Go to the documentation of this file.
9 #ifndef INCLUDE_CALLBACKFUNCTIONS
10 #define INCLUDE_CALLBACKFUNCTIONS
78 double inf_pr,
double inf_du,
79 double mu,
double d_norm,
80 double regularization_size,
81 double alpha_du,
double alpha_pr,
Class to organize all the data required by the algorithm.
MatlabFunctionHandle * objfunc
SparseMatrix * getJacobianStructure(int n, int m) const
Class for all IPOPT specific calculated quantities.
MatlabFunctionHandle * hesstrucfunc
bool iterFuncIsAvailable() const
CallbackFunctions(const mxArray *ptr)
Number * x
Input: Starting point Output: Optimal solution.
bool iterCallback(int t, double f, double inf_pr, double inf_du, double mu, double d_norm, double regularization_size, double alpha_du, double alpha_pr, int ls_trials, const Ipopt::IpoptData *ip_data, Ipopt::IpoptCalculatedQuantities *ip_cq, int n) const
MatlabFunctionHandle * constraintfunc
bool jacobianFuncIsAvailable() const
MatlabFunctionHandle * gradfunc
void computeJacobian(int m, const Iterate &x, SparseMatrix &J) const
MatlabFunctionHandle * iterfunc
MatlabFunctionHandle * jacobianfunc
void computeGradient(const Iterate &x, double *g) const
bool hessianFuncIsAvailable() const
void computeConstraints(const Iterate &x, int m, double *c) const
Number Number * g
Values of constraint at final point (output only - ignored if set to NULL)
bool constraintFuncIsAvailable() const
MatlabFunctionHandle * hessianfunc
MatlabFunctionHandle * jacstrucfunc
SparseMatrix * getHessianStructure(int n) const
void computeHessian(const Iterate &x, double sigma, int m, const double *lambda, SparseMatrix &H) const
double computeObjective(const Iterate &x) const
Number Number Index m
Number of constraints.