASN1_BIT_STRING(ASN1_STRING):
tag = ASN1_Class_UNIVERSAL.BIT_STRING
These instances can be assembled to create an ASN.1 tree:
>>> x=ASN1_SEQUENCE([ASN1_INTEGER(7),ASN1_STRING("egg"),ASN1_SEQUENCE([ASN1_BOOLEAN(False)])])
>>> x
<ASN1_SEQUENCE[[<ASN1_INTEGER[7]>, <ASN1_STRING['egg']>, <ASN1_SEQUENCE[[<ASN1_BOOLEAN[False]>]]>]]>
>>> x.show()
# ASN1_SEQUENCE:
<ASN1_INTEGER[7]>
<ASN1_STRING['egg']>
# ASN1_SEQUENCE:
<ASN1_BOOLEAN[False]>
Encoding engines¶
As with the standard, ASN.1 and encoding are independent. We have just seen how to create a compounded ASN.1 object. To encode or decode it, we need to choose an encoding rule. Scapy provides only BER for the moment (actually, it may be DER. DER looks like BER except only minimal encoding is authorised which may well be what I did). I call this an ASN.1 codec.
Encoding and decoding are done using class methods provided by the codec. For example the BERcodec_INTEGER
class provides a .enc()
and a .dec()
class methods that can convert between an encoded string and a value of their type. They all inherit from BERcodec_Object which is able to decode objects from any type:
>>> BERcodec_INTEGER.enc(7)
'\x02\x01\x07'
>>> BERcodec_BIT_STRING.enc("egg")
'\x03\x03egg'
>>> BERcodec_STRING.enc("egg")
'\x04\x03egg'
>>> BERcodec_STRING.dec('\x04\x03egg')
(<ASN1_STRING['egg']>, '')
>>> BERcodec_STRING.dec('\x03\x03egg')
Traceback (most recent call last):
File "<console>", line 1, in ?
File "/usr/bin/scapy", line 2099, in dec
return cls.do_dec(s, context, safe)
File "/usr/bin/scapy", line 2178, in do_dec
l,s,t = cls.check_type_check_len(s)
File "/usr/bin/scapy", line 2076, in check_type_check_len
l,s3 = cls.check_type_get_len(s)
File "/usr/bin/scapy", line 2069, in check_type_get_len
s2 = cls.check_type(s)
File "/usr/bin/scapy", line 2065, in check_type
(cls.__name__, ord(s[0]), ord(s[0]),cls.tag), remaining=s)
BER_BadTag_Decoding_Error: BERcodec_STRING: Got tag [3/0x3] while expecting <ASN1Tag STRING[4]>
### Already decoded ###
None
### Remaining ###
'\x03\x03egg'
>>> BERcodec_Object.dec('\x03\x03egg')
(<ASN1_BIT_STRING['egg']>, '')
ASN.1 objects are encoded using their .enc()
method. This method must be called with the codec we want to use. All codecs are referenced in the ASN1_Codecs object. raw()
can also be used. In this case, the default codec (conf.ASN1_default_codec
) will be used.
>>> x.enc(ASN1_Codecs.BER)
'0\r\x02\x01\x07\x04\x03egg0\x03\x01\x01\x00'
>>> raw(x)
'0\r\x02\x01\x07\x04\x03egg0\x03\x01\x01\x00'
>>> xx,remain = BERcodec_Object.dec(_)
>>> xx.show()
# ASN1_SEQUENCE:
<ASN1_INTEGER[7L]>
<ASN1_STRING['egg']>
# ASN1_SEQUENCE:
<ASN1_BOOLEAN[0L]>
>>> remain
''
By default, decoding is done using the Universal
class, which means objects defined in the Context
class will not be decoded. There is a good reason for that: the decoding depends on the context!
>>> cert="""
... MIIF5jCCA86gAwIBAgIBATANBgkqhkiG9w0BAQUFADCBgzELMAkGA1UEBhMC
... VVMxHTAbBgNVBAoTFEFPTCBUaW1lIFdhcm5lciBJbmMuMRwwGgYDVQQLExNB
... bWVyaWNhIE9ubGluZSBJbmMuMTcwNQYDVQQDEy5BT0wgVGltZSBXYXJuZXIg
... Um9vdCBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eSAyMB4XDTAyMDUyOTA2MDAw
... MFoXDTM3MDkyODIzNDMwMFowgYMxCzAJBgNVBAYTAlVTMR0wGwYDVQQKExRB
... T0wgVGltZSBXYXJuZXIgSW5jLjEcMBoGA1UECxMTQW1lcmljYSBPbmxpbmUg
... SW5jLjE3MDUGA1UEAxMuQU9MIFRpbWUgV2FybmVyIFJvb3QgQ2VydGlmaWNh
... dGlvbiBBdXRob3JpdHkgMjCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoC
... ggIBALQ3WggWmRToVbEbJGv8x4vmh6mJ7ouZzU9AhqS2TcnZsdw8TQ2FTBVs
... RotSeJ/4I/1n9SQ6aF3Q92RhQVSji6UI0ilbm2BPJoPRYxJWSXakFsKlnUWs
... i4SVqBax7J/qJBrvuVdcmiQhLE0OcR+mrF1FdAOYxFSMFkpBd4aVdQxHAWZg
... /BXxD+r1FHjHDtdugRxev17nOirYlxcwfACtCJ0zr7iZYYCLqJV+FNwSbKTQ
... 2O9ASQI2+W6p1h2WVgSysy0WVoaP2SBXgM1nEG2wTPDaRrbqJS5Gr42whTg0
... ixQmgiusrpkLjhTXUr2eacOGAgvqdnUxCc4zGSGFQ+aJLZ8lN2fxI2rSAG2X
... +Z/nKcrdH9cG6rjJuQkhn8g/BsXS6RJGAE57COtCPStIbp1n3UsC5ETzkxml
... J85per5n0/xQpCyrw2u544BMzwVhSyvcG7mm0tCq9Stz+86QNZ8MUhy/XCFh
... EVsVS6kkUfykXPcXnbDS+gfpj1bkGoxoigTTfFrjnqKhynFbotSg5ymFXQNo
... Kk/SBtc9+cMDLz9l+WceR0DTYw/j1Y75hauXTLPXJuuWCpTehTacyH+BCQJJ
... Kg71ZDIMgtG6aoIbs0t0EfOMd9afv9w3pKdVBC/UMejTRrkDfNoSTllkt1Ex
... MVCgyhwn2RAurda9EGYrw7AiShJbAgMBAAGjYzBhMA8GA1UdEwEB/wQFMAMB
... Af8wHQYDVR0OBBYEFE9pbQN+nZ8HGEO8txBO1b+pxCAoMB8GA1UdIwQYMBaA
... FE9pbQN+nZ8HGEO8txBO1b+pxCAoMA4GA1UdDwEB/wQEAwIBhjANBgkqhkiG
... 9w0BAQUFAAOCAgEAO/Ouyuguh4X7ZVnnrREUpVe8WJ8kEle7+z802u6teio0
... cnAxa8cZmIDJgt43d15Ui47y6mdPyXSEkVYJ1eV6moG2gcKtNuTxVBFT8zRF
... ASbI5Rq8NEQh3q0l/HYWdyGQgJhXnU7q7C+qPBR7V8F+GBRn7iTGvboVsNIY
... vbdVgaxTwOjdaRITQrcCtQVBynlQboIOcXKTRuidDV29rs4prWPVVRaAMCf/
... drr3uNZK49m1+VLQTkCpx+XCMseqdiThawVQ68W/ClTluUI8JPu3B5wwn3la
... 5uBAUhX0/Kr0VvlEl4ftDmVyXr4m+02kLQgH3thcoNyBM5kYJRF3p+v9WAks
... mWsbivNSPxpNSGDxoPYzAlOL7SUJuA0t7Zdz7NeWH45gDtoQmy8YJPamTQr5
... O8t1wswvziRpyQoijlmn94IM19drNZxDAGrElWe6nEXLuA4399xOAU++CrYD
... 062KRffaJ00psUjf5BHklka9bAI+1lHIlRcBFanyqqryvy9lG2/QuRqT9Y41
... xICHPpQvZuTpqP9BnHAqTyo5GJUefvthATxRCC4oGKQWDzH9OmwjkyB24f0H
... hdFbP9IcczLd+rn4jM8Ch3qaluTtT4mNU0OrDhPAARW0eTjb/G49nlG2uBOL
... Z8/5fNkiHfZdxRwBL5joeiQYvITX+txyW/fBOmg=
... """.decode("base64")
>>> (dcert,remain) = BERcodec_Object.dec(cert)
Traceback (most recent call last):
File "<console>", line 1, in ?
File "/usr/bin/scapy", line 2099, in dec
return cls.do_dec(s, context, safe)
File "/usr/bin/scapy", line 2094, in do_dec
return codec.dec(s,context,safe)
File "/usr/bin/scapy", line 2099, in dec
return cls.do_dec(s, context, safe)
File "/usr/bin/scapy", line 2218, in do_dec
o,s = BERcodec_Object.dec(s, context, safe)
File "/usr/bin/scapy", line 2099, in dec
return cls.do_dec(s, context, safe)
File "/usr/bin/scapy", line 2094, in do_dec
return codec.dec(s,context,safe)
File "/usr/bin/scapy", line 2099, in dec
return cls.do_dec(s, context, safe)
File "/usr/bin/scapy", line 2218, in do_dec
o,s = BERcodec_Object.dec(s, context, safe)
File "/usr/bin/scapy", line 2099, in dec
return cls.do_dec(s, context, safe)
File "/usr/bin/scapy", line 2092, in do_dec
raise BER_Decoding_Error("Unknown prefix [%02x] for [%r]" % (p,t), remaining=s)
BER_Decoding_Error: Unknown prefix [a0] for ['\xa0\x03\x02\x01\x02\x02\x01\x010\r\x06\t*\x86H...']
### Already decoded ###
[[]]
### Remaining ###
'\xa0\x03\x02\x01\x02\x02\x01\x010\r\x06\t*\x86H\x86\xf7\r\x01\x01\x05\x05\x000\x81\x831\x0b0\t\x06\x03U\x04\x06\x13\x02US1\x1d0\x1b\x06\x03U\x04\n\x13\x14AOL Time Warner Inc.1\x1c0\x1a\x06\x03U\x04\x0b\x13\x13America Online Inc.1705\x06\x03U\x04\x03\x13.AOL Time Warner Root Certification Authority 20\x1e\x17\r020529060000Z\x17\r370928234300Z0\x81\x831\x0b0\t\x06\x03U\x04\x06\x13\x02US1\x1d0\x1b\x06\x03U\x04\n\x13\x14AOL Time Warner Inc.1\x1c0\x1a\x06\x03U\x04\x0b\x13\x13America Online Inc.1705\x06\x03U\x04\x03\x13.AOL Time Warner Root Certification Authority 20\x82\x02"0\r\x06\t*\x86H\x86\xf7\r\x01\x01\x01\x05\x00\x03\x82\x02\x0f\x000\x82\x02\n\x02\x82\x02\x01\x00\xb47Z\x08\x16\x99\x14\xe8U\xb1\x1b$k\xfc\xc7\x8b\xe6\x87\xa9\x89\xee\x8b\x99\xcdO@\x86\xa4\xb6M\xc9\xd9\xb1\xdc<M\r\x85L\x15lF\x8bRx\x9f\xf8#\xfdg\xf5$:h]\xd0\xf7daAT\xa3\x8b\xa5\x08\xd2)[\x9b`O&\x83\xd1c\x12VIv\xa4\x16\xc2\xa5\x9dE\xac\x8b\x84\x95\xa8\x16\xb1\xec\x9f\xea$\x1a\xef\xb9W\\\x9a$!,M\x0eq\x1f\xa6\xac]Et\x03\x98\xc4T\x8c\x16JAw\x86\x95u\x0cG\x01f`\xfc\x15\xf1\x0f\xea\xf5\x14x\xc7\x0e\xd7n\x81\x1c^\xbf^\xe7:*\xd8\x97\x170|\x00\xad\x08\x9d3\xaf\xb8\x99a\x80\x8b\xa8\x95~\x14\xdc\x12l\xa4\xd0\xd8\xef@I\x026\xf9n\xa9\xd6\x1d\x96V\x04\xb2\xb3-\x16V\x86\x8f\xd9 W\x80\xcdg\x10m\xb0L\xf0\xdaF\xb6\xea%.F\xaf\x8d\xb0\x8584\x8b\x14&\x82+\xac\xae\x99\x0b\x8e\x14\xd7R\xbd\x9ei\xc3\x86\x02\x0b\xeavu1\t\xce3\x19!\x85C\xe6\x89-\x9f%7g\xf1#j\xd2\x00m\x97\xf9\x9f\xe7)\xca\xdd\x1f\xd7\x06\xea\xb8\xc9\xb9\t!\x9f\xc8?\x06\xc5\xd2\xe9\x12F\x00N{\x08\xebB=+Hn\x9dg\xddK\x02\xe4D\xf3\x93\x19\xa5\'\xceiz\xbeg\xd3\xfcP\xa4,\xab\xc3k\xb9\xe3\x80L\xcf\x05aK+\xdc\x1b\xb9\xa6\xd2\xd0\xaa\xf5+s\xfb\xce\x905\x9f\x0cR\x1c\xbf\\!a\x11[\x15K\xa9$Q\xfc\xa4\\\xf7\x17\x9d\xb0\xd2\xfa\x07\xe9\x8fV\xe4\x1a\x8ch\x8a\x04\xd3|Z\xe3\x9e\xa2\xa1\xcaq[\xa2\xd4\xa0\xe7)\x85]\x03h*O\xd2\x06\xd7=\xf9\xc3\x03/?e\xf9g\x1eG@\xd3c\x0f\xe3\xd5\x8e\xf9\x85\xab\x97L\xb3\xd7&\xeb\x96\n\x94\xde\x856\x9c\xc8\x7f\x81\t\x02I*\x0e\xf5d2\x0c\x82\xd1\xbaj\x82\x1b\xb3Kt\x11\xf3\x8cw\xd6\x9f\xbf\xdc7\xa4\xa7U\x04/\xd41\xe8\xd3F\xb9\x03|\xda\x12NYd\xb7Q11P\xa0\xca\x1c\'\xd9\x10.\xad\xd6\xbd\x10f+\xc3\xb0"J\x12[\x02\x03\x01\x00\x01\xa3c0a0\x0f\x06\x03U\x1d\x13\x01\x01\xff\x04\x050\x03\x01\x01\xff0\x1d\x06\x03U\x1d\x0e\x04\x16\x04\x14Oim\x03~\x9d\x9f\x07\x18C\xbc\xb7\x10N\xd5\xbf\xa9\xc4 (0\x1f\x06\x03U\x1d#\x04\x180\x16\x80\x14Oim\x03~\x9d\x9f\x07\x18C\xbc\xb7\x10N\xd5\xbf\xa9\xc4 (0\x0e\x06\x03U\x1d\x0f\x01\x01\xff\x04\x04\x03\x02\x01\x860\r\x06\t*\x86H\x86\xf7\r\x01\x01\x05\x05\x00\x03\x82\x02\x01\x00;\xf3\xae\xca\xe8.\x87\x85\xfbeY\xe7\xad\x11\x14\xa5W\xbcX\x9f$\x12W\xbb\xfb?4\xda\xee\xadz*4rp1k\xc7\x19\x98\x80\xc9\x82\xde7w^T\x8b\x8e\xf2\xeagO\xc9t\x84\x91V\t\xd5\xe5z\x9a\x81\xb6\x81\xc2\xad6\xe4\xf1T\x11S\xf34E\x01&\xc8\xe5\x1a\xbc4D!\xde\xad%\xfcv\x16w!\x90\x80\x98W\x9dN\xea\xec/\xaa<\x14{W\xc1~\x18\x14g\xee$\xc6\xbd\xba\x15\xb0\xd2\x18\xbd\xb7U\x81\xacS\xc0\xe8\xddi\x12\x13B\xb7\x02\xb5\x05A\xcayPn\x82\x0eqr\x93F\xe8\x9d\r]\xbd\xae\xce)\xadc\xd5U\x16\x800\'\xffv\xba\xf7\xb8\xd6J\xe3\xd9\xb5\xf9R\xd0N@\xa9\xc7\xe5\xc22\xc7\xaav$\xe1k\x05P\xeb\xc5\xbf\nT\xe5\xb9B<$\xfb\xb7\x07\x9c0\x9fyZ\xe6\xe0@R\x15\xf4\xfc\xaa\xf4V\xf9D\x97\x87\xed\x0eer^\xbe&\xfbM\xa4-\x08\x07\xde\xd8\\\xa0\xdc\x813\x99\x18%\x11w\xa7\xeb\xfdX\t,\x99k\x1b\x8a\xf3R?\x1aMH`\xf1\xa0\xf63\x02S\x8b\xed%\t\xb8\r-\xed\x97s\xec\xd7\x96\x1f\x8e`\x0e\xda\x10\x9b/\x18$\xf6\xa6M\n\xf9;\xcbu\xc2\xcc/\xce$i\xc9\n"\x8eY\xa7\xf7\x82\x0c\xd7\xd7k5\x9cC\x00j\xc4\x95g\xba\x9cE\xcb\xb8\x0e7\xf7\xdcN\x01O\xbe\n\xb6\x03\xd3\xad\x8aE\xf7\xda\'M)\xb1H\xdf\xe4\x11\xe4\x96F\xbdl\x02>\xd6Q\xc8\x95\x17\x01\x15\xa9\xf2\xaa\xaa\xf2\xbf/e\x1bo\xd0\xb9\x1a\x93\xf5\x8e5\xc4\x80\x87>\x94/f\xe4\xe9\xa8\xffA\x9cp*O*9\x18\x95\x1e~\xfba\x01<Q\x08.(\x18\xa4\x16\x0f1\xfd:l#\x93 v\xe1\xfd\x07\x85\xd1[?\xd2\x1cs2\xdd\xfa\xb9\xf8\x8c\xcf\x02\x87z\x9a\x96\xe4\xedO\x89\x8dSC\xab\x0e\x13\xc0\x01\x15\xb4y8\xdb\xfcn=\x9eQ\xb6\xb8\x13\x8bg\xcf\xf9|\xd9"\x1d\xf6]\xc5\x1c\x01/\x98\xe8z$\x18\xbc\x84\xd7\xfa\xdcr[\xf7\xc1:h'
The Context
class must be specified:
>>> (dcert,remain) = BERcodec_Object.dec(cert, context=ASN1_Class_X509)
>>> dcert.show()
# ASN1_SEQUENCE:
# ASN1_SEQUENCE:
# ASN1_X509_CONT0:
<ASN1_INTEGER[2L]>
<ASN1_INTEGER[1L]>
# ASN1_SEQUENCE:
<ASN1_OID['.1.2.840.113549.1.1.5']>
<ASN1_NULL[0L]>
# ASN1_SEQUENCE:
# ASN1_SET:
# ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.6']>
<ASN1_PRINTABLE_STRING['US']>
# ASN1_SET:
# ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.10']>
<ASN1_PRINTABLE_STRING['AOL Time Warner Inc.']>
# ASN1_SET:
# ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.11']>
<ASN1_PRINTABLE_STRING['America Online Inc.']>
# ASN1_SET:
# ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.3']>
<ASN1_PRINTABLE_STRING['AOL Time Warner Root Certification Authority 2']>
# ASN1_SEQUENCE:
<ASN1_UTC_TIME['020529060000Z']>
<ASN1_UTC_TIME['370928234300Z']>
# ASN1_SEQUENCE:
# ASN1_SET:
# ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.6']>
<ASN1_PRINTABLE_STRING['US']>
# ASN1_SET:
# ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.10']>
<ASN1_PRINTABLE_STRING['AOL Time Warner Inc.']>
# ASN1_SET:
# ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.11']>
<ASN1_PRINTABLE_STRING['America Online Inc.']>
# ASN1_SET:
# ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.3']>
<ASN1_PRINTABLE_STRING['AOL Time Warner Root Certification Authority 2']>
# ASN1_SEQUENCE:
# ASN1_SEQUENCE:
<ASN1_OID['.1.2.840.113549.1.1.1']>
<ASN1_NULL[0L]>
<ASN1_BIT_STRING['\x000\x82\x02\n\x02\x82\x02\x01\x00\xb47Z\x08\x16\x99\x14\xe8U\xb1\x1b$k\xfc\xc7\x8b\xe6\x87\xa9\x89\xee\x8b\x99\xcdO@\x86\xa4\xb6M\xc9\xd9\xb1\xdc<M\r\x85L\x15lF\x8bRx\x9f\xf8#\xfdg\xf5$:h]\xd0\xf7daAT\xa3\x8b\xa5\x08\xd2)[\x9b`O&\x83\xd1c\x12VIv\xa4\x16\xc2\xa5\x9dE\xac\x8b\x84\x95\xa8\x16\xb1\xec\x9f\xea$\x1a\xef\xb9W\\\x9a$!,M\x0eq\x1f\xa6\xac]Et\x03\x98\xc4T\x8c\x16JAw\x86\x95u\x0cG\x01f`\xfc\x15\xf1\x0f\xea\xf5\x14x\xc7\x0e\xd7n\x81\x1c^\xbf^\xe7:*\xd8\x97\x170|\x00\xad\x08\x9d3\xaf\xb8\x99a\x80\x8b\xa8\x95~\x14\xdc\x12l\xa4\xd0\xd8\xef@I\x026\xf9n\xa9\xd6\x1d\x96V\x04\xb2\xb3-\x16V\x86\x8f\xd9 W\x80\xcdg\x10m\xb0L\xf0\xdaF\xb6\xea%.F\xaf\x8d\xb0\x8584\x8b\x14&\x82+\xac\xae\x99\x0b\x8e\x14\xd7R\xbd\x9ei\xc3\x86\x02\x0b\xeavu1\t\xce3\x19!\x85C\xe6\x89-\x9f%7g\xf1#j\xd2\x00m\x97\xf9\x9f\xe7)\xca\xdd\x1f\xd7\x06\xea\xb8\xc9\xb9\t!\x9f\xc8?\x06\xc5\xd2\xe9\x12F\x00N{\x08\xebB=+Hn\x9dg\xddK\x02\xe4D\xf3\x93\x19\xa5\'\xceiz\xbeg\xd3\xfcP\xa4,\xab\xc3k\xb9\xe3\x80L\xcf\x05aK+\xdc\x1b\xb9\xa6\xd2\xd0\xaa\xf5+s\xfb\xce\x905\x9f\x0cR\x1c\xbf\\!a\x11[\x15K\xa9$Q\xfc\xa4\\\xf7\x17\x9d\xb0\xd2\xfa\x07\xe9\x8fV\xe4\x1a\x8ch\x8a\x04\xd3|Z\xe3\x9e\xa2\xa1\xcaq[\xa2\xd4\xa0\xe7)\x85]\x03h*O\xd2\x06\xd7=\xf9\xc3\x03/?e\xf9g\x1eG@\xd3c\x0f\xe3\xd5\x8e\xf9\x85\xab\x97L\xb3\xd7&\xeb\x96\n\x94\xde\x856\x9c\xc8\x7f\x81\t\x02I*\x0e\xf5d2\x0c\x82\xd1\xbaj\x82\x1b\xb3Kt\x11\xf3\x8cw\xd6\x9f\xbf\xdc7\xa4\xa7U\x04/\xd41\xe8\xd3F\xb9\x03|\xda\x12NYd\xb7Q11P\xa0\xca\x1c\'\xd9\x10.\xad\xd6\xbd\x10f+\xc3\xb0"J\x12[\x02\x03\x01\x00\x01']>
# ASN1_X509_CONT3:
# ASN1_SEQUENCE:
# ASN1_SEQUENCE:
<ASN1_OID['.2.5.29.19']>
<ASN1_BOOLEAN[-1L]>
<ASN1_STRING['0\x03\x01\x01\xff']>
# ASN1_SEQUENCE:
<ASN1_OID['.2.5.29.14']>
<ASN1_STRING['\x04\x14Oim\x03~\x9d\x9f\x07\x18C\xbc\xb7\x10N\xd5\xbf\xa9\xc4 (']>
# ASN1_SEQUENCE:
<ASN1_OID['.2.5.29.35']>
<ASN1_STRING['0\x16\x80\x14Oim\x03~\x9d\x9f\x07\x18C\xbc\xb7\x10N\xd5\xbf\xa9\xc4 (']>
# ASN1_SEQUENCE:
<ASN1_OID['.2.5.29.15']>
<ASN1_BOOLEAN[-1L]>
<ASN1_STRING['\x03\x02\x01\x86']>
# ASN1_SEQUENCE:
<ASN1_OID['.1.2.840.113549.1.1.5']>
<ASN1_NULL[0L]>
<ASN1_BIT_STRING['\x00;\xf3\xae\xca\xe8.\x87\x85\xfbeY\xe7\xad\x11\x14\xa5W\xbcX\x9f$\x12W\xbb\xfb?4\xda\xee\xadz*4rp1k\xc7\x19\x98\x80\xc9\x82\xde7w^T\x8b\x8e\xf2\xeagO\xc9t\x84\x91V\t\xd5\xe5z\x9a\x81\xb6\x81\xc2\xad6\xe4\xf1T\x11S\xf34E\x01&\xc8\xe5\x1a\xbc4D!\xde\xad%\xfcv\x16w!\x90\x80\x98W\x9dN\xea\xec/\xaa<\x14{W\xc1~\x18\x14g\xee$\xc6\xbd\xba\x15\xb0\xd2\x18\xbd\xb7U\x81\xacS\xc0\xe8\xddi\x12\x13B\xb7\x02\xb5\x05A\xcayPn\x82\x0eqr\x93F\xe8\x9d\r]\xbd\xae\xce)\xadc\xd5U\x16\x800\'\xffv\xba\xf7\xb8\xd6J\xe3\xd9\xb5\xf9R\xd0N@\xa9\xc7\xe5\xc22\xc7\xaav$\xe1k\x05P\xeb\xc5\xbf\nT\xe5\xb9B<$\xfb\xb7\x07\x9c0\x9fyZ\xe6\xe0@R\x15\xf4\xfc\xaa\xf4V\xf9D\x97\x87\xed\x0eer^\xbe&\xfbM\xa4-\x08\x07\xde\xd8\\\xa0\xdc\x813\x99\x18%\x11w\xa7\xeb\xfdX\t,\x99k\x1b\x8a\xf3R?\x1aMH`\xf1\xa0\xf63\x02S\x8b\xed%\t\xb8\r-\xed\x97s\xec\xd7\x96\x1f\x8e`\x0e\xda\x10\x9b/\x18$\xf6\xa6M\n\xf9;\xcbu\xc2\xcc/\xce$i\xc9\n"\x8eY\xa7\xf7\x82\x0c\xd7\xd7k5\x9cC\x00j\xc4\x95g\xba\x9cE\xcb\xb8\x0e7\xf7\xdcN\x01O\xbe\n\xb6\x03\xd3\xad\x8aE\xf7\xda\'M)\xb1H\xdf\xe4\x11\xe4\x96F\xbdl\x02>\xd6Q\xc8\x95\x17\x01\x15\xa9\xf2\xaa\xaa\xf2\xbf/e\x1bo\xd0\xb9\x1a\x93\xf5\x8e5\xc4\x80\x87>\x94/f\xe4\xe9\xa8\xffA\x9cp*O*9\x18\x95\x1e~\xfba\x01<Q\x08.(\x18\xa4\x16\x0f1\xfd:l#\x93 v\xe1\xfd\x07\x85\xd1[?\xd2\x1cs2\xdd\xfa\xb9\xf8\x8c\xcf\x02\x87z\x9a\x96\xe4\xedO\x89\x8dSC\xab\x0e\x13\xc0\x01\x15\xb4y8\xdb\xfcn=\x9eQ\xb6\xb8\x13\x8bg\xcf\xf9|\xd9"\x1d\xf6]\xc5\x1c\x01/\x98\xe8z$\x18\xbc\x84\xd7\xfa\xdcr[\xf7\xc1:h']>
ASN.1 layers¶
While this may be nice, it’s only an ASN.1 encoder/decoder. Nothing related to Scapy yet.
ASN.1 fields¶
Scapy provides ASN.1 fields. They will wrap ASN.1 objects and provide the necessary logic to bind a field name to the value. ASN.1 packets will be described as a tree of ASN.1 fields. Then each field name will be made available as a normal Packet
object, in a flat flavor (ex: to access the version field of a SNMP packet, you don’t need to know how many containers wrap it).
Each ASN.1 field is linked to an ASN.1 object through its tag.
ASN.1 packets¶
ASN.1 packets inherit from the Packet class. Instead of a fields_desc
list of fields, they define ASN1_codec
and ASN1_root
attributes. The first one is a codec (for example: ASN1_Codecs.BER
), the second one is a tree compounded with ASN.1 fields.
A complete example: SNMP¶
SNMP defines new ASN.1 objects. We need to define them:
class ASN1_Class_SNMP(ASN1_Class_UNIVERSAL):
name="SNMP"
PDU_GET = 0xa0
PDU_NEXT = 0xa1
PDU_RESPONSE = 0xa2
PDU_SET = 0xa3
PDU_TRAPv1 = 0xa4
PDU_BULK = 0xa5
PDU_INFORM = 0xa6
PDU_TRAPv2 = 0xa7
These objects are PDU, and are in fact new names for a sequence container (this is generally the case for context objects: they are old containers with new names). This means creating the corresponding ASN.1 objects and BER codecs is simplistic:
class ASN1_SNMP_PDU_GET(ASN1_SEQUENCE):
tag = ASN1_Class_SNMP.PDU_GET
class ASN1_SNMP_PDU_NEXT(ASN1_SEQUENCE):
tag = ASN1_Class_SNMP.PDU_NEXT
# [...]
class BERcodec_SNMP_PDU_GET(BERcodec_SEQUENCE):
tag = ASN1_Class_SNMP.PDU_GET
class BERcodec_SNMP_PDU_NEXT(BERcodec_SEQUENCE):
tag = ASN1_Class_SNMP.PDU_NEXT
# [...]
Metaclasses provide the magic behind the fact that everything is automatically registered and that ASN.1 objects and BER codecs can find each other.
The ASN.1 fields are also trivial:
class ASN1F_SNMP_PDU_GET(ASN1F_SEQUENCE):
ASN1_tag = ASN1_Class_SNMP.PDU_GET
class ASN1F_SNMP_PDU_NEXT(ASN1F_SEQUENCE):
ASN1_tag = ASN1_Class_SNMP.PDU_NEXT
# [...]
Now, the hard part, the ASN.1 packet:
SNMP_error = { 0: "no_error",
1: "too_big",
# [...]
}
SNMP_trap_types = { 0: "cold_start",
1: "warm_start",
# [...]
}
class SNMPvarbind(ASN1_Packet):
ASN1_codec = ASN1_Codecs.BER
ASN1_root = ASN1F_SEQUENCE( ASN1F_OID("oid","1.3"),
ASN1F_field("value",ASN1_NULL(0))
)
class SNMPget(ASN1_Packet):
ASN1_codec = ASN1_Codecs.BER
ASN1_root = ASN1F_SNMP_PDU_GET( ASN1F_INTEGER("id",0),
ASN1F_enum_INTEGER("error",0, SNMP_error),
ASN1F_INTEGER("error_index",0),
ASN1F_SEQUENCE_OF("varbindlist", [], SNMPvarbind)
)
class SNMPnext(ASN1_Packet):
ASN1_codec = ASN1_Codecs.BER
ASN1_root = ASN1F_SNMP_PDU_NEXT( ASN1F_INTEGER("id",0),
ASN1F_enum_INTEGER("error",0, SNMP_error),
ASN1F_INTEGER("error_index",0),
ASN1F_SEQUENCE_OF("varbindlist", [], SNMPvarbind)
)
# [...]
class SNMP(ASN1_Packet):
ASN1_codec = ASN1_Codecs.BER
ASN1_root = ASN1F_SEQUENCE(
ASN1F_enum_INTEGER("version", 1, {0:"v1", 1:"v2c", 2:"v2", 3:"v3"}),
ASN1F_STRING("community","public"),
ASN1F_CHOICE("PDU", SNMPget(),
SNMPget, SNMPnext, SNMPresponse, SNMPset,
SNMPtrapv1, SNMPbulk, SNMPinform, SNMPtrapv2)
)
def answers(self, other):
return ( isinstance(self.PDU, SNMPresponse) and
( isinstance(other.PDU, SNMPget) or
isinstance(other.PDU, SNMPnext) or
isinstance(other.PDU, SNMPset) ) and
self.PDU.id == other.PDU.id )
# [...]
bind_layers( UDP, SNMP, sport=161)
bind_layers( UDP, SNMP, dport=161)
That wasn’t that much difficult. If you think that can’t be that short to implement SNMP encoding/decoding and that I may have cut too much, just look at the complete source code.
Now, how to use it? As usual:
>>> a=SNMP(version=3, PDU=SNMPget(varbindlist=[SNMPvarbind(oid="1.2.3",value=5),
... SNMPvarbind(oid="3.2.1",value="hello")]))
>>> a.show()
###[ SNMP ]###
version= v3
community= 'public'
\PDU\
|###[ SNMPget ]###
| id= 0
| error= no_error
| error_index= 0
| \varbindlist\
| |###[ SNMPvarbind ]###
| | oid= '1.2.3'
| | value= 5
| |###[ SNMPvarbind ]###
| | oid= '3.2.1'
| | value= 'hello'
>>> hexdump(a)
0000 30 2E 02 01 03 04 06 70 75 62 6C 69 63 A0 21 02 0......public.!.
0010 01 00 02 01 00 02 01 00 30 16 30 07 06 02 2A 03 ........0.0...*.
0020 02 01 05 30 0B 06 02 7A 01 04 05 68 65 6C 6C 6F ...0...z...hello
>>> send(IP(dst="1.2.3.4")/UDP()/SNMP())
.
Sent 1 packets.
>>> SNMP(raw(a)).show()
###[ SNMP ]###
version= <ASN1_INTEGER[3L]>
community= <ASN1_STRING['public']>
\PDU\
|###[ SNMPget ]###
| id= <ASN1_INTEGER[0L]>
| error= <ASN1_INTEGER[0L]>
| error_index= <ASN1_INTEGER[0L]>
| \varbindlist\
| |###[ SNMPvarbind ]###
| | oid= <ASN1_OID['.1.2.3']>
| | value= <ASN1_INTEGER[5L]>
| |###[ SNMPvarbind ]###
| | oid= <ASN1_OID['.3.2.1']>
| | value= <ASN1_STRING['hello']>
Resolving OID from a MIB¶
About OID objects¶
OID objects are created with an ASN1_OID
class:
>>> o1=ASN1_OID("2.5.29.10")
>>> o2=ASN1_OID("1.2.840.113549.1.1.1")
>>> o1,o2
(<ASN1_OID['.2.5.29.10']>, <ASN1_OID['.1.2.840.113549.1.1.1']>)
Loading a MIB¶
Scapy can parse MIB files and become aware of a mapping between an OID and its name:
>>> load_mib("mib/*")
>>> o1,o2
(<ASN1_OID['basicConstraints']>, <ASN1_OID['rsaEncryption']>)
The MIB files I’ve used are attached to this page.
Scapy’s MIB database¶
All MIB information is stored into the conf.mib object. This object can be used to find the OID of a name
>>> conf.mib.sha1_with_rsa_signature
'1.2.840.113549.1.1.5'
or to resolve an OID:
>>> conf.mib._oidname("1.2.3.6.1.4.1.5")
'enterprises.5'
It is even possible to graph it:
>>> conf.mib._make_graph()
Automata¶
Scapy enables to create easily network automata. Scapy does not stick to a specific model like Moore or Mealy automata. It provides a flexible way for you to choose your way to go.
An automaton in Scapy is deterministic. It has different states. A start state and some end and error states. There are transitions from one state to another. Transitions can be transitions on a specific condition, transitions on the reception of a specific packet or transitions on a timeout. When a transition is taken, one or more actions can be run. An action can be bound to many transitions. Parameters can be passed from states to transitions, and from transitions to states and actions.
From a programmer’s point of view, states, transitions and actions are methods from an Automaton subclass. They are decorated to provide meta-information needed in order for the automaton to work.
First example¶
Let’s begin with a simple example. I take the convention to write states with capitals, but anything valid with Python syntax would work as well.
class HelloWorld(Automaton):
@ATMT.state(initial=1)
def BEGIN(self):
print "State=BEGIN"
@ATMT.condition(BEGIN)
def wait_for_nothing(self):
print "Wait for nothing..."
raise self.END()
@ATMT.action(wait_for_nothing)
def on_nothing(self):
print "Action on 'nothing' condition"
@ATMT.state(final=1)
def END(self):
print "State=END"
In this example, we can see 3 decorators:
ATMT.state
that is used to indicate that a method is a state, and that can have initial, final and error optional arguments set to non-zero for special states.ATMT.condition
that indicate a method to be run when the automaton state reaches the indicated state. The argument is the name of the method representing that stateATMT.action
binds a method to a transition and is run when the transition is taken.
Running this example gives the following result:
>>> a=HelloWorld()
>>> a.run()
State=BEGIN
Wait for nothing...
Action on 'nothing' condition
State=END
This simple automaton can be described with the following graph:

The graph can be automatically drawn from the code with:
>>> HelloWorld.graph()
Changing states¶
The ATMT.state
decorator transforms a method into a function that returns an exception. If you raise that exception, the automaton state will be changed. If the change occurs in a transition, actions bound to this transition will be called. The parameters given to the function replacing the method will be kept and finally delivered to the method. The exception has a method action_parameters that can be called before it is raised so that it will store parameters to be delivered to all actions bound to the current transition.
As an example, let’s consider the following state:
@ATMT.state()
def MY_STATE(self, param1, param2):
print "state=MY_STATE. param1=%r param2=%r" % (param1, param2)
This state will be reached with the following code:
@ATMT.receive_condition(ANOTHER_STATE)
def received_ICMP(self, pkt):
if ICMP in pkt:
raise self.MY_STATE("got icmp", pkt[ICMP].type)
Let’s suppose we want to bind an action to this transition, that will also need some parameters:
@ATMT.action(received_ICMP)
def on_ICMP(self, icmp_type, icmp_code):
self.retaliate(icmp_type, icmp_code)
The condition should become:
@ATMT.receive_condition(ANOTHER_STATE)
def received_ICMP(self, pkt):
if ICMP in pkt:
raise self.MY_STATE("got icmp", pkt[ICMP].type).action_parameters(pkt[ICMP].type, pkt[ICMP].code)
Real example¶
Here is a real example take from Scapy. It implements a TFTP client that can issue read requests.

class TFTP_read(Automaton):
def parse_args(self, filename, server, sport = None, port=69, **kargs):
Automaton.parse_args(self, **kargs)
self.filename = filename
self.server = server
self.port = port
self.sport = sport
def master_filter(self, pkt):
return ( IP in pkt and pkt[IP].src == self.server and UDP in pkt
and pkt[UDP].dport == self.my_tid
and (self.server_tid is None or pkt[UDP].sport == self.server_tid) )
# BEGIN
@ATMT.state(initial=1)
def BEGIN(self):
self.blocksize=512
self.my_tid = self.sport or RandShort()._fix()
bind_bottom_up(UDP, TFTP, dport=self.my_tid)
self.server_tid = None
self.res = b""
self.l3 = IP(dst=self.server)/UDP(sport=self.my_tid, dport=self.port)/TFTP()
self.last_packet = self.l3/TFTP_RRQ(filename=self.filename, mode="octet")
self.send(self.last_packet)
self.awaiting=1
raise self.WAITING()
# WAITING
@ATMT.state()
def WAITING(self):
pass
@ATMT.receive_condition(WAITING)
def receive_data(self, pkt):
if TFTP_DATA in pkt and pkt[TFTP_DATA].block == self.awaiting:
if self.server_tid is None:
self.server_tid = pkt[UDP].sport
self.l3[UDP].dport = self.server_tid
raise self.RECEIVING(pkt)
@ATMT.action(receive_data)
def send_ack(self):
self.last_packet = self.l3 / TFTP_ACK(block = self.awaiting)
self.send(self.last_packet)
@ATMT.receive_condition(WAITING, prio=1)
def receive_error(self, pkt):
if TFTP_ERROR in pkt:
raise self.ERROR(pkt)
@ATMT.timeout(WAITING, 3)
def timeout_waiting(self):
raise self.WAITING()
@ATMT.action(timeout_waiting)
def retransmit_last_packet(self):
self.send(self.last_packet)
# RECEIVED
@ATMT.state()
def RECEIVING(self, pkt):
recvd = pkt[Raw].load
self.res += recvd
self.awaiting += 1
if len(recvd) == self.blocksize:
raise self.WAITING()
raise self.END()
# ERROR
@ATMT.state(error=1)
def ERROR(self,pkt):
split_bottom_up(UDP, TFTP, dport=self.my_tid)
return pkt[TFTP_ERROR].summary()
#END
@ATMT.state(final=1)
def END(self):
split_bottom_up(UDP, TFTP, dport=self.my_tid)
return self.res
It can be run like this, for instance:
>>> TFTP_read("my_file", "192.168.1.128").run()
Detailed documentation¶
Decorators¶
Decorator for states¶
States are methods decorated by the result of the ATMT.state
function. It can take 3 optional parameters, initial
, final
and error
, that, when set to True
, indicating that the state is an initial, final or error state.
class Example(Automaton):
@ATMT.state(initial=1)
def BEGIN(self):
pass
@ATMT.state()
def SOME_STATE(self):
pass
@ATMT.state(final=1)
def END(self):
return "Result of the automaton: 42"
@ATMT.state(error=1)
def ERROR(self):
return "Partial result, or explanation"
# [...]
Decorators for transitions¶
Transitions are methods decorated by the result of one of ATMT.condition
, ATMT.receive_condition
, ATMT.timeout
. They all take as argument the state method they are related to. ATMT.timeout
also have a mandatory timeout
parameter to provide the timeout value in seconds. ATMT.condition
and ATMT.receive_condition
have an optional prio
parameter so that the order in which conditions are evaluated can be forced. The default priority is 0. Transitions with the same priority level are called in an undetermined order.
When the automaton switches to a given state, the state’s method is executed. Then transitions methods are called at specific moments until one triggers a new state (something like raise self.MY_NEW_STATE()
). First, right after the state’s method returns, the ATMT.condition
decorated methods are run by growing prio. Then each time a packet is received and accepted by the master filter all ATMT.receive_condition
decorated hods are called by growing prio. When a timeout is reached since the time we entered into the current space, the corresponding ATMT.timeout
decorated method is called.
class Example(Automaton):
@ATMT.state()
def WAITING(self):
pass
@ATMT.condition(WAITING)
def it_is_raining(self):
if not self.have_umbrella:
raise self.ERROR_WET()
@ATMT.receive_condition(WAITING, prio=1)
def it_is_ICMP(self, pkt):
if ICMP in pkt:
raise self.RECEIVED_ICMP(pkt)
@ATMT.receive_condition(WAITING, prio=2)
def it_is_IP(self, pkt):
if IP in pkt:
raise self.RECEIVED_IP(pkt)
@ATMT.timeout(WAITING, 10.0)
def waiting_timeout(self):
raise self.ERROR_TIMEOUT()
Decorator for actions¶
Actions are methods that are decorated by the return of ATMT.action
function. This function takes the transition method it is bound to as first parameter and an optional priority prio
as a second parameter. The default priority is 0. An action method can be decorated many times to be bound to many transitions.
class Example(Automaton):
@ATMT.state(initial=1)
def BEGIN(self):
pass
@ATMT.state(final=1)
def END(self):
pass
@ATMT.condition(BEGIN, prio=1)
def maybe_go_to_end(self):
if random() > 0.5:
raise self.END()
@ATMT.condition(BEGIN, prio=2)
def certainly_go_to_end(self):
raise self.END()
@ATMT.action(maybe_go_to_end)
def maybe_action(self):
print "We are lucky..."
@ATMT.action(certainly_go_to_end)
def certainly_action(self):
print "We are not lucky..."
@ATMT.action(maybe_go_to_end, prio=1)
@ATMT.action(certainly_go_to_end, prio=1)
def always_action(self):
print "This wasn't luck!..."
The two possible outputs are:
>>> a=Example()
>>> a.run()
We are not lucky...
This wasn't luck!...
>>> a.run()
We are lucky...
This wasn't luck!...
Methods to overload¶
Two methods are hooks to be overloaded:
The
parse_args()
method is called with arguments given at__init__()
andrun()
. Use that to parametrize the behavior of your automaton.The
master_filter()
method is called each time a packet is sniffed and decides if it is interesting for the automaton. When working on a specific protocol, this is where you will ensure the packet belongs to the connection you are being part of, so that you do not need to make all the sanity checks in each transition.
PipeTools¶
Pipetool is a smart piping system allowing to perform complex stream data management. There are various differences between PipeTools and Automatons:
PipeTools have no states: data is always sent following the same pattern
PipeTools are not based on sockets but can handle more varied sources of data (and outputs) such as user input, pcap input (but also sniffing)
PipeTools are not class-based, but rather implemented by manually linking all their parts. That has drawbacks but allows to dynamically add a Source, Drain while running, and set multiple drains for the same source
Note
Pipetool default objects are located inside scapy.pipetool
Class Types¶
There are 3 different class of objects used for data management:
Sources
Drains
Sinks
They are executed and handled by a PipeEngine
object.
When running, a pipetool engine waits for any available data from the Source, and send it in the Drains linked to it. The data then goes from Drains to Drains until it arrives in a Sink, the final state of this data.
Here is a basic demo of what the PipeTool system can do

For instance, this engine was generated with this code:
>>> s = CLIFeeder()
>>> s2 = CLIHighFeeder()
>>> d1 = Drain()
>>> d2 = TransformDrain(lambda x: x[::-1])
>>> si1 = ConsoleSink()
>>> si2 = QueueSink()
>>>
>>> s > d1
>>> d1 > si1
>>> d1 > si2
>>>
>>> s2 >> d1
>>> d1 >> d2
>>> d2 >> si1
>>>
>>> p = PipeEngine()
>>> p.add(s)
>>> p.add(s2)
>>> p.graph(target="> the_above_image.png")
Let’s start our PipeEngine:
>>> p.start()
Now, let’s play with it:
>>> s.send("foo")
>'foo'
>>> s2.send("bar")
>>'rab'
>>> s.send("i like potato")
>'i like potato'
>>> print(si2.recv(), ":", si2.recv())
foo : i like potato
Let’s study what happens here:
there are two canals in a PipeEngine, a lower one and a higher one. Some Sources write on the lower one, some on the higher one and some on both.
most sources can be linked to any drain, on both lower and higher canals. The use of > indicates a link on the low canal, and >> on the higher one.
when we send some data in s, which is on the lower canal, as shown above, it goes through the Drain then is sent to the QueueSink and to the ConsoleSink
when we send some data in s2, it goes through the Drain, then the TransformDrain where the data is reversed (see the lambda), before being sent to ConsoleSink only. This explains why we only have the data of the lower sources inside the QueueSink: the higher one has not been linked.
Most of the sinks receive from both lower and upper canals. This is verifiable using the help(ConsoleSink)
>>> help(ConsoleSink)
Help on class ConsoleSink in module scapy.pipetool:
class ConsoleSink(Sink)
| Print messages on low and high entries
| +-------+
| >>-|--. |->>
| | print |
| >-|--' |->
| +-------+
|
[...]
Sources¶
A Source is a class that generates some data.
There are several source types integrated with Scapy, usable as-is, but you may also create yours.
Default Source classes¶
For any of those class, have a look at help([theclass])
to get more information or the required parameters.
CLIFeeder : a source especially used in interactive software. its
send(data)
generates the event data on the lower canalCLIHighFeeder : same than CLIFeeder, but writes on the higher canal
PeriodicSource : Generate messages periodically on the low canal.
AutoSource: the default source, that must be extended to create custom sources.
Create a custom Source¶
To create a custom source, one must extend the AutoSource
class.
Do NOT use the default Source
class except if you are really sure of what you are doing: it is only used internally, and is missing some implementation. The AutoSource
is made to be used.
To send data through it, the object must call its self._gen_data(msg)
or self._gen_high_data(msg)
functions, which send the data into the PipeEngine.
The Source should also (if possible), set self.is_exhausted
to True
when empty, to allow the clean stop of the PipeEngine
. If the source is infinite, it will need a force-stop (see PipeEngine below)
For instance, here is how CLIHighFeeder is implemented:
class CLIFeeder(CLIFeeder):
def send(self, msg):
self._gen_high_data(msg)
def close(self):
self.is_exhausted = True
Drains¶
Default Drain classes¶
Drains need to be linked on the entry that you are using. It can be either on the lower one (using >
) or the upper one (using >>
).
See the basic example above.
Drain : the most basic Drain possible. Will pass on both low and high entry if linked properly.
TransformDrain : Apply a function to messages on low and high entry
UpDrain : Repeat messages from low entry to high exit
DownDrain : Repeat messages from high entry to low exit
Create a custom Drain¶
To create a custom drain, one must extend the Drain
class.
A Drain
object will receive data from the lower canal in its push
method, and from the higher canal from its high_push
method.
To send the data back into the next linked Drain / Sink, it must call the self._send(msg)
or self._high_send(msg)
methods.
For instance, here is how TransformDrain is implemented:
class TransformDrain(Drain):
def __init__(self, f, name=None):
Drain.__init__(self, name=name)
self.f = f
def push(self, msg):
self._send(self.f(msg))
def high_push(self, msg):
self._high_send(self.f(msg))
Sinks¶
Sinks are destinations for messages.
A Sink
receives data like a Drain
, but doesn’t send any
messages after it.
Messages on the low entry come from push()
, and messages on the
high entry come from high_push()
.
Default Sink classes¶
-
class
Sink
¶ Does nothing; interface to extend for custom sinks.
All sinks have the following constructor parameters:
- Parameters
name (str) – a human-readable name for the element
All sinks should implement at least one of these methods:
-
push
()¶ Called by
PipeEngine
when there is a new message for the low entry.- Parameters
msg – The message data
- Returns
None
- Return type
None
-
high_push
()¶ Called by
PipeEngine
when there is a new message for the high entry.- Parameters
msg – The message data
- Returns
None
- Return type
None
-
class
ConsoleSink
¶ Prints messages on the low and high entries to
stdout
.
-
class
RawConsoleSink
¶ Prints messages on the low and high entries, using
os.write()
.- Parameters
newlines (bool) – Include a new-line character after printing each packet. Defaults to True.
-
class
TermSink
¶ Prints messages on the low and high entries, on a separate terminal (xterm or cmd).
- Parameters
keepterm (bool) – Leaves the terminal window open after
stop()
is called. Defaults to True.newlines (bool) – Include a new-line character after printing each packet. Defaults to True.
openearly (bool) – Automatically starts the terminal when the constructor is called, rather than waiting for
start()
. Defaults to True.
-
class
QueueSink
¶ Collects messages on the low and high entries into a
Queue
.Messages are dequeued with
recv()
.Both high and low entries share the same
Queue
.-
recv
()¶ Reads the next message from the queue.
If no message is available in the queue, returns None.
- Parameters
block (bool) – Blocks execution until a packet is available in the queue. Defaults to True.
timeout (None, int or float) – Controls how long to wait if
block=True
. If None (the default), this method will wait forever. If a non-negative number, this is a number of seconds to wait before giving up (and returning None).
-
-
class
WiresharkSink
¶ Streams
Packet
from the low entry to Wireshark.Packets are written into a
pcap
stream (likeWrpcapSink
), and streamed to a new Wireshark process on itsstdin
.Wireshark is run with the
-ki -
arguments, which cause it to treatstdin
as a capture device. Arguments inargs
will be appended after this.Extends
WrpcapSink
.- Parameters
linktype (None or int) – See
WrpcapSink.linktype
.args (None or list[str]) – See
args
.
-
args
¶ Additional arguments for the Wireshark process.
This must be either
None
(the default), or alist
ofstr
.This attribute has no effect after calling
PipeEngine.start()
.See wireshark(1) for more details.
-
class
WrpcapSink
¶ Writes
Packet
on the low entry to apcap
file.Ignores all messages on the high entry.
Note
Due to limitations of the
pcap
format, all packets must be of the same link type. This class will not mutate packets to conform with the expected link type.- Parameters
fname (str) – Filename to write packets to.
linktype (None or int) – See
linktype
.
-
linktype
¶ Set an explicit link-type (
DLT_
) for packets. This must be anint
orNone
.This is the same as the
wrpcap()
linktype
parameter.If
None
(the default), the linktype will be auto-detected on the first packet. This field will not be updated with the result of this auto-detection.This attribute has no effect after calling
PipeEngine.start()
.
Create a custom Sink¶
To create a custom sink, one must extend Sink
and implement
push()
and/or high_push()
.
This is a simplified version of ConsoleSink
:
class ConsoleSink(Sink):
def push(self, msg):
print(">%r" % msg)
def high_push(self, msg):
print(">>%r" % msg)
Link objects¶
As shown in the example, most sources can be linked to any drain, on both low and high entry.
The use of >
indicates a link on the low entry, and >>
on the high
entry.
For example, to link a
, b
and c
on the low entries:
>>> a = CLIFeeder()
>>> b = Drain()
>>> c = ConsoleSink()
>>> a > b > c
>>> p = PipeEngine()
>>> p.add(a)
This wouldn’t link the high entries, so something like this would do nothing:
>>> a2 = CLIHighFeeder()
>>> a2 >> b
>>> a2.send("hello")
Because b
(Drain
) and c
(ConsoleSink
) are not
linked on the high entry.
However, using a DownDrain
would bring the high messages from
CLIHighFeeder
to the lower channel:
>>> a2 = CLIHighFeeder()
>>> b2 = DownDrain()
>>> a2 >> b2
>>> b2 > b
>>> a2.send("hello")
The PipeEngine class¶
The PipeEngine
class is the core class of the Pipetool system. It must be initialized and passed the list of all Sources.
There are two ways of passing sources:
during initialization:
p = PipeEngine(source1, source2, ...)
using the
add(source)
method
A PipeEngine
class must be started with .start()
function. It may be force-stopped with the .stop()
, or cleanly stopped with .wait_and_stop()
A clean stop only works if the Sources is exhausted (has no data to send left).
It can be printed into a graph using .graph()
methods. see help(do_graph)
for the list of available keyword arguments.
Scapy advanced PipeTool objects¶
Note
Unlike the previous objects, those are not located in scapy.pipetool
but in scapy.scapypipes
Now that you know the default PipeTool objects, here are some more advanced ones, based on packet functionalities.
SniffSource : Read packets from an interface and send them to low exit.
RdpcapSource : Read packets from a PCAP file send them to low exit.
InjectSink : Packets received on low input are injected (sent) to an interface
WrpcapSink : Packets received on low input are written to PCAP file
UDPDrain : UDP payloads received on high entry are sent over UDP (complicated, have a look at
help(UDPDrain)
)FDSourceSink : Use a file descriptor as source and sink
TCPConnectPipe : TCP connect to addr:port and use it as source and sink
TCPListenPipe : TCP listen on [addr:]port and use the first connection as source and sink (complicated, have a look at
help(TCPListenPipe)
)
Triggering¶
Some special sort of Drains exists: the Trigger Drains.
Trigger Drains are special drains, that on receiving data not only pass it by but also send a “Trigger” input, that is received and handled by the next triggered drain (if it exists).
For example, here is a basic TriggerDrain usage:
>>> a = CLIFeeder()
>>> d = TriggerDrain(lambda msg: True) # Pass messages and trigger when a condition is met
>>> d2 = TriggeredValve()
>>> s = ConsoleSink()
>>> a > d > d2 > s
>>> d ^ d2 # Link the triggers
>>> p = PipeEngine(s)
>>> p.start()
INFO: Pipe engine thread started.
>>>
>>> a.send("this will be printed")
>'this will be printed'
>>> a.send("this won't, because the valve was switched")
>>> a.send("this will, because the valve was switched again")
>'this will, because the valve was switched again'
>>> p.stop()
Several triggering Drains exist, they are pretty explicit. It is highly recommended to check the doc using help([the class])
TriggeredMessage : Send a preloaded message when triggered and trigger in chain
TriggerDrain : Pass messages and trigger when a condition is met
TriggeredValve : Let messages alternatively pass or not, changing on trigger
TriggeredQueueingValve : Let messages alternatively pass or queued, changing on trigger
TriggeredSwitch : Let messages alternatively high or low, changing on trigger