Reference Manual

Measurement Expressions Reference Manual

Gunther Kraut

Copyright (©) 2006, 2009 Gunther Kraut <gn.kraut@online.de>
Copyright (©) 2006 Stefan Jahn <stefan@lkcc.org>

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation. A copy of the license is included in
the section entitled "GNU Free Documentation License”.

Introduction

This manual describes the measurement expressions available in "Qucs”, the "Quite
Universal Circuit Simulator”.

Measurement expressions come into play whenever the results of a "Qucs” simula-
tion run need post processing. Examples would be the conversion of a simulated
voltage waveform from volts to dBV, the root mean square value of that waveform
or the determination of the peak voltage. The "Qucs” measurement functions offer
a rich set of data manipulation tools.

If you are not familiar with the way how to enter those formulas, please refer
to chapter “Using Measurement Fxpressions”, which points out the possibilities
to create and change measurement expressions. Also the data types supported
are specified here. Chapter “Functions Syntaz and Overview” introduces the basic
syntax of functions and a categorical list of all functions available. The core of
the document, a detailed compilation of all "Qucs” functions divided into differ-
ent categories, is presented in chapter “Math Functions” and chapter “Electronics
Functions”. Finally, the Index contains an alphabetical list of all functions.

Using Measurement Expressions

The chapter describes the usage of mathematical expressions for post processing
simulation data in “Qucs”, how to enter formulas and modifying them. It gives a
brief description of the overall syntax of those expressions.

Entering Measurement Expressions

Measurement expressions generate new datasets by function or operator driven
evaluation of simulation results. Those new datasets are accessible in the data dis-
play tab after simulation. The related equations can be entered into the schematic
editor by the following means:

e Using the equation icon in the “Tools” bar (see fig. 1)

e Using menu item “Insert” — "Insert equation”

Figure 1: Entering a new measurement expression via equation icon

You can now place the equation symbol by mouse click anywhere in the schematic.
Each mouse click creates a new equation instance each consisting of a variable
number of measurement expressions. Press the [@ key if you do not like further
equations.

Another option is to select an existing equation, copy it (either by menu item
“Edit” — "Copy” or by [@ + 1) and paste it (either by menu item “Edit” —
"Paste” or by + V]).

After having successfully created an equation instance, you are now able to modify
it.

Changing Measurement Expressions

For sake of simplicity we assume that you have just generated a new equation - if
you like to change an existing, more complicated equation the following steps are
the same.

Thus, the excerpt of your schematic surface looks like that in fig. 2.

! [@ + means that you have to press the [@ key and the key simultaneously.

&y untitied ‘

| Equation
.Egn1.
y=1

Figure 2: Newly created equation

You can now manipulate the current name of the equation instance. Simply click
onto “Eqnl”, which becomes highlighted. Then type in a new name for it and

finalise your inputs with the key.

After that, you can enter a new equation. Again, click onto “y=1”. Only the “1”
is marked, and you can enter a new expression there. Please use the variables, op-
erators and constants described in chapter “Syntaz of Measurement Expressions”.
Note that you can also refer to results (dependents) of other equations. But how
to change the name of the current dependent “y”? Right click onto the equation,
and a context menu opens. Select the first item called “Edit properties”. A sub
window appears, which should look like the one in fig. 3. The alternative for
entering equations is to double click onto the equation.

You can now change the name of the dependent, the equation itself (which is “1”
in the example shown) and the name of the equation. If you do not want the
result to be exported into the data display tab, but temporarily need it for further
calculations, select “no” in the “Export value” cell.

Syntax of Measurement Expressions

Function names, variable names, and constant names are all case sensitive in mea-
surement expressions - it is distinguished between lowercase and uppercase letters
such as 'a’ and "A’.

In functions, commas are used to separate arguments.

& Edit Component Properties O] |X

equation

Name: |Eqn1 |

\Name \Value \display Description ‘

P yes 1y |
Export yes no put result into dataset [yes, no]| |

(% display in schematic

‘ Add H Remove

OK ‘ ‘ Apply ‘ ‘ Cancel

Figure 3: Editing equation properties
Variable Names

User defined variable names consist of a letter, followed by any number of letters,
digits, or underscores.

The syntax of variable names created by the "Qucs” simulator is as specified in
table 1. Please note that all voltages and currents in “Qucs” are peak values except
the noise voltages and currents which are RMS values at 1Hz bandwidth.

Numbers

Numbers are written in conventional decimal way, with an optional decimal point
between the digits. For powers of ten, the familiar scientific notation with an ’e’
is used. In this way, '1.234e6’ is an example for the real floating point number
1234000. Imaginary numbers can be entered by a multiplication factor i’ or ’j’
(see also table 3). An example would be "142*i’ or - if you want to leave out the
multiplication sign - "1+i2’.

Beside the scientific ’e’ notation the following number suffixes can be used (see
table 2):

’ Variable Name ‘ Description

nodename.V | DC voltage at node nodename

name.l | DC current through circuit component name

nodename.v | AC voltage at node nodename

name.i | AC current through circuit component name

nodename.vn | AC noise voltage at node nodename

name.in | AC noise current through circuit component name

nodename.Vt | Transient voltage at node nodename

name. It | Transient current through circuit component name

name.OP | name = component name, OP = operating point (device dependent),
e.g. D1.1d

S[x,y] | S-parameter, e.g. S[1,1]

Rn | equivalent noise resistance

Sopt | optimal reflection coefficient for minimum noise

Fmin | minimum noise figure

F | noise figure

nodename.Vb | Harmonic balance voltage at node nodename

Table 1: Syntax of simulator generated variable names
Vectors and Matrices

You can enter vectors and matrices manually by enclosing columns and rows into
brackets. Columns are separated by commas, rows by semicolons. A valid matrix
entry in a measurement expression would be "A=[1,2;34)", defining the matrix
1 2 .
A= <3 4). The notation 'y=[1,2,3,4]" configures the vector y = (1 2 3 4).
You get access to components of matrices and vectors by writing its name followed
by brackets. Inside of the latter ranges (see table 6) or indices, separated by
commas, define the extract you desire. Examples are 'y=M’, accessing the whole
matrix M, 'y=M[2,3]’, extracting the value of the second row and third column of

M, or 'y=M[:,3]’, obtaining the complete third column.

Built-in Constants

The constants which can be used within measurement expressions are given in

table 3.

’ Suffix ‘ Name ‘ Value H Suffix ‘ Name ‘ Value ‘

E exa | 1E+18 m milli | 1E-3
P peta | 1IE4+15 u micro | 1E-6
T tera | 1IE+12 n nano | 1E-9
G giga | 1E+9 p pico | 1E-12
M mega | 1E46 f femto | 1E-15
k kilo 1E+3 a atto | 1E-18
Table 2: Number Suffixes
’ Constant \ Description \ Value ‘
e Euler’s constant 2.718282
1,] Imaginary unit (\/—_1) il
kB Boltzmann’s constant | 1.380658¢23 J/K
pi s 3.141593

Table 3: Built-in Constants

Operators

Operator Precedence Expressions are evaluated in the standard way, meaning
from left to right, unless there are parentheses. The priority of operators is also
handled familiarly, thus for example multiplication has precedence to addition.
Tables 4 and 5 specify sorted lists of all operators, the topmost having highest
priority. Operators on the same line have the same precedence.

Ranges The general nomenclature of ranges is displayed in table 6. It shows one-
dimensional ranges, whereas also n-dimensional ranges are possible, if you consider
nested sweeps.

Post Processing of Simulation Data by Expressions

After a simulation has run the results are stored in datasets. Usually, such a
dataset is a vector or a matrix, but may also be a real or complex scalar. For
transient analysis, this dataset contains voltage or current information over time,
for Harmonic Balance it contains amplitudes at dedicated frequencies, while for S-
parameter analysis a vector of matrices (thus matrices in dependency of frequency)

6

’Operator‘ Description ‘ Example ‘

() Parentheses, function call | y=max(v)
) Exponentiation y=3"4
Multiplication y=3%4
/ Division y=3/4
% Modulo y=4%3
+ Addition y=3+4
- Subtraction y=3-4
: Range operator y=v[3:12]
+,- Unary plus, unary minus | y=+x z=-y

Table 4: Arithmetic Operator Priorities

is returned. In further generalisation the components of vectors and matrices
consist of complex numbers.

Additionally, datasets can be generated by using expressions. As an example
the linspace() function shall be named, which creates a vector of linearly spaced
elements.

’ Operator ‘ Description ‘ Example ‘
() Parentheses a=(x|ly)&&z
! Negation z=1x
7 Abbreviation for conditional expression ”if x then y else z” a=x7?y:z
&& And z=x&&y
Il Or z=x| |y
~ Exclusive Or z=x""y
== Equal Z=x==
= Not equal z=x!=y
< Less than z=x<y
<= Less than or equal z=x<=y
> Larger than Z=xX>y
>= Larger than or equal Z=x>=y

Table 5: Logical Operator Priorities

’ Syntax ‘ Explanation ‘
m:n | Range from index m to index n
n Range up to index n
m: Range starting from index m

No range limitations

Table 6: Range definition

Functions Syntax and Overview

This chapter introduces the basic syntax of the function descriptions and contains
a categorical list of all available functions.

Functions Reference Format

"Qucs” provides a rich set of functions, which can be used to generate and display
new datasets by function based evaluation of simulation results. Beside a large
number of mathematical standard functions such as square root (sqrt), exponential
function (exp), absolute value (abs), functions especially useful for calculation and
transformation of electronic values are implemented. Examples for the latter would
be the conversion from Watts to dBm, the generation of noise circles in an amplifier

design, or the conversion from S-parameters to Y-parameters.

Functions Reference Format

In the subsequent two chapters, each function is described using the following
structure:

<Function Name>

Outlines briefly the functionality of the function.

Syntax

Defines the general syntax of this function.

Arguments

Name, type, definition range and whether the argument is optional, are tabulated
here. In case of an optional parameter the default value is specified. “Type” is a
list defining the arguments allowed and may contain the following symbols:

’ Symbol \ Description ‘
R Real number
C Complex number
R™ Vector consisting of n real elements
cr Vector consisting of n complex elements
Rm>n Real matrix consisting of m rows and n columns
Cm>m | Complex matrix consisting of m rows and n columns
RMxnxp Vector of p real m x n matrices
Cmxnxp Vector of p complex m X n matrices

“Definition range” specifies the allowed range. Each range is introduced by a
bracket, either “[” or “|”; meaning that the following start value of the range is
either included or excluded. The start value is separated from the end value by a
comma. Then the end value follows, finished by a bracket again, either “[” or “]”.

9

The first bracket mentioned means “excluding the end value”, the second means
“including”.

If a range is given for a complex number, this specifies the real or imaginary value
of that number. If a range is given for a real or complex vector or matrix, this
specifies the real or imaginary value of each element of that vector or matrix. The
symbols mean “includes listed value” and “excludes listed value”.

Description

Gives a more detailed description on what the function does and what it returns.
In case some background knowledge is presented.

Examples
Shows an application of the function by one or several simple examples.
See also

Shows links to related functions. A mouse click onto the desired link leads to an
immediate jump to that function.

Functions Listed by Category

This compilation shows all “Qucs” functions sorted by category (an alphabetical
list is given in the appendix). Please click on the desired function to go to its
detailed description.

Math Functions

Vectors and Matrices: Creation

eye() ... Creates n x n identity matrix
linspace() ... Creates a real vector with linearly spaced components
logspace() ... Creates a real vector with logarithmically spaced components

10

Vectors and Matrices: Basic Matrix Functions

adjoint/() Adjoint matrix
array() ... Read out single elements
det() ... Determinant of a matrix
inverse() Matrix inverse
transpose() Matrix transpose
length() Length of a vector

Elementary Mathematical Functions: Basic Real and Complex Func-
tions

abs() Absolute value
angle() Phase angle in radians of a complex number. Synonym for “arg”
arg() Phase angle in radians of a complex number
conj() Conjugate of a complex number
deg2rad() Converts phase from degrees into radians
hypot() Euclidean distance function
imag)() Imaginary value of a complex number
mag() .. Magnitude of a complex number
norm() ... Square of the absolute value of a vector
phase() ... Phase angle in degrees of a complex number
polar() Transform from polar coordinates into complex number
rad2deg() Converts phase from degrees into radians
real() Real value of a complex number
signum() Signum function
sign() Sign function
sqr() Square of a number
sqrt() Square root
unwrap() Unwraps a phase vector in radians

11

Elementary Mathematical Functions: Exponential and Logarithmic Func-

tions

limexp
log10
log?2

In

AN N N N
— N

Exponential function
Limited exponential function
Decimal logarithm

Binary logarithm

Natural logarithm (base e)

Elementary Mathematical Functions: Trigonometry

Cosine function
Cosecant
Cotangent function
Secant

Sine function
Tangent function

Arc cosine (also known as “inverse cosine”)

Arc cosecant (also known as “inverse cosecant”)
Arc cotangent

Arc secant (also known as “inverse secant”)
Arc sine (also known as “inverse sine”)

Arc tangent (also known as “inverse tangent”)

Hyperbolic cosine
Hyperbolic cosecant
Hyperbolic cotangent
Hyperbolic secant
Hyperbolic sine
Hyperbolic tangent

12

Elementary Mathematical Functions: Inverse Hyperbolic Functions

arcosh()
arcosech()
arcoth()
arsech()
arsinh()
artanh()

Hyperbolic area cosine
Hyperbolic area cosecant
Hyperbolic area cotangent
Hyperbolic area secant
Hyperbolic area sine
Hyperbolic area tangent

Round to the next higher integer
Truncate decimal places from real number
Round to the next lower integer

Round to nearest integer

Elementary Mathematical Functions: Special Mathematical Functions

besseli0()
besselj()
bessely()
erf()
erfe()
erfinv()
erfcinv()
sinc()
step()

Modified Bessel function of order zero

Bessel function of n-th order

Bessel function of second kind and n-th order
Error function

Complementary error function

Inverse error function

Inverse complementary error function

Sinc function

Step function

13

Data Analysis: Basic Statistics

ave(
cumavg(

max(
min

(
rms(
(

(
variance(
random(
srandom (

)
)
)
)
)
)
)
)
)
)

Average of vector elements

Cumulative average of vector elements

Maximum value

Minimum value

Root Mean Square of vector elements

Running average of vector elements

Standard deviation of vector elements

Variance of vector elements

Random number between 0.0 and 1.0

Set seed for a new series of pseudo-random numbers

Data Analysis: Basic Operation

Cumulative product of vector elements

Cumulative sum of vector elements

Equidistant spline interpolation of data vector

Product of vector elements

Sum of vector elements

Returns x-value which is associated with the y-value nearest to a
specified y-value in a given vector

Returns y-value of a given vector which is located nearest to the
specified x-value

Data Analysis: Differentiation and Integration

ddx()
diff()
integrate()

Differentiate mathematical expression with respect to a given variable

Differentiate vector with respect to another vector
Integrate vector

14

Data Analysis: Signal Processing

d

=

9)
()
idft()

ifft()
fftshift()
Time2Freq()
()

9)

Freq2Time
kbd

Electronics Functions

Unit Conversion

Discrete Fourier Transform

Fast Fourier Transform

Inverse Discrete Fourier Transform

Inverse Fast Fourier Transform

Move the frequency 0 to the center of the FFT vector
Interpreted Discrete Fourier Transform

Interpreted Inverse Discrete Fourier Transform
Kaiser-Bessel derived window

dB value

Convert voltage to power in dBm
Convert power in dBm to power in Watts
Convert power in Watts to power in dBm

Reflection Coefficients and VSWR

rtoswr
rtoy

()
()
rtoz()
()
9)

Converts reflection coefficient to voltage standing wave ratio (VSWR)
Converts reflection coefficient to admittance
Converts reflection coefficient to impedance
Converts admittance to reflection coefficient
Converts impedance to reflection coefficient

15

N-Port Matrix Conversions

stos()

stoy()
stoz()
twoport()
ytos()
ytoz()
zt0s()
ztoy/()

Amplifiers

GaCircle()
GpCircle()
Mu()

Mu2()
NoiseCircle()
PlotVs()

Rollet()
StabCircleL()
StabCircleS()

StabFactor()

StabMeasure()
vt()

Converts S-parameter matrix to S-parameter matrix with different
reference impedance(s)

Converts S-parameter matrix to Y-parameter matrix

Converts S-parameter matrix to Z-parameter matrix

Converts a two-port matrix from one representation into another
Converts Y-parameter matrix to S-parameter matrix

Converts Y-parameter matrix to Z-parameter matrix

Converts Z-parameter matrix to S-parameter matrix

Converts Z-parameter matrix to Y-parameter matrix

Circle(s) with constant available power gain Ga in the source plane
Circle(s) with constant operating power gain Gp in the load plane
Mu stability factor of a two-port S-parameter matrix

Mu’ stability factor of a two-port S-parameter matrix

Generates circle(s) with constant Noise Figure(s)

Returns a data item based upon vector or matrix vector with
dependency on a given vector

Rollet stability factor of a two-port S-parameter matrix

Stability circle in the load plane

Stability circle in the source plane

Stability factor of a two-port S-parameter matrix. Synonym for
Rollet()

Stability measure B1 of a two-port S-parameter matrix

Thermal voltage for a given temperature in Kelvin

16

Math Functions

Vectors and Matrices
Creation

eye()

Creates n x n identity matrix.

Syntax
y=eye(n)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| n [N | [L,4oo | |

Description

This function creates the n x n identity matrix, that is

1 0 -~ 0 0
0 1 0 0
0 . 0
O -~ 0 1 0
0 1
Example
y=eye(2) returns L (1) .

See also

17

linspace()
Creates a real vector with linearly spaced components.
Syntax

y=linspace(xs,xe,n)

Arguments

’ Name \ Type \ Def. Range \ Required ‘

XS R]—00, +00] v

xe R]—00, +00] vV

n N 2, +00[V
Description

This function creates a real vector with n linearly spaced components. The first
component is zs, the last one is ze.

Example

y=linspace(1,2,3) returns 1, 1.5, 2.

See also

logspace()

18

logspace()

Creates a real vector with logarithmically spaced components.
Syntax
y=logspace(xs,xe,n)

Arguments

’ Name \ Type \ Def. Range \ Required ‘

XS R]—00, +00] v

xe R]—00, +00] vV

n N 2, +00[V
Description

This function creates a real vector with n logarithmically spaced components. The
first component is s, the last one is ze.

Example

y=logspace(1,2,3) returns 1, 1.41, 2.

See also

linspace()

19

Basic Matrix Functions
adjoint()

Adjoint matrix.

Syntax

Y=adjoint(X)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
’ X ‘ Rmxn)@mxn’ Rmxnxp’ Cmxnxp ‘]—OO,—FOO[‘ \/ ‘
Description

This function calculates the adjoint matrix Y of a matrix X:

Y = X7 = (X*)", where X* is the complex conjugate matrix of X and X7 is the
transposed of the matrix X.

Example

341 0

X=eye (2)*(3+1) returns 0 311

. Then,

3911 0

Y=adjoint (X) returns RES

See also

transpose(), conj()

20

array ()

Read out single elements.

Syntax

The “array()” function is an implicit command. Thus normally the respective first
expression ("preferred”) is used.

’ Syntax H Preferred \ Alternative H Preferred \ Alternative ‘
1 y=VM][i,j] | y=array(VM,i,j)
2 y=M[i,j] y=array(M.i,j)
3 y=VM[k] | y=array(VM,k)
4 y=vli] y=array(v,i) y=v]r] y=array(v,r)
5 y=vli,r] y=array(v,i,r) y=v|r,j] y=array(v,r,j)
y=vli,j] y=array(v,i,j) || y=v[rl,r2] | y=array(v,r1,r2)
6 y=sli] y=array(s,i)
Arguments
’ Name \ Type \ Def. Range Required
VM | Rmxmxp Cmxnxp]—00, +00[V/(Syntax 1 and 3)
M Rmxn Cmxn |—00, +00 V/(Syntax 2)
v R"™,C" |—00, +00] V/(Syntax 4 and 5)
r, rl, r2 Rangexs : xe 0<zs<n—1l,zs<ze<n-—1 V/(Syntax 4 and 5)
i N 0<i<m-1 V/(Syntax 1, 2, 4, 5, 6)
j N 0<j<n-1 V/(Syntax 1, 2, 5)
k N 0<k<p-1 V/(Syntax 3)
S String Arbitrary characters V/(Syntax 6)
Description

This function reads out real or complex vectors of matrices, matrices and vectors
or strings. Please refer to the following table for the return values:

21

’ Syntax \ Argument 1 \ Argument 2 \ Argument 3 H Result
y=VMIi,j] VM = (z;j) 1eN jeN Vector
(Tij1, - s Tijic)
y=M[i,]] M = (z;;) ieN JjEeN Number z;;
y=VM[K] VM = (zi;0) | k€N Matrix
L11k Link
Tmik Tmnk
y=vli] v = (v;) ieN Number v;
y=Vv|[xs:xe] v=(v;) TS, ..., xe Vector
(U:v37 Tty U:Ee)
y=v|i,xs:xe] v =(v;) ieN xs,...,xe || Vector
(sta Ty Ua:e)
y=v|[xs:xe,]] v=(v;) TS, ..., xe xs,...,ze || Vector
(/U:vm Ty Uze)
y=vli,j] v =(v;) ieN xs,...,xe || Vector
(vxsa Ty Ua:e)
y=v[xsl:xel, v = (1) xsl,...,xel | xs2,...,xe2 || Vector
xs2:x62] (Vgsy* " Uge)
y=sli] s = (s;) ieN Character s;

Again, v denotes a vector, M a matrix, VM a vector of matrices, s a vector of
characters and xs, xs1, xs2, xe, xzel, xe2 are range limiters.

Example

v=linspace(1,2,4) returns 1, 1.33, 1.67, 2. Then,

y=v[3] returns 2.

See also

22

det()

Determinant of a matrix.
Syntax

y=det(X)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
’ X ‘ Rnxn’(cnxn’ Rmxnxp’ Cmxnxp ‘]-OO,-‘-OO[‘ \/ ‘

Description

This function calculates the determinant of a quadratical n x n matrix X. The
result is either a real or a complex number.

Example

. Then,

X=eye(2)*3 returns

y=det (X) returns 9.

See also

eye()

23

inverse()

Matrix inverse.
Syntax

Y=inverse(X)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘]Ran’(ann7 Rmxnxp’ Cmxnxp ‘]-OO,—}-OO[‘ \/ ‘
Description

This function inverts a quadratical n x n matrix X. The generated inverted matrix
Y fulfills the equation

X Y =X-X"1 =1, where “-” denotes matrix multiplication and “1” the identity
matrix.

The matrix X must be regular, that means that its determinant A # 0.

Example

X=eye(2)*3 returns g g . Then,
) 0.333 0
Y=inverse(X) returns 0 0333 |

See also

transpose(), eye(), det()

24

transpose()

Matrix transpose.
Syntax

Y=transpose(X)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
’ X ‘ Rmxn’cmxn7 Rmxnxp’ Cmxnxp ‘]—OO,—FOO[‘ \/ ‘
Description

This function transposes a m x n matrix X, which is equivalent to exchanging rows
and columns according to

Y = XT = (2;)" = (z;;) with1<i<m, 1<j<n

The generated matrix Y is a n x m matrix.

Example

X=eye (2)*3 returns g g . Then,
310
Y=transpose(X) returns RER

See also

eye(), inverse()

25

length()

Length of a vector.
Syntax

y=length(v)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| v |[RCR",C"]—o0, 400 | V \
Description

This function returns the length of vector v.

Example

length(linspace(1,2,3)) returns 3.

See also

26

Elementary Mathematical Functions
Basic Real and Complex Functions

abs()

Absolute value.

Syntax

y=abs(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
’ < ‘ R, C,]Rn7 Cn’ Rmxn’cmxn, Rmxnxp, Cmxnxp ‘]—OO,—I—OO[‘ \/ ‘

Description

This function calculates the absolute value of a real or complex number, vector or
matrix.

 Jx forz>0
FoerR'y_{—xforx<0
ForCsx :=a+ib A a,beR: y=+va®+ b

For x being a vector or a matrix the two equations above are applied to the
components of z.

Examples

y=abs(-3) returns 3,

y=abs (-3+4%*1i) returns 5.

27

See also

mag(), norm(), real(), imag(), conj(), phase(), arg(), hypot()

28

angle()
Phase angle in radians of a complex number. Synonym for “arg”.

Syntax
y=angle(x)
See also

abs(), mag(), norm(), real(), imag(), conj(), phase(), arg()

29

arg)()

Phase angle in radians of a complex number.
Syntax
y=arg(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
’ < ‘ R, C, Rn’ (Cn’]Rmxn’cmxn, Rmxnxp7 Cmxnxp ‘]—OO,—I—OO[‘ \/ ‘

Description

This function returns the phase angle in degrees of a real or complex number,
vector or matrix.

0 forx>0

ForxGR:y:{7T forz <0

ForC>xz :=a+1b A a,beR:

’ Definition range \ Result ‘
a>0,b>0 y:arctan(g
a<0,b>0 y:arctan(g)—l—ﬂ
a<0,b<0 y:arctan(g)—w
a>0,b<0 y:arctan(g)
a=0,b>0 y=73
a>0,b>0 y=-—5
a=0,b=0 y=20

In this case the arctan() function returns values in radians. The result y of the
phase function is in the range [—m, +7]. For z being a vector or a matrix the two
equations above are applied to the components of z.

30

Examples

y=arg(-3) returns 3.14,

y=arg(-3+4x*i) returns 2.21.

See also

abs(), mag(), norm(), real(), imag(), conj(), phase()

31

conj()

Conjugate of a complex number.
Syntax
y=conj(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
’ < ‘ R, C, Rn’ (Cn’]Rmxn’cmxn, Rmxnxp7 Cmxnxp ‘]—OO,—I—OO[‘ \/ ‘

Description

This function returns the conjugate of a real or complex number, vector or matrix.
ForreR: y=z
ForCs>z :=a+ibANa,beR y=a—1ib

For z being a vector or a matrix the two equations above are applied to the
components of z.

Example

y=conj (-3+4*i) returns -3-4*i.

See also

abs(), mag(), norm(), real(), imag(), phase(), arg()

32

deg2rad()

Converts phase from degrees into radians.
Syntax

y=deg2rad(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x [R,CR",C"|]-o0,+00 | vV \
Description

This function converts a real phase, a complex phase or a phase vector given in
degrees into radians.

FoerR:y:@x

7T
Fi Y =—
orze C:y 180Re{az}

For z being a vector the two equations above are applied to the components of x.
Example

y=deg2rad (45) returns 0.785.

See also

rad2deg(), phase(), arg()

33

hypot()

Euclidean distance function.

Syntax

z=hypot(x,y)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
X R, C, R", C" | |—o0,+00] Vv
y R, C, R", C" | |—o0,+o0| vV
Description

This function calculates the Euclidean distance z between two real or complex
numbers or vectors. For two numbers z,y € C, this is

z=/|z[* +ly?

For z, y being vectors (of same size) the equation above is applied componentwise.
Examples

z=hypot (3,4) returns 5,

z=hypot (1+2%i,1-2%i) returns 3.16.
See also

abs()

34

imag|()

Imaginary value of a complex number.
Syntax
y=imag(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
’ < ‘ R, C, Rn’ (Cn’]Rmxn’cmxn, Rmxnxp7 Cmxnxp ‘]—OO,—I—OO[‘ \/ ‘

Description

This function returns the imaginary value of a real or complex number, vector or
matrix.

Forzr e R: y=0
ForCsx :=a+ibANa,beR: y=0»

For z being a vector or a matrix the two equations above are applied to the
components of z.

Example

y=imag(-3+4*i) returns 4.

See also

abs(), mag(), norm(), real(), conj(), phase(), arg()

35

mag)()

Magnitude of a complex number.
Syntax
y=mag(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
’ < ‘]R7 C) Rn’ Cn, Rmxnﬂ:mxn) Rmxnxp, Cmxnxp ‘]-OO,—FOO[‘ \/ ‘

Description

This function calculates the magnitude (absolute value) of a real or complex num-
ber, vector or matrix.

x forx>0

For:vER:y:{ —aforz <0

ForCsz :=a+ib A abeR: y=+va>+b?

For z being a vector or a matrix the two equations above are applied to the
components of z.

Examples

y=mag(-3) returns 3,

y=mag(-3+4%*i) returns 5.
See also

abs(), norm(), real(), imag(), conj(), phase(), arg()

36

norm/()

Square of the absolute value of a vector.
Syntax

y=norm(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x [R,CR",C"|]-o0,+00 | vV \
Description

This function returns the square of the absolute value of a real or complex number,
vector or matrix.

For v € R: y = 2
ForC>z :=a+ib A a,beR: y=a?+ b

For z being a vector or a matrix the two equations above are applied to the
components of z.

Example

y=norm(-3+4*i) returns 25.

See also

abs(), mag(), real(), imag(), conj(), phase(), arg()

37

phase()

Phase angle in degrees of a complex number.
Syntax
y=phase(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
’ < ‘ R, C, Rn’ (Cn’]Rmxn’cmxn, Rmxnxp7 Cmxnxp ‘]—OO,—I—OO[‘ \/ ‘

Description

This function returns the phase angle in degrees of a real or complex number,
vector or matrix.

0 forx>0

ForxGR:y:{ 180 for x < 0

ForC>xz :=a+1b A a,beR:

’ Definition range \ Result ‘

a>0,b>0 y:arctan(é)

a

a<0,b>0 y = arctan (g) + 180
a<0,b<0 y:arctan(b)—180

a

a>0,b<0 y:arctan(g)
a=0,0>0 y =90
a>0,b>0 y=-90
a=0,b=0 y=20

In this case the arctan() function returns values in degrees. The result y of the
phase function is in the range [—180, +180]. For z being a vector or a matrix the
two equations above are applied to the components of z.

38

Examples

y=phase (-3) returns 180,

y=phase (-3+4x*i) returns 127.

See also

abs(), mag(), norm(), real(), imag(), conj(), arg()

39

polar()

Transform from polar coordinates into complex number.
Syntax
c=polar(a,p)

Arguments

’ Name \ Type \ Def. Range \ Required ‘

a R™, C" | |—o0,+o0| vV
p R™ C™ | |—o00, 4+00] v
Description

This function transforms a point given in polar coordinates (amplitude a and phase
p in degrees) in the complex plane into the corresponding complex number:

r+iy=ae®=acosp+iasinp

For a or p being vectors the equation above is applied to the components of a or
.

Example

c=polar(3,45) returns 2.124j2.12.

See also

abs(), mag(), norm(), real(), imag(), conj(), phase(), arg(), exp(), cos(), sin()

40

rad2deg()

Converts phase from degrees into radians.
Syntax

y=rad2deg(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x [R,CR",C"|]-o0,+00 | vV \
Description

This function converts a real phase, a complex phase or a phase vector given in
radians into degrees.

180
ForreR: y=—=
T

Forze C:y = %Re{x}

For x being a vector the two equations above are applied to the components of .
Example

y=rad2deg(45) returns 0.785.

See also

deg2rad(), phase(), arg()

41

real()

Real value of a complex number.
Syntax
y=real(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
’ < ‘ R, C, Rn’ (Cn’ Rmxn’cmxn,Ranxp’ Cmxnxp ‘ }_007_{_00[‘ \/ ‘

Description

This function returns the real value of a real or complex number, vector or matrix.
ForreR: y=z
ForCsz :==a+ibANa,beR y=a

For z being a vector or a matrix the two equations above are applied to the
components of z.

Example

y=real (-3+4*i) returns -3.

See also

abs(), mag(), norm(), imag(), conj(), phase(), arg()

42

signum()
Signum function.
Syntax

y=signum(x)

Arguments
] Name \ Type \ Def. Range \ Required \
’ X ‘ R, C, R*, C" ‘ |—00, +00 ‘ Vv ‘
Description

This function calculates the sign of a real or complex number or vector.

1 forx>0
ForreR:y=< 0 forxz=0

—1 forz <0

x

— forxz #0
ForzeC: y= |:E|f 7

0 forz=0

For x being a vector the two equations above are applied to the components of z.

Examples

y=signum(-4) returns -1,

y=signum(3+4x*i) returns 0.6+j0.8.

See also

abs(), sign()

43

sign()

Sign function.
Syntax
y=sign(x)

Arguments

] Name \ Type \ Def. Range \ Required \
’ X ‘ R, C, R*, C" ‘ |—00, +00 ‘ V ‘

Description

This function calculates the sign of a real or complex number or vector.

|1 forxz>=0
FoerRy_{—lforx<O
x
— forxz #0
Forx e C: y = |$|f 7
1 forx=0

For x being a vector the two equations above are applied to the components of .

Examples

y=sign(-4) returns -1,

y=sign(3+4x*i) returns 0.6+j0.8.

See also

abs(), signum()

44

sqr()

Square of a number.
Syntax
y=sqr(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function calculates the square root of a real or complex number or vector.
y=x

For x being a vector the two equations above are applied to the components of z.

Examples

y=sqr(-4) returns 16,

y=sqr (3+4*i) returns -7+4j24.

See also

sqrt()

45

sqrt()

Square root.
Syntax
y=sqrt(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |[RCR,C"|]-o0,+x[] v |

Description

This function calculates the square root of a real or complex number or vector.

o Nr forz>0
ForxeR'y_{i\/—_mforx<0

For z € C: y = \/|z] /T with ¢ = arg (z)

For x being a vector the two equations above are applied to the components of .
Examples

y=sqrt (-4) returns 0+j2,

y=sqrt (3+4*i) returns 2+jl.

See also

sqr()

46

unwrap()

Unwraps a phase vector in radians.
Syntax

y=unwrap(x)

y=unwrap(x, t)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘

X R™ C" | |—o0,+00] vV
t R | —00, +00] 7r
Description

This function unwraps a phase vector x to avoid phase jumps. If two consecutive
values of z differ by more than tolerance ¢, F27(depending on the sign of the
difference) is added to the current element of z. The predefined value of the
optional parameter ¢ is .

Examples

y=unwrap(3.15*linspace(-2,2,5)) returns -6.3, -9.43, -12.6, -15.7, -18.8,

y=unwrap (2*linspace(-2,2,5),1) returns -4, -8.28, -12.6, -16.8, -21.1,

y=unwrap(2*linspace(-2,2,5),3) returns -4, -2, 0, 2, 4.

See also

abs(), mag(), norm(), real(), imag(), conj(), phase(), arg()

47

Exponential and Logarithmic Functions

exp()

Exponential function.
Syntax
y=exp(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR,C"|]-oo,400[| |

Description

This function calculates the exponential function of a real or complex number or
vector.

Forz e R: y =¢”
ForCox :=a+ibAabeR: y=e®=e"b =¢e" (cosb+i sinb)
For z being a vector the two equations above are applied to the components of x.

Examples

y=exp(-4) returns 0.0183,

y=exp(3+4*i) returns -13.1-j15.2.
See also

limexp(), In(), log10(), log2(), cos(), sin()

48

limexp()
Limited exponential function.
Syntax

y=limexp(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
’ X \ R, C, R", C" \ |—00, +o0[\ V ‘
Description

This function is equivalent to the exponential function exp(z), as long as x <= 80.
For larger arguments x, it limits the result to y = exp(80)- (1 + = — 80). The
argument can be a real or complex number or vector.

For z € R: y = e” for x < 80, y = e+ (1 + 2 — 80) else.

ForC>xz :=a+ibAa,be R: y=limexp () = limexp (a + ib) = limexp (a) (cosb+ i sin b)

For x being a vector the two equations above are applied to the components of z.
Examples

y=1limexp(81) returns 1.1le+35, whereas y=exp(81) returns 1.5le+35, which
shows the limiting effect of the limexp() function.

y=limexp (3+4%i) returns -13.1-j15.2.

See also

exp(), In(), log10(), log2(), cos(), sin()

49

log10()

Decimal logarithm.
Syntax
y=log10(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |[R,CR",C"|]—o00,+00[\ {0} | v]

Description

This function calculates the principal value of the decimal logarithm (base 10) of
a real or complex number or vector.

forx >0
Forx eR: y = hl(_xl)n(l(‘)) -
(1) ‘mo (=0

In(|z]) ~ arg(z)
In

ForzeC: y= (10)+Zln(10)

For x being a vector the two equations above are applied to the components of z.
Examples

y=1logl10(-4) returns 0.602+j1.36,
y=1og10(3+4%i) returns 0.699+j0.403.

See also

In(), log2(), exp(), arg()

20

log2()

Binary logarithm.
Syntax

y=log2(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |[R,CR",C"|]—o00,+00[\ {0} | v

Description

This function calculates the principal value of the binary logarithm (base 2) of a
real or complex number or vector.

—

n(x)

ForzeR:iy=4¢ 1, (—1:1;1 (2)
.I

In (2) In (2)

forx >0

foraxz <0

~.

n(el) , ,are ()
In (2) In (2)

ForzeC: y=

For x being a vector the two equations above are applied to the components of z.
Examples

y=log2(-4) returns 2+4j4.53,

y=log2(3+4*i) returns 2.324j1.34.

See also

In(), log10(), exp(), arg()

51

In()

Natural logarithm (base e).
Syntax
y=In(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR",C"[]-o0,+o[\ {0} | v |

Description

This function calculates the principal value of the natural logarithm (base e) of a
real or complex number or vector.

In(z) forxz>0

Forz € R: y:{ In(—z) forx <0

For z € C: y =In(|z|) + ¢ arg ()
For z being a vector the two equations above are applied to the components of x.

Examples

y=1n(-4) returns 1.39+j3.14,

y=1n(3+4%1i) returns 1.614j0.927.

See also

log2(), log10(), exp(), arg()

52

Trigonometry
cos()

Cosine function.
Syntax

y=cos(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C"|]-o00,4o00[| v]

Description

This function calculates the cosine of a real or complex number or vector.

For x € R: y = cos (x) with y € [-1, 1]

For z € C: y = 5 (exp (ix) + exp (—ix))

For x being a vector the two equations above are applied to the components of .

Examples

y=cos(-0.5) returns 0.878,

y=cos(3+4*1i) returns -27.0-j3.85.
See also

sin(), tan(), arccos()

93

cosec()

Cosecant.
Syntax
y=cosec(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |[RCR",C"|]-oo,+oo[\{kn}, keZ| |

Description

This function calculates the cosecant of a real or complex number or vector.

1
sin x

Yy = cosecxr =

For x being a vector the equation above is applied to the components of z.

Example

y=cosec(1) returns 1.19.

See also

sin(), sec()

o4

cot()

Cotangent function.
Syntax
y=cot(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,CR",C"[]-oo,+oo[\{kr}, keZ]| |

Description
This function calculates the cotangent of a real or complex number or vector.

Forz e R: y = with y € [—o0, +00]

L
tan (x)

N2
1
FoerC:y:i<M>

exp (iz)” —1

For z being a vector the two equations above are applied to the components of x.
Examples

y=cot(-0.5) returns -1.83,

y=cot (3+4*i) returns -0.000188-j1.
See also

tan(), sin(), cos(), arctan(), arccot|()

95

sec()

Secant.
Syntax
y=sec(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR",C"[]-o0,+oo[\{(k+3)m}, keZ]|

Description

This function calculates the secant of a real or complex number or vector.

1
cos T

Yy =sec r=

For x being a vector the equation above is applied to the components of z.

Example

y=sec(0) returns 1.

See also

cos(), cosec()

o6

sin()

Sine function.
Syntax
y=sin(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function calculates the sine of a real or complex number or vector.
For z € R: y =sin (z) with y € [-1, 1]
For z € C: y = 3 (exp (—iz) —exp (iz))

For x being a vector the two equations above are applied to the components of .
Examples

y=sin(-0.5) returns -0.479,

y=sin(3+4*i) returns 3.85-j27.
See also

cos(), tan(), arcsin()

o7

tan()

Tangent function.
Syntax
y=tan(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR",C"|[]-oo,+oo[\{(k+3)7}, keZ]| |

Description

This function calculates the tangent of a real or complex number or vector.

For z € R: y = tan (z) with y € [—o0, +00]

exp (ix)* — 1
ForeeC y=—i| —F—
exp (ix)” 41

For x being a vector the two equations above are applied to the components of .
Examples

y=tan(-0.5) returns -0.546,

y=tan(3+4*i) returns -0.000187+;j0.999.
See also

cot(), sin(), cos(), arctan(), arccot()

o8

Inverse Trigonometric Functions
arccos()

Arc cosine (also known as “inverse cosine”).
Syntax

y=arccos(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x [RCR,C'[[-L,+1] | |
Description

This function calculates principal value of the the arc cosine of a real or complex
number or vector.

For z € R: y = arccos (z) with y € [0, 7]
ForzeC:y=—iln(z++z>—-1)

For z being a vector the two equations above are applied to the components of x.
Examples

y=arccos(-1) returns 3.14,

y=arccos (3+4x*i) returns 0.937-j2.31.
See also

cos(), arcsin(), arctan(), arccot()

99

arccosec()

Arc cosecant (also known as “inverse cosecant”).
Syntax

y=arccosec(X)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x |RCR,C'| C\{o} | v |
Description

This function calculates the principal value of the the arc cosecant of a real or
complex number or vector.

For z € R: y = arccosec (x) with y € [—%, g]

For x € C: y:—iln[,/l—x—g-kﬂ

For z being a vector the two equations above are applied to the components of x.
Examples

y=arccosec(-1) returns -1.57,

y=arccosec(3+4x*i) returns 0.119-j0.16.
See also

cosec(), arcsec()

60

arccot()
Arc cotangent.
Syntax

y=arccot(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
’ X \ R, C, R, C" \ |—00, +00[\ v ‘
Description

This function calculates the principal value of the arc cotangent of a real or complex
number or vector.

For x € R: y =arccot(z) with y € [0, 7]

[T —1
E Cy==1
or r ¢ Y 5 n(x+i)

For x being a vector the two equations above are applied to the components of z.

Examples

y=arccot (-1) returns 2.36,

y=arccot (3+4*i) returns 0.122-j0.159.

See also

cot(), tan(), arccos(), arcsin(), arctan()

61

arcsec()

Arc secant (also known as “inverse secant”).
Syntax

y=arcsec(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x |RCR,C'| C\{o} | v |
Description

This function calculates the principal value of the arc secant of a real or complex
number or vector.

For z € R: y = arcsec (z) with y € [0, 7]
For x € C: yz%%—z’ln[1—%%—%]
For z being a vector the two equations above are applied to the components of x.

Examples

y=arcsec(-1) returns 3.14,

y=arcsec(3+4x*i) returns 1.45+j0.16.
See also

sec(), arccosec()

62

arcsin()

Arc sine (also known as “inverse sine”).
Syntax

y=arcsin(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x |[RCR,C'| [-,+41] | |
Description

This function calculates the principal value of the arc sine of a real or complex
number or vector.

For x € R: y = arcsin (z) with y € [—g, g}

Forx € C: y = —1i ln[ix+\/1—x2]

For x being a vector the two equations above are applied to the components of .
Examples

y=arcsin(-1) returns -1.57,

y=arcsin(3+4x*i) returns 0.634+4j2.31.
See also

sin(), arccos(), arctan(), arccot()

63

arctan()
Arc tangent (also known as “inverse tangent”).
Syntax

z=arctan(x)

z=arctan(y,x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
X R, C, R™, C" | |—o0,+00] Vv

y R, C,R", C" | |—o0, 40|

Description

For the first syntax (z=arctan(z)), this function calculates the principal value of
the arc tangent of a real or complex number or vector.

For x € R: y = arctan (x) with y € [—%7 %]

1 21
ForxGC:y——§iln[x_ii—11

For x being a vector the two equations above are applied to the components of .

If the second syntax (z=arctan(y, z)) finds application, the expression
z = tarctan (y/x)

(with the arctan() function defined above) is evaluated. The sign of z is determined
by

: | + forRe{z}>0
mgn(z)-{ — forRe{z}>0"

64

Note that for the second syntax the case x = y = 0 is not defined.

Examples

z=arctan(-1) returns -0.785,
z=arctan(3+4*i) returns 1.45+4j0.159,

z=arctan(1,1) returns 0.785.

See also

tan(), arccos(), arcsin(), arccot()

65

Hyperbolic Functions

cosh()

Hyperbolic cosine.
Syntax
y=cosh(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR,C"|]-oo,400[| v |

Description

This function calculates the hyperbolic cosine of a real or complex number or
vector.

y=35(e"+e™)

For z being a vector the equation above is applied to the components of x.
Examples

y=cosh(-1) returns 1.54,

y=cosh(3+4%*i) returns -6.58-j7.58.
See also

exp(), sinh(), tanh(), cos()

66

cosech()

Hyperbolic cosecant.
Syntax
y=cosech(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |[R,CR",C"|]-oo,+c0[\{0O} | |

Description

This function calculates the hyperbolic cosecant of a real or complex number or
vector.

B 1
~ sinh z

For z being a vector the equation above is applied to the components of x.

Examples

y=cosech(-1) returns -0.851,

y=cosech(3+4x*i) returns -0.0649+j0.0755.

See also

exp(), sinh(), sech(), cosec()

67

coth()

Hyperbolic cotangent.
Syntax
y=coth(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |[R,CR",C"|]-oo,+c0[\{0O} | |

Description
This function calculates the hyperbolic cotangent of a real or complex number or

vector.

1 et +e”

y= tanh z e* —e %

For z being a vector the equation above is applied to the components of x.

Examples

y=coth(-1) returns -1.31,

y=coth(3+4*i) returns 0.999-j0.0049.

See also

exp(), cosh(), sinh(), tanh(), tan()

68

sech()

Hyperbolic secant.
Syntax
y=sech(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function calculates the hyperbolic secant of a real or complex number or
vector.

1
~ cosh x

For z being a vector the equation above is applied to the components of x.

Examples

y=sech(-1) returns 0.648,

y=sech(3+4x*i) returns -0.0653+j0.0752.

See also

exp(), cosh(), cosech(), sec()

69

sinh()
Hyperbolic sine.
Syntax

y=sinh(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function calculates the hyperbolic sine of a real or complex number or vector.

(e~)

N[=

’y:

For x being a vector the equation above is applied to the components of z.

Examples

y=sinh(-1) returns -1.18,

y=sinh(3+4%*i) returns -6.55-j7.62.

See also

exp(), cosh(), tanh(), sin()

70

tanh()

Hyperbolic tangent.
Syntax
y=tanh(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function calculates the hyperbolic tangent of a real or complex number or
vector.

et —e’ "

For x being a vector the equation above is applied to the components of z.

Examples

y=tanh(-1) returns -0.762,

y=tanh(3+4x*i) returns 1+4j0.00491.
See also

exp(), cosh(), sinh(), coth(), tan()

71

Inverse Hyperbolic Functions

arcosh()

Hyperbolic area cosine.
Syntax

y=arcosh(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR,C"'| [L,+oo | |
Description

This function calculates the hyperbolic area cosine of a real or complex number or
vector, which is the inverse function to the “cosh” function.

y = arcoshz = In (x + Va2 — 1)

For z being a vector the equation above is applied to the components of x.
Examples

y=arcosh(1) returns 0,

y=arcosh(3+4*i) returns 2.31+j0.937.
See also

arsinh(), artanh(), cosh(), arccos(), In(), sqrt()

72

arcosech()

Hyperbolic area cosecant.
Syntax

y=arcosech(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C| C\{0} | v |
Description

This function calculates the hyperbolic area cosecant of a real or complex number
or vector, which is the inverse function to the “cosech” function.

For z € C\ {0}: y =In <\/@+%>

For z being a vector the equation above is applied to the components of x.
Examples

y=arcosech(1) returns 0.881,

y=arcosech(i) returns -il.57.
See also

cosech(), arsech(), In(), sqrt()

73

arcoth()

Hyperbolic area cotangent.
Syntax

y=arcoth(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x |R, CR,C"[]-o0,—1[UJ+1,+oo[| |
Description

This function calculates the hyperbolic area cotangent of a real or complex number
or vector, which is the inverse function to the “cotanh” function.

1 z+1
= the = -1
y = arcoth z 5 n(x—l)

For z being a vector the equation above is applied to the components of x.

Examples

y=arcoth(2) returns 0.549,

y=arcoth(3+4x*i) returns 0.118-j0.161.

See also

arsinh(), arcosh(), tanh(), arctan(), In(), sqrt()

74

arsech()

Hyperbolic area secant.
Syntax

y=arsech(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C| C\{0} | v |
Description

This function calculates the hyperbolic area secant of a real or complex number or
vector, which is the inverse function to the “sech” function.

For x € C\{0}: y =In <\/;\/;+%>

For z being a vector the equation above is applied to the components of x.
Examples

y=arsech(1) returns 0,

y=arsech(3+4x*i) returns 0.16-j1.45.
See also

sech(), arcosech(), In(), sqrt()

75

arsinh()

Hyperbolic area sine.
Syntax

y=arsinh(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x [R,CR",C"|]-o0,+00 | vV \
Description

This function calculates the hyperbolic area sine of a real or complex number or
vector, which is the inverse function to the “sinh” function.

y = arsinhx = In (x +Var? + 1)

For x being a vector the equation above is applied to the components of z.
Examples

y=arsinh(1) returns 0.881,

y=arsinh(3+4x*i) returns 2.3+j0.918.
See also

arcosh(), artanh(), sinh(), arcsin(), In(), sqrt()

76

artanh()

Hyperbolic area tangent.
Syntax

y=artanh(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C| J-L,+1] | |
Description

This function calculates the hyperbolic area tangent of a real or complex number
or vector, which is the inverse function to the “tanh” function.

1 1
y = artanhz = = In e
2 1—x

For z being a vector the equation above is applied to the components of x.

Examples

y=artanh(0) returns 0,

y=artanh(3+4*i) returns 0.1184-j1.41.

See also

arsinh(), arcosh(), tanh(), arctan(), In(), sqrt()

77

Rounding

ceil()

Round to the next higher integer.
Syntax

y=ceil(x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘
| x |R,C R",C"|]-00,400[| v]

Description

This function rounds a real number z to the next higher integer value.
If z is a complex number both real part and imaginary part are rounded. For x
being a vector the operation above is applied to the components of z.

Examples

y=ceil(-3.5) returns -3,

y=ceil(3.2+4.7%*i) returns 4+jo.

See also

floor(), fix(), round()

78

fix()

Truncate decimal places from real number.
Syntax
y=tix(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function truncates the decimal places from a real number z and returns an
integer.

If z is a complex number both real part and imaginary part are rounded. For z
being a vector the operation above is applied to the components of z.

Examples

y=fix(-3.5) returns -3,

y=fix(3.2+4.7%i) returns 3+j4.

See also

ceil(), floor(), round()

79

floor()

Round to the next lower integer.
Syntax
y=floor(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function rounds a real number z to the next lower integer value.
If z is a complex number both real part and imaginary part are rounded. For x
being a vector the operation above is applied to the components of x.

Examples

y=floor(-3.5) returns -4,

y=floor(3.2+4.7%i) returns 3+j4.

See also

ceil(), fix(), round()

80

round|()

Round to nearest integer.
Syntax
y=round(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function rounds a real number z to its nearest integer value.
If z is a complex number both real part and imaginary part are rounded. For x
being a vector the operation above is applied to the components of x.

Examples

y=round(-3.5) returns -4,

y=round(3.2+4.7%i) returns 3+jb.

See also

ceil(), floor(), fix()

81

Special Mathematical Functions

besseliO()

Modified Bessel function of order zero.
Syntax

i0=Dbesseli0(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R", C" ‘ |—00, +00 ‘ vV ‘
Description

This function evaluates the modified Bessel function of order zero of a real or
complex number or vector.

z'O(x):Jo(ix):;%’

where Jy (x)is the Bessel function of order zero and I" (x)denotes the gamma func-
tion.

For x being a vector the equation above is applied to the components of z.
Example

y=besseliO(1) returns 1.266.

See also

besselj(), bessely()

82

besselj()

Bessel function of n-th order.
Syntax

jn=Dbesselj(n,x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
n N 0, +00] V
X R, C, R™, C" | |—o0,+00] vV
Description

This function evaluates the Bessel function of n-th order of a real or complex
number or vector.

B 00 (_1)k (g)nJer
J”(x)_;k!l‘(n—kk:le)’

where T' (x)denotes the gamma function.

For x being a vector the equation above is applied to the components of z.

Example

y=besselj(1,1) returns 0,44.

See also

besseli0(), bessely()

83

bessely()

Bessel function of second kind and n-th order.
Syntax

yn=Dbessely(n,x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
n N 0, +o00] vV
X R, C, R™, C" | |—o0,+00] Vv
Description

This function evaluates the Bessel function of second kind and n-th order of a real
or complex number or vector.

Y, (z) = lim I (z) cosmm — J_p, ()

m—n sin mm

Y

where J,,, (x)denotes the Bessel function of first kind and n-th order.

For x being a vector the equation above is applied to the components of z.

Example

y=bessely(1,1) returns -0.781.

See also

besseli0(), besselj()

84

erf()

Error function.
Syntax
y=erf(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function evaluates the error function of a real or complex number or vector.
For x € R,

2 Itz
= [eTdt
Y ﬁ/e
0

If z is a complex number both real part and imaginary part are subjected to the
equation above. For x being a vector the equation is applied to the components
of x.

Example
y=erf (0.5) returns 0.520.
See also

erfe(), erfinv(), erfcinv(), exp()

85

erfc()

Complementary error function.
Syntax
y=erfc(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function evaluates the complementary error function of a real or complex
number or vector. For z € R,

2 [2
yzl——/e_tdt
T
\/_0

If z is a complex number both real part and imaginary part are subjected to the
equation above. For x being a vector the equation is applied to the components
of x.

Example
y=erfc(0.5) returns 0.480.
See also

erf(), erfinv(), erfcinv(), exp()

86

erfinv()

Inverse error function.
Syntax
y=erfinv(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C| J-L,+1] | |

Description

This function evaluates the inverse of the error function of a real or complex number
or vector. For —1 <z < 1,

y =erf(z)

If z is a complex number both real part and imaginary part are subjected to the
equation above. For x being a vector the equation is applied to the components
of z.

Example

y=erfinv(0.8) returns 0.906.

See also

erf(), erfe(), erfcinv(), exp()

87

erfcinv()

Inverse complementary error function.
Syntax

y=erfcinv(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x |[RCR,C'] Jo,+2[| V |
Description

This function evaluates the inverse of the complementary error function of a real
or complex number or vector. For 0 < x < 2,

y = erfc™(x)

If z is a complex number both real part and imaginary part are subjected to the
equation above. For x being a vector the equation is applied to the components
of z.

Example

y=erfcinv(0.5) returns 0.477.

See also

erf(), erfc(), erfinv(), exp()

88

sinc()

Sinc function.
Syntax
y=sinc(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function evaluates the sinc function of a real or complex number or vector.

.] forx #0
Y= T
1 forz=0

For x being a vector the equation above is applied to the components of z.
Examples

y=sinc(-3) returns 0.047,

y=sinc(3+4%*i) returns -3.86-j3.86.
See also

sin()

89

step()

Step function.
Syntax
y=step(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function calculates the step function of a real or complex number or vector.
For x € R,

0 forz<O
y=1+< 05 forz=0
1 forx>0

If z is a complex number both real part and imaginary part are subjected to the
equation above. For x being a vector the equation is applied to the components
of z.

Example

y=step(0.5) returns 1.

See also

90

Data Analysis

Basic Statistics

avg()

Average of vector elements.
Syntax
y=avg(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,C,R", C", Range s : ze | |—00,400][| V |

Description
This function returns the sum of the elements of a real or complex vector or range.

For z €C": y = % ixi, 1 <i < n (for vectors) or s < i < xe (for ranges)
For x being a real or complex number, z itself is returned.

Example

y=avg(linspace(1,3,10)) returns 2.

See also

sum(), max(), min()

91

cumavg|()

Cumulative average of vector elements.
Syntax

y=cumavg(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x [R,CR",C"|]-o0,+00 | vV \
Description

This function returns the cumulative average of the elements of a real or complex
vector.

For z €C": y, :%izk;xi’ 1<k<n

For z being a real or complex number, z itself is returned.
Example

y=cumavg(linspace(1,3,3)) returns 1, 1.5, 2.

See also

cumsum(), cumprod(), avg(), sum(), prod(), max(), min()

92

max|()

Maximum value.

Syntax
y=max(x)
y=max(a,b)
Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x |R,C,R",C", Range xs : ze | |—00, +00] | vV \
a R, C oo, +ool |V
b R, C] —00, +00] vV
Description

For the first syntax (y=max(x)), this function returns the maximum value of a
real or complex vector or range.

For eR™ y =max (z;), 1 <i <n (for vectors) or xs < i < ze (for ranges)

For x € C™: y = max (£ |z;]), 1 <1i <n (for vectors) or zs < i < ze (for ranges),

N < x
with sign { + for farg ()] < 2
— else

For x being a real or complex number: that is the case n = 1.

The second syntax (y=max(a,b)) finds application, if two (generally complex)
numbers a and b need to be compared. In principle, the maximum of the absolute
values is selected, but it must be considered whether a and b are located in the
right or left complex half plane. If the latter is the case, the negative absolute

93

value of a and b needs to be regarded (for example, which is the case for negative
real numbers), otherwise the positive absolute value is taken:

y = max (£ |af, £ [b]),

+ for larg(a)| <3

< T
with |a| sign { + for |arg (b)] < D)
— else

and |b| sign { C s

Example

y=max (linspace(1,3,10)) returns 3.
y=max(1,3) returns 3.
y=max(1,1+i) returns 1+jl.

y=max(1,-1+i) returns 1.
See also

min(), abs()

94

min()

Minimum value.

Syntax
y=min(x)
y=min(a,b)
Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x |R,C,R",C", Range xs : ze | |—00, +00] | vV \
a R, C |00, +00] Vv
b R, C] —00, +00] vV
Description

For the first syntax (y=min(x)), this function returns the minimum value of a
real or complex vector or range.

For xz €eR™ y =min (z;), 1 <i <n (for vectors) or s < i < ze (for ranges)

For x € C™: y = min (£ |z;]), 1 <i < n (for vectors) or s < i < ze (for ranges),

+ for |arg (z;)| < §
— else

with sign {

For x being a real or complex number: that is the case n = 1.

The second syntax (y=min(a,b)) finds application, if two (generally complex)
numbers a and b need to be compared. In principle, the maximum of the absolute
values is selected, but it must be considered whether a and b are located in the
right or left complex half plane. If the latter is the case, the negative absolute

95

value of a and b needs to be regarded (for example, which is the case for negative
real numbers), otherwise the positive absolute value is taken:

y = min (+|a| , £ [b]),

+ for larg(a)| <3

< T
with |a| sign { + for |arg (b)] < D)
— else

and |b| sign { C s

Example

y=min(linspace(1,3,10)) returns 1.
y=min(1,3) returns 1.
y=min(1,1+i) returns 1.

y=min(1l,-1+i) returns -1+jl.
See also

max(), abs()

96

rms()

Root Mean Square of vector elements.
Syntax
y=rms(X)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function returns the rms (root mean square) value of the elements of a real
or complex vector. By application of the trapezoidal integration rule,

n 1 for2<i<n-—1
n. oy — et 1 <5< - ==
for x €C™: y ;alexz’ l<i<mn, a { % fort=1ori=n

For z being a real or complex number, |z| itself is returned.

SRS

Example

y=rms (linspace(1,2,8)) returns 1.43.

See also

variance(), stddev(), avg()

97

runavg)()

Running average of vector elements.
Syntax

y=runavg(x,m)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
X R, C, R", C" | |—o0,+00] Vv
m N [1, +o0] v
Description

This function returns the running average over m elements of a real or complex
vector.

1 k+m—1
For z €C™ yp=— > x;,1<k<n
mo =g

For z being a real or complex number, z itself is returned.
Example

y=runavg(linspace(1,3,6),2) returns 1.2, 1.6, 2, 2.4, 2.8.
See also

cumavg(), cumsum(), avg(), sum()

98

stddev ()

Standard deviation of vector elements.
Syntax

y=stddev(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x [R,CR",C"|]-o0,+00 | vV \
Description

This function returns the stddev of the elements of a real or complex vector .
For x eC™: y =4/variance(x)

For z being a real or complex number, 0 is returned.

Example

y=stddev(linspace(1,3,10)) returns 0.673.

See also

stddev(), avg(), max(), min()

99

variance()

Variance of vector elements.
Syntax

y=variance(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x [R,CR",C"|]-o0,+00 | vV \
Description

This function returns the variance of the elements of a real or complex vector.

1

n

—\2 —
N (x; —T)”, where T denotes mean (average) value of z.
n—1i=1

For z eC™: y =

For x being a real or complex number, 0 is returned.

Example

y=variance(linspace(1,3,10)) returns 0.453.

See also

stddev(), avg(), max(), min()

100

randomy()

Random number between 0.0 and 1.0.
Syntax

y=random()
Arguments
None.
Description

This function returns a pseudo-random real number between 0.0 (including) and
1.0 (excluding). The starting point of the random number generator can be set by
srandomy().

Example
y=random ()
See also

srandom/()

101

srandom/()

Set seed for a new series of pseudo-random numbers.
Syntax

y=srandom(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [R |]-oo,+o0[| v]

Description

This function establishes z as the seed for a new series of pseudo-random numbers.
Please note that only integer values for z are considered, so for example x = 1.1
will give the same seed as x = 1.

Example

y=srandom(100)

See also

random()

102

Basic Operation

cumprod()

Cumulative product of vector elements.
Syntax

y=cumprod(x)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘
’ X ‘ R, C, R", C" ‘ |—00, +0o0 ‘ V ‘
Description

This function returns the cumulative product of the elements of a real or complex
vector.

For x €C™: y, :E[la:i, 1<k<n

For x being a real or complex number, z itself is returned.
Example

y=cumprod(linspace(1,3,3)) returns 1, 2, 6.

See also

cumsum(), cumavg(), prod(), sum(), avg(), max(), min()

103

cumsum/()

Cumulative sum of vector elements.
Syntax

y=cumsum(x)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| x [R,CR",C"|]-o0,+00 | vV \
Description

This function returns the cumulative sum of the elements of a real or complex
vector.

For z €C": y; :i:xi, 1<k<n
i=1
For x being a real or complex number, z itself is returned.
Example
y=cumsum(linspace(1,3,3)) returns 1, 3, 6.

See also

cumprod(), cumavg(), sum(), prod(), avg(), max(), min()

104

interpolate()

Equidistant spline interpolation of data vector.
Syntax

z=interpolate(y,t,m)

z=interpolate(y,t)

Arguments

’ Name \ Type \ Def. Range \ Required \ Default ‘

y | R", C"| |—o0,40o0| Vv

t R™, C" | |—o0,+00| vV

m N 3, +o0] 64
Description

This function uses spline interpolation to interpolate between the points of a vector
y(t). If the number of samples n is not specified, a default value of n = 64 is
assumed.

Example

z=interpolate(linspace(0,2,3)*linspace(0,2,3),linspace(0,2,3))

returns a smooth parabolic curve:

Use the Cartesian diagram to display it.

See also

sum(), prod()

105

41

| |

I I
0 0.5 1 1.5 2
Interpolate.0001

Figure 4: Interpolated curve

prod()

Product of vector elements.
Syntax
y=prod(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x |R,CR,C"[]-o0,400[| v |

Description

This function returns the product of the elements of a real or complex vector.

For z eC™: y =[] =
i=1

For x being a real or complex number, z itself is returned.

106

Example

y=prod(linspace(1,3,10)) returns 583.

See also

sum(), avg(), max(), min()

107

sum/()

Sum of vector elements.
Syntax
y=sum(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function returns the sum of the elements of a real or complex vector.

For x €C": y :éxi

For x being a real or complex number, z itself is returned.
Example

y=sum(linspace(1,3,10)) returns 20.

See also

prod(), avg(), max(), min()

108

xvalue()

Returns x-value which is associated with the y-value nearest to a spec-
ified y-value in a given vector.

Syntax

x=xvalue(f,yval)

Arguments

’ Name \ Type \ Def. Range \ Required ‘

f R™ C" | |—o00, 00| vV
yval | R, C |]—o0,400| v
Description

This function returns the z-value which is associated with the y-value nearest
to yval in the given vector f; therefore the vector f must have a single data
dependency.

Example

x=xvalue(f,1).

See also

yvalue(), interpolate()

109

yvalue()

Returns y-value of a given vector which is located nearest to the speci-
fied x-value.

Syntax
y=yvalue(f xval)

Arguments

’ Name \ Type \ Def. Range \ Required ‘

f R™ C" | |—o00, 00| vV
xval | R, C |]—o0,+o0] Vv
Description

This function returns the y-value of the given vector f which is located nearest to
the x-value zwval; therefore the vector f must have a single data dependency.

Example

y=yvalue(f,1).

See also

xvalue(), interpolate()

110

Differentiation and Integration

ddx()

Differentiate mathematical expression with respect to a given variable.
Syntax

y=ddx(f(x),x)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
f(x) i
X R, C, R™ C™ |]—o0,400| V

Description

This function executes a symbolic differentiation on a function f(z) with respect
to a variable z. The result is evaluated at the contents zg of z.

_df
dx

o

Y

If x is a vector, the differential quotient is evaluated for all components of z, giving
a result vector y.

Example

Create a vector z by setting x=linspace(0,2,3), thus z = [0,1,2]". Entering

y=ddx(sin(x),x returns 1, 0.54, -0.416.

111

Why? &
i

result above.

See also

diff()

df _d sin(x)

dx

— cos(z), and cos(z) evaluated at = = [0,1,2]" gives the

112

diff()

Differentiate vector with respect to another vector.
Syntax

z=diff (y,x,n)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘

Yy Rku C*]—OO, +OO[\/

X R™ C™ |]—o00,+00] vV

n N 1
Description

This function numerically differentiates a vector y with respect to a vector z.
If the optional integer parameter n is given, the n-th derivative is calculated.
Differentiation is executed for N=min(k,m) elements. For n=1,

(1 T i+1 — Yi ;
_(y’ y,1+y+1 y> for N—1>i>0
2\T —Tiz1 T — T
Ayz-: Yir1 7 Ui fori =0
AZEZ' Tit1 — T4
Y¥i —Yi1 fori=N—1
L Ti — Tj—1

If n>1, the result of the differentiation above is assigned to y and the aforemen-
tioned differentiation step is repeated until the number of those steps is equal to
n.

Example

z=diff (linspace(1,3,3),linspace(2,3,3)) returns 2, 2, 2.

113

See also

integrate(), sum(), max(), min()

114

integrate()

Integrate vector.
Syntax

z=integrate(y,h)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
y Ra C> Rn? c"]—OO, +OO[\/
h Ra C]—OO, +OO[\/
Description

This function numerically integrates a vector z with respect to a differential h.
The integration method is according to the trapezoidal rule:

[f@t)dt=h (2 Yot Yuog + 2)

Example

3
Calculate an approximation of the integral [¢dt using 101 points:
1

z=integrate(linspace(1,3,101)) returns 4.
See also

diff(), sum(), max(), min()

115

Signal Processing

dfe()

Discrete Fourier Transform.
Syntax
y=dft(v)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
’ v ‘R”, C”\]—00, +o0] ‘ v ‘

Description

This function computes the Discrete Fourier Transform (DFT) of a vector v. The
advantage of this function compared to fft() is that the number n of components
of v is arbitrary, while for the latter n must be a power of 2. The drawbacks are
that dft() is slower and less accurate than fft().

Example

This calculates the spectrum y of a DC signal:

| y |
1
y=dft (linspace(1,1,7)) returns | -1.59e-17+j1.59e-17

2.22e-16-j1.11e-16

Please note that in this example 7 points are used for the time vector v. Since
7 is not a power of 2, the same expression used together with the fft() function
would lead to wrong results. Note also the rounding errors where “0” would be the
correct value.

116

See also

idft(), fft(), ifft(), Freq2Time(), Time2Freq()

117

£t)

Fast Fourier Transform.
Syntax
y=fit(v)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| v [R,C"[]-oco,+0[| V |

Description

This function computes the Fast Fourier Transform (FFT) of a vector v. The
number n of components of v must be a power of 2.

Example

This calculates the spectrum y of a DC signal:

1
y=fft(linspace(1,1,8)) returns| 0

See also

ifft(), dft(), idft(), Freq2Time(), Time2Freq(), fftshift()

118

idft()

Inverse Discrete Fourier Transform.
Syntax

y=idft(v)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| v [Ry,C"[]-oco,+0[| V |

Description

This function computes the Inverse Discrete Fourier Transform (IDFT) of a vector
v. The advantage of this function compared to ifft() is that the number n of
components of v is arbitrary, while for the latter n must be a power of 2. The
drawbacks are that idft() is slower and less accurate than ifft().

Example

This calculates the time function y belonging to a white spectrum:

| y |
7
y=idft (linspace(1,1,7)) returns| -1.11e-16-j1.11e-16

1.55¢-15+7.77e-16

Please note that in this example 7 points are used for the spectrum vector v. Since
7 is not a power of 2, the same expression used together with the ifft() function
would lead to wrong results. Note also the rounding errors where “0” would be the
correct value.

119

See also

dft(), ifft(), fft(), Freq2Time(), Time2Freq(), fftshift()

120

ifft ()
Inverse Fast Fourier Transform.
Syntax
y=ifft(v)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| v [R,C"[]-oco,+0[| V |

Description

This function computes the Inverse Fast Fourier Transform (IFFT) of a vector v.
The number n of components of v must be a power of 2.

Example

This calculates the time function y belonging to a white spectrum:

8
y=ifft(linspace(1,1,8)) returns| 0

See also

fft(), dft(), idft(), Freq2Time(), Time2Freq(), fitshift()

121

fitshift ()

Move the frequency 0 to the center of the FFT vector.
Syntax

y=fitshift(v)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| v [R,C"[]-oco,+0[| V |

Description

This function shuffles the FF'T values of vector v in order to move the frequency 0
to the center of the vector. Below of it the components with negative frequencies
are located, above those with positive frequencies. Herewith the "classical” look of
a spectrum as gained by a spectrum analyzer is obtained.

Example

1
Suppose x to be the result of a FFT of 8 elements, e.g.| 2

8

The result of the FF'T is sorted in such a way that the component with frequency
zero is the first element (1) of the vector. The components with positive frequency
follow (2,3,4). After that, the components with negative frequency (5,6,7,8) are
arranged, starting from the most negative value. This pattern can be exemplarily
generated in Qucs by writing x=1inspace(1,8,8). Then

122

y=fftshift(x) returns

)-BC«O[\')I—‘OO\]ODOTH

As you can see, the component with frequency 0 (element 1) is moved to the middle
of the spectrum vector. Beneath of it the components with negative frequencies
appear (5,6,7,8), above those with positive frequencies (2,3,4).

See also

ftt(), ifft(), dft(), idft()

123

Time2Freq()

Interpreted Discrete Fourier Transform.
Syntax
y=Time2Freq(v,t)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘

v R™ C" | |—o0,4+00] vV
t R*, C* |]—o0, +00] V
Description

This function computes the Discrete Fourier Transform (DFT) of a vector v with
respect to a time vector t.

Example
This calculates the spectrum y(f) of a DC signal:

y=Time2Freq(linspace(1,1,7),linspace(0,1,2)) returns

] Frequency \ y ‘
0 1
0.167 -1.59e-17+4j1.59e-17

1 2.22e-16-j1.11e-16

Please note that in this example 7 points are used for the time vector v. Note also
the rounding errors at t>0, where “0” would be the correct value.

See also
idft(), ftt(), ifft(), Freq2Time()

124

Freq2Time()

Interpreted Inverse Discrete Fourier Transform.
Syntax
y=Freq2Time(v,f)

Arguments

’ Name ‘ Type ‘ Def. Range ‘ Required ‘

v R™ C" | |—o0,4+00] vV
f R* C* |]—o0, +o0] V
Description

This function computes the Inverse Discrete Fourier Transform (IDFT) of a vector
v with respect to a frequency vector f.

Example
This calculates the time function y(t) belonging to a white spectrum:

y=Freq2Time(linspace(1,1,7),linspace(0,1,2)) returns

] Frequency \ y ‘
0 7
0.167 -1.11e-16-j1.11e-16

1 1.55e-15+j7.77e-16

Please note that in this example 7 points are used for the spectrum vector v. Note
also the rounding errors at t>0, where “0” would be the correct value.

See also
dft(), ifft(), fft(), Time2Freq()

125

kbd ()

Kaiser-Bessel derived window.
Syntax

y=kbd(a,n)

y=kbd(a)

Arguments

] Name \ Type \ Def. Range \ Required \ Default \

a R]—OO, +OO[\/
n N [1, +o00[64
Description

This function generates a Kaiser-Bessel window according to

1=0

yk’ = n)
>l (ray/1- (2 - 1))
=0

Yn—k—1 = Yk

for0<k< 5

If the parameter n is not specified, n==64 is assumed.

Example

y=kbd (0.1,4) returns .

126

See also

dft(), ifft(), fft()

Electronics Functions

Unit Conversion

dB()
dB value.
Syntax
y=dB(x)

Arguments

] Name \ Type \ Def. Range \ Required ‘
’ X ‘ R, C, R*, C" ‘ |—00, +o0 ‘ V ‘

Description

This function returns the dB value of a real or complex number or vector.
y = 20 log |x|

For x being a vector the equation above is applied to the components of z.

Example

y=db(10) returns 20.

127

See also

log10()

128

dbm()

Convert voltage to power in dBm.
Syntax

y=dBm(u,Z0)

y=dBm(u)

Arguments

’ Name \ Type \ Def. Range \ Required \ Default ‘
u R, C, R™, C" | |—o0,+00] Vv
20 | R,C,R", C"| |—o0,+00] 50

Description

This function returns the corresponding dBm power of a real or complex voltage
or vector u. The impedance Z0 referred to is either specified or 5052.

[ul”

— 10 log — 4
y & 7, 0.0011V

For u being a vector the equation above is applied to the components of u.

Please note that u is considered as a rms value, not as an amplitude.
Example

y=dbm(1) returns 13.

See also

dbm2w(), w2dbm(), log10()

129

dbm2w()

Convert power in dBm to power in Watts.
Syntax

y=dBm2w(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description

This function converts the real or complex power or power vector, given in dBm,
to the corresponding power in Watts.

y = 0.001107

For x being a vector the equation above is applied to the components of z.
Example

y=dbm2w (10) returns 0.01.

See also

dbm(), w2dbmy()

130

w2dbm()

Convert power in Watts to power in dBm.
Syntax

y=w2dBm(x)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| x [RCR,C"|]-o0,+x[] v |

Description
This function converts the real or complex power or power vector, given in Watts,
to the corresponding power in dBm.

T
0.001W

y = 10 log

For z being a vector the equation above is applied to the components of x.

Example

y=w2dbm (1) returns 30.

See also

dbm(), dbm2w(), log10()

131

Reflection Coefficients and VSWR
rtoswr()

Converts reflection coefficient to voltage standing wave ratio (VSWR).
Syntax

s=rtoswr(r)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
| r |[RCR,C'| <1 | |
Description

For a real or complex reflection coefficient r, this function calculates the corre-
sponding voltage standing wave ratio (VSWR) s according to

1+ |r|

S =
1 —1r]

VSWR is a real number and if usually given in the notation “s : 17.

For r being a vector the equation above is applied to the components of 7.
Examples

s=rtoswr (0) returns 1.

s=rtoswr (0.1+0.2*1i) returns 1.58.

See also

ytor(), ztor(), rtoy(), rtoz()

132

rtoy ()

Converts reflection coefficient to admittance.

Syntax

y=rtoy(r)

y=rtoy(r, Z0)

Arguments
’ Name \ Type \ Def. Range \ Required \ Default ‘
r R, C, R*, C" Ir| <1 vV
70 R, C |—00, +00] 50
Description

For a real or complex reflection coefficient r, this function calculates the corre-
sponding admittance y according to

B 1 1—r
_Zol+T

Y

If the reference impedance Z0 is not provided, the function assumes Z0 = 50f).

For r being a vector the equation above is applied to the components of 7.

Example

y=rtoy(0.333) returns 0.01.

See also

ytor(), ztor(), rtoswr()

133

rtoz()
Converts reflection coefficient to impedance.
Syntax

z=rtoz(r)

z=rtoz(r, Z0)

Arguments
’ Name \ Type \ Def. Range \ Required \ Default ‘
r R, C, R", C" Ir| <1 vV
Z0 R, C | —00, +00] 50
Description

For a real or complex reflection coefficient r, this function calculates the corre-
sponding impedance Z according to

1—r

7 = Zy
147

If the reference impedance Z0 is not provided, the function assumes Z0 = 50().

For r being a vector the equation above is applied to the components of r.

Example

z=rt0z(0.333) returns 99.9.

See also

ztor(), ytor(), rtoswr()

134

ytor()

Converts admittance to reflection coefficient.
Syntax

r=ytor(Y)

r=ytor(Y, Z0)

Arguments
’ Name \ Type \ Def. Range \ Required \ Default ‘
Y |RCR",C"| |—o00,+0] Vv
Z0 R, C |—00, +00] 50
Description

For a real or complex admittance g, this function calculates the corresponding
reflection coefficient according to

1-Y %,

T 1v 7%

For Y being a vector the equation above is applied to the components of Y.
If the reference impedance Z0 is not provided, the function assumes Z0 = 50¢).

Often a dB measure is given for the reflection coefficient, the so called “return
loss™:

RL = —20 log |r| [dB]
Example

r=ytor(0.01) returns 0.333.

135

See also

rtoy(), rtoz(), rtoswr(), logl0(), dB()

136

ztor()

Converts impedance to reflection coefficient.
Syntax

r=ztor(Z)

r=ztor(Z, Z0)

Arguments
’ Name \ Type \ Def. Range \ Required \ Default ‘
Z R, C, R", C" | |—o0,+00] Vv
Z0 R, C |—00, +00] 50
Description

For a real or complex impedance Z, this function calculates the corresponding
reflection coefficient according to

For Z being a vector the equation above is applied to the components of Z.
If the reference impedance Z0 is not provided, the function assumes Z0 = 50().

Often a dB measure is given for the reflection coefficient, the so called “return
loss™:

RL = —20 log |r| [dB]

Example

r=ztor (100) returns 0.333.

137

See also

rtoz(), rtoy(), rtoswr(), logl0(), dB()

138

N-Port Matrix Conversions
stos()

Converts S-parameter matrix to S-parameter matrix with different ref-
erence impedance(s).

Syntax

y=stos(S, Zref)

y=stos(S, Zref, Z0)

Arguments
’ Name \ Type \ Def. Range \ Required \ Default ‘
nxn nxn ’Slj’ E]_OO7+OO[7 1 SZa] <n
> R, € 1Su] <1,1<i<n %
Zref | R, C, R™, C"]—00, +00] V
20 | R, C,R™ C" |—00, +00] 50

Description

This function converts a real or complex scattering parameter matrix S into a scat-
tering matrix Y. S has a reference impedance Zref, whereas the created scattering
matrix Y has a reference impedance Z0.

If the reference impedance Z0 is not provided, the function assumes Z0 = 50¢2.

Both Zref and Z0 can be real or complex numbers or vectors; in the latter case
the function operates on the elements of Zref and Z0.

Example

Conversion of 50¢2 terminated S-parameters to 100€2 terminated S-parameters:

139

S2=stos(eye(2)*0.1,50,100) returns -0.241 0

0 -0.241 |

See also

twoport(), stoy(), stoz()

140

stoy ()

Converts S-parameter matrix to Y-parameter matrix.
Syntax

Y=stoy(S)

Y=stoy(S, Zref)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
nxn nxn ’SZJ| E]—OO,+OO[7 1 SZ;] <n
5 R € S| <1,1<i<n v
Zref | R, C, R™, C" |—00, +00] 50

Description

This function converts a real or complex scattering parameter matrix S into an
admittance matrix Y. S has a reference impedance Zref, which is assumed to be
Zref = 50€) if not provided by the user.

Zref can be real or complex number or vector; in the latter case the function
operates on the elements of Zref.

Example

0.00818 0
0 0.00818 |

Y=stoy(eye(2)*0.1,100) returns

See also

twoport(), stos(), stoz(), ytos()

141

stoz()

Converts S-parameter matrix to Z-parameter matrix.
Syntax

Z=stoz(S)

Z=stoz(S, Zref)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
nxn nxn ’SZJ| E]—OO,+OO[7 1 SZ;] <n
5 R € S| <1,1<i<n v
Zref | R, C, R™, C" |—00, +00] 50

Description

This function converts a real or complex scattering parameter matrix S into an
impedance matrix Z. S has a reference impedance Zref, which is assumed to be
Zref = 50€) if not provided by the user.

Zref can be real or complex number or vector; in the latter case the function
operates on the elements of Zref.

Example

122 1 0

Z=stoz(eye(2)*0.1,100) returns 0 19|

See also

twoport(), stos(), stoy(), ztos()

142

twoport ()

Converts a two-port matrix from one representation into another.
Syntax

U=twoport(X, from, to)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
X R2X2, C2x2]—OO,—I—OO[\/

from | Character | {'Y",'Z','H','G','A",'S",'T"} V
to Character | {'Y' 'Z' 'H' 'G',/'A",'S" 'T"} V

Description

This function converts a real or complex two-port matrix X from one representa-
tion into another.

Example

Transfer a two-port Y matrix Y1 into a Z matrix:

Yi=eye(2)*0.1

101 0

Z1=twoport(Y1,’Y’,’Z’) returns

See also

stos(), ytos(), ztos(), stoz(), stoy(), ytoz(), ztoy()

143

ytos()

Converts Y-parameter matrix to S-parameter matrix.
Syntax

S=ytos(Y)

S=ytos(Y, Z0)

Arguments
’ Name \ Type \ Def. Range \ Required \ Default ‘
Y Rnxn’ Cnxn]-OO,-FOO[\/
20 |R,C,R", C" | |—o0,+0o0] 50
Description

This function converts a real or complex admittance matrix Y into a scattering
parameter matrix S. Y has a reference impedance Z0, which is assumed to be Z0
= 50€ if not provided by the user.

Z(0 can be real or complex number or vector; in the latter case the function operates
on the elements of Z0.

Example

-0.818 0
0 -0.818 |

S=ytos(eye(2)*0.1,100) returns

See also

twoport(), stos(), ztos(), stoy()

144

ytoz()

Converts Y-parameter matrix to Z-parameter matrix.
Syntax

Z=ytoz(Y)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| Y [R>™, C™ |]-o0,+00[| |

Description

This function converts a real or complex admittance matrix Y into an impedance
matrix Z.

Example

Z=ytoz(eye(2)*0.1) returns

See also

twoport(), ztoy()

145

ztos()

Converts Z-parameter matrix to S-parameter matrix.
Syntax

S=ztos(Z)

S=ztos(Z, Z0)

Arguments
’ Name \ Type \ Def. Range \ Required \ Default ‘
7, Rnxn’ Cnxn]-OO,-FOO[\/
20 |R,C,R", C" | |—o0,+0o0] 50
Description

This function converts a real or complex impedance matrix Z into a scattering
parameter matrix S. Z has a reference impedance Z0, which is assumed to be Z0
= 50€ if not provided by the user.

Z(0 can be real or complex number or vector; in the latter case the function operates
on the elements of Z0.

Example

-0.998 0
0 -0.998 |

S=ztos(eye(2)*0.1,100) returns

See also

twoport(), twoport(), stos(), ytos(), stoz()

146

ztoy()

Converts Z-parameter matrix to Y-parameter matrix.
Syntax

Y=ztoy(Z)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
| Z [Rv", C™" |]-oo, o0 |]

Description

This function converts a real or complex impedance matrix Z into an admittance
matrix Y.

Example

Y=ztoy(eye(2)*0.1) returns

See also

twoport(), ytoz()

147

Amplifiers

GaCircle()

Circle(s) with constant available power gain Ga in the source plane.
Syntax

y=GaCircle(X,Ga,v)
y=GaCircle(X,Ga,n)

y=GaCircle(X,Ga)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
X R2><2><p7 CZ><2><p]—OO,—i—OO[\/
A R™ [0, 360]°
Ga R, R™ [0, +o00] Vi
n N 2, +00] 64
Description

This function generates the points of the circle of constant available power gain G 4
in the complex source plane (rg) of an amplifier. The amplifier is described by a
two-port S-parameter matrix S. Radius r and center ¢ of this circle are calculated
as follows:

\/1 — Z-K-gA' |512521| +9124‘ |Sl2S21’2
11+ga- (1Sul” = |A])]

and ¢ — gA(SH_SQQA)Q,
1+ga (I1Sul” —|AF)

r =

where g4 = |§—A|2 and K Rollet stability factor. A denotes determinant of S.
21

148

The points of the circle can be specified by the angle vector v, where the angle
must be given in degrees. Another possibility is to specify the number n of angular
equally distributed points around the circle. If no additional argument to X is
given, 64 points are taken. The available power gain can also be specified in a
vector Ga, leading to the generation of m circles, where m is the size of Ga.

Please also refer to “Qucs - Technical Papers”, chapter 1.5.

Example

v=GaCircle(S)

See also

GpCircle(), Rollet()

149

GpCircle()
Circle(s) with constant operating power gain Gp in the load plane.
Syntax

y=GpCircle(X,Gp,v)
y=GpCircle(X,Gp,n)

y=GpCircle(X,Gp)

Arguments
’ Name ‘ Type ‘ Def. Range ‘ Required ‘ Default ‘
X R2><2><p7 CZ><2><p]—OO,—i—OO[\/
v R™ [0, 360]°
Gp R, R™ [0, +00] Vv
n N 2, +o00] 64
Description

This function generates the points of the circle of constant operating power gain
G'p in the complex load plane (ry) of an amplifier. The amplifier is described by a
two-port S-parameter matrix S. Radius r and center ¢ of this circle are calculated
as follows:

\/1 —2-K-gp- |S12Sn| + g3 - 9129 g4 (S5, — Si AY)
2 2 and ¢ = 2 N
|1+ gp- (152" = |A])] 1+ gp (152" — |AF)

r =
Gp . .
where g4 = W and K Rollet stability factor. A denotes determinant of S.
21
The points of the circle can be specified by the angle vector v, where the angle
must be given in degrees. Another possibility is to specify the number n of angular

equally distributed points around the circle. If no additional argument to X is

150

given, 64 points are taken. The available power gain can also be specified in a
vector Gp, leading to the generation of m circles, where m is the size of Gp.
Please also refer to “Qucs - Technical Papers”, chapter 1.5.

Example

v=GpCircle(S)

See also

GaCircle(), Rollet()

151

Mu()

Mu stability factor of a two-port S-parameter matrix.
Syntax
y=Mu(S)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
’ S ‘ R2><2><p’ C2X2XP,R2X2, C2><2 ‘]—OO,—|—C>O[‘ \/ ‘

Description

This function returns the Mu stability factor p of an amplifier being described by
a two-port S-parameter matrix S:

_ 1—]S/
S22 — S A] + |Sa1 Sio

I

A denotes determinant of S.
The amplifier is unconditionally stable if p > 1.

For S being a vector of matrices the equation above is applied to the sub-matrices
of S.

Example

m=Mu(S)

See also

Mu2(), Rollet(), StabCircleS(), StabCircleL()

152

Mu2()

Mu’ stability factor of a two-port S-parameter matrix.
Syntax
y=Mu2(S)

Arguments

’ Name \ Type \ Def. Range \ Required ‘
’ S ‘ R2><2><p’ C2X2XP,R2X2, C2><2 ‘]—OO,—|—C>O[‘ \/ ‘

Description

This function returns the Mu’ stability factor p’ of an amplifier being described
by a two-port S-parameter matrix S

_ 1 — | S|
’511 - 352 A| ‘l‘ |521 512|

/!

I

A denotes determinant of S.
The amplifier is unconditionally stable if p' > 1.

For S being a vector of matrices the equation above is applied to the sub-matrices
of S.

Example

m=Mu2(S)

See also

Mu2(), Rollet(), StabCircleS(), StabCircleL()

153

NoiseCircle()

Generates circle(s) with constant Noise Figure(s).
Syntax

y=NoiseCircle(Sopt,Fmin,Rn,F v)
y=NoiseCircle(Sopt,Fmin,Rn,F n)

y=NoiseCircle(Sopt,Fmin,Rn,F)

Arguments

’ Name \ Type \ Def. Range \ Required \ Default ‘
Sopt | R*, C" | |—o0,+0o0|

A
Fmin R™ 1, +00] vV
Rn | R, C*| [0,400] vV
F R, R™ [1, +o00] vV
v R" [0, 360]°
n N 2, +o00] 64
Description

This function generates the points of the circle of constant Noise Figure (NF) F
in the complex source plane (rg) of an amplifier. Generally, the amplifier has its
minimum NF F),;,, if the source reflection coeflicient rg = S, (noise matching).
Note that this state with optimum source reflection coefficient S, is different
from power matching ! Thus power gain under noise matching is lower than the
maximum obtainable gain. The values of S,,, Fininand the normalised equivalent
noise resistance R,,/Zycan be usually taken from the data sheet of the amplifier.

Radius 7 and center ¢ of the circle of constant NF are calculated as follows:

N2 N- (1= [Sop|? S F = b
\/ (| pt|)andc: ot WithN:—mm'ZO'’1""5010'5’2

154

The points of the circle can be specified by the angle vector v, where the angle
must be given in degrees. Another possibility is to specify the number n of angular
equally distributed points around the circle. If no additional argument to X is
given, 64 points are taken.

Please also refer to “Qucs - Technical Papers”, chapter 2.2.
Example
v=NoiseCircle(Sopt,Fmin,Rn,F)

See also

GaCircle(), GpCircle()

155

PlotVs()

Returns a data item based upon vector or matrix vector with depen-
dency on a given vector.

Syntax

y=PlotVs(X, v)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
X Rn’ Cn, RanXp’ CanXp]—OO, +OO[\/
v R", C™ |—00, +00] V
Description

This function returns a data item based upon a vector or matrix vector X with
dependency on a given vector wv.

Example

PlotVs(Gain,frequency/1E9).

See also

156

Rollet()

Rollet stability factor of a two-port S-parameter matrix.
Syntax

y=Rollet(S)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
’ S ‘ R2><2><p’ C2X2XP,R2X2, C2><2 ‘]—OO,—|—C>O[‘ \/ ‘
Description

This function returns the Rollet stability factor K of an amplifier being described
by a two-port S-parameter matrix S:

P [S1al* = [Saal* + A
2 |51 |S1z]

A denotes determinant of S.
The amplifier is unconditionally stable if X' > 1 and |A] < 1.

Note that a large K may be misleading in case of a multi-stage amplifier, pretending
extraordinary stability. This is in conflict with reality where a large gain amplifier
usually suffers from instability due to parasitics.

For § being a vector of matrices the equation above is applied to the sub-matrices

of S.

Example

K=Rollet(S)

157

See also

Mu(), Mu2(), StabCircleS(), StabCircleL()

158

StabCircleL()

Stability circle in the load plane.

Syntax

y=StabCircleL(X)
y=StabCircleL(X,v)

y=StabCircleL(X,n)

Arguments
’ Name \ Type \ Def. Range \ Required \ Default ‘
X R2><2><p’ CQ><2><p]—OO,—i—OO[\/
v R™ [0, 360]°
n N 2, +00] 64
Description

This function generates the stability circle points in the complex load reflection
coefficient () plane of an amplifier. The amplifier is described by a two-port S-
parameter matrix S. Radius r and center ¢ of this circle are calculated as follows:

521 512

o S5y — Siy - A
|Sa|” — |A[?

and C= ——F———F=
|Sas|* — A

A denotes determinant of S.

The points of the circle can be specified by the angle vector v, where the angle
must be given in degrees. Another possibility is to specify the number n of angular
equally distributed points around the circle. If no additional argument to X is
given, 64 points are taken.

If the center of the ryplane lies within this circle and |S1;]| < 1 then the circuit is
stable for all reflection coefficients inside the circle. If the center of the rplane lies
outside the circle and |S1;| < 1 then the circuit is stable for all reflection coefficients
outside the circle (please also refer to “Qucs - Technical Papers”, chapter 1.5).

159

Example

v=StabCircleL(S)

See also

StabCircleS(), Rollet(), Mu(), Mu2()

160

StabCircleS()

Stability circle in the source plane.

Syntax

y=StabCircleS(X)
y=StabCircleS(X,v)

y=StabCircleS(X,n)

Arguments
’ Name \ Type \ Def. Range \ Required \ Default ‘
X R2><2><p’ CQ><2><p]—OO,—i—OO[\/
v R™ [0, 360]°
n N 2, +00] 64
Description

This function generates the stability circle points in the complex source reflection
coefficient (rg) plane of an amplifier. The amplifier is described by a two-port S-
parameter matrix S. Radius r and center ¢ of this circle are calculated as follows:

521 512

o Si) — Sa- A"
1Sul” — A7

and C= ———F——F=
|Sul” — A

A denotes determinant of S.

The points of the circle can be specified by the angle vector v, where the angle
must be given in degrees. Another possibility is to specify the number n of angular
equally distributed points around the circle. If no additional argument to X is
given, 64 points are taken.

If the center of the rgplane lies within this circle and |Sss| < 1 then the circuit is
stable for all reflection coefficients inside the circle. If the center of the rgplane lies
outside the circle and |Sa2| < 1 then the circuit is stable for all reflection coefficients
outside the circle (please also refer to “Qucs - Technical Papers”, chapter 1.5).

161

Example

v=StabCircleS(S)

See also

StabCircleL(), Rollet(), Mu(), Mu2()

162

StabFactor()

Stability factor of a two-port S-parameter matrix. Synonym for Rollet()

Syntax

y=StabFactor(S)
See also

Rollet()

163

StabMeasure()

Stability measure B1 of a two-port S-parameter matrix.
Syntax

y=StabMeasure(S)

Arguments
’ Name \ Type \ Def. Range \ Required ‘
’ g ‘ R2><2><p’ CQXQXp’RQXQ’ (C2><2 ‘]—OO,—i—OO[‘ \/ ‘
Description

This function returns the stability measure BI of a two-port S-parameter matrix

S:
Bl =1+|Su|" = [Sn|* — [A[

A denotes determinant of S.
The amplifier is unconditionally stable if B1 > 0 and the Rollet factor K > 1.

For S being a vector of matrices the equation above is applied to the sub-matrices
of S.

Example
B1=StabMeasure(S)

See also

Rollet(), Mu(), Mu2(), StabCircleS(), StabCircleL()

164

vt()

Thermal voltage for a given temperature in Kelvin.

Syntax
y=vt(t)

Arguments

’ Name \ Type \ Def. Range \ Required \ Default ‘
[t TR T Ofoo [v] |

Description

This function returns the corresponding thermal voltage V; in Volt of a real absolute
temperature (vector) 7" in Kelvin according to

ET
Vi=—
€

where k is the Boltzmann constant and e denotes the electrical charge on the
electron. For ¢ being a vector the equation above is applied to the components of

k.
Please note that ¢ is always larger than or equal to zero.

Example

y=vt (300) returns 0.0259.

165

A COb e e 54
coth 67
ab§ RRERERETETEEPLRERTRERERRRRRILE 26 CUMAVE .+« oo e 91
adJOIIlt 19 cumprod ''''''''''''''''''''''' 102
angle 28 CUMSUI . « o oo oo oo 103
ATCCOS . ettt ettt 58
ATCCOSEC . .« v v ettt e e e 50 D
arccot. ... 60 B 126
arcosech 72
dbm 128
arcosh 71 dbm2w 129
arcoth 73 ddx 110
BICSEC. ...t 61 deg2rad .. oo 39
ALCSIIL . ottt e e e 62
det. ... 22
ALCRAIL e gg Aft oo 115
< .
QITAY 50 diff ... 112
arsech............ ... 74 E
arsinh......... 75
artanh 76 erf .. 84
BYE oo 90 erfc‘ 85
erfcinv. ... 87
B erfinv.... 86
EXD ettt 47
besseliO 8L aye. . 16
besselj ... 82
bessely...........ooo it 83 F
C 1 117
fitshift 121
ceil .. 77 X 78
(670} 0| PP 31 floor ... 79
COS e ettt et 52 Freq2Time......................... 124
COSEC . v v ettt e e et 53
cosech 66 G
e 65 GaCircle........ooooiiiiiiiiiiii... 147

166

polar....... ... 39
H prod..... ... 105
hypot ... i 33 R
I rad2deg. ... 40
GG e 118 TARAOM 100
M. 120 TRl 41
AL .+ gq THIS .o 96
. Rollet.............o i, 156
integrate.............. ... o o 114
. round....... ... 80
interpolate..................... ..., 104
INVEISe . .ottt 23 TEOSWI .o 131

170)P 132
K T0OZ. oo 133

TUNAVE .« o oo ee e 97
kbd.......oo 125

S
L

BB e vttt 55
length. ... 20 seCh. ..o 68
limexp ... A8 sign.. ... 43
linspace 17 Signum ______________________________ 42
In..oo Ol Sin . 56
loglO. ..o 49 Sinc....o o 88
log2........ 90 sinh. ..o 69
logspace. ... I8 sqr..o.oo 44

ST . oo 45
M srandom 101
TAE .+« e e 35 StabCircleL........................ 158
MAX oo g2 StabCircleS........................ 160
TN 94 StabFactor......................... 162
MU .o 151 StabMeasure............. 163
Mu2 . 152 stddev ... o 98

SEED . vt 89
N SEOS . o et 138

o SEOY . o et 140

NoiseCircle ... 153 SEOZ. o 141
1 010) 1 1'0 [P 36 SUmL. 107
P T
phase ... 37 tan 57

Time2Freq ...t 123
transpose ... 24
twoport 142
U

UDIWTAD « e voeeeee e e e et 46
Vv

VaArlanCe. 99
Ve 164
\)\%

w2dbm 130
X

xvalue ... 108
Y

ytor ... 134
YEOS o 143
VEOZ o 144
yvalue ... 109
Z

ZEOT . o 136
ZHOS . oo 145
ZEOY « o 146

168

