VU University Amsterdam University of Amsterdam

De Boelelaan 1081a, 1081 HV Amsterdam Kruislaan 419, 1098 VA Amsterdam
The Netherlands The Netherlands

SWI Prolog

Reference Manual
Updated for version 8.0-3, June 2019

Jan Wielemaker
J.Wielemaker@vu.nl
http://www.swi-prolog.org

SWI-Prolog is a comprehensive and portable implementation of the Prolog programming
language. SWI-Prolog aims to be a robust and scalable implementation supporting a
wide range of applications. In particular, it ships with a wide range of interface libraries,
providing interfaces to other languages, databases, graphics and networking. It provides
extensive support for managing HTML/SGML/XML and RDF documents. The system
is particularly suited for server applications due to robust support for multithreading and
HTTP server libraries.

SWI-Prolog is designed in the ‘Edinburgh tradition’. In addition to the ISO Prolog stan-
dard it is largely compatible to Quintus, SICStus and YAP Prolog. SWI-Prolog provides
a compatibility framework developed in cooperation with YAP and instantiated for YAP,
SICStus and IF/Prolog.

SWI-Prolog aims at providing a good development environment, including extensive ed-
itor support, graphical source-level debugger, autoloading and ‘make’ facility and much
more. SWI-Prolog editor and the PDT plugin for Eclipse provide alternative environ-
ments.

This document gives an overview of the features, system limits and built-in predicates.

\ \
\ \

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit http://creativecommons.org/
licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street,
Suite 900, Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Contents

1 Introduction
Positioning SWI-Prolog
Status and releases

1.1
1.2
1.3
1.4
1.5
1.6

Support the SWI-Prolog project
Implementation history
Acknowledgements

2 Overview

2.1

2.2
2.3
2.4

2.5
2.6

2.7
2.8
2.9
2.10

2.11
2.12
2.13
2.14
2.15
2.16

Getting started quickly

2.1.1
2.1.2
2.1.3
2.14
2.1.5

24.1
242
243
244
245
2.4.6

GNU Emacs Interface
Online Help
library(help): Text based manual
library(explain): Describe Prolog Terms
Command line history

2.6.1
2.6.2

Starting SWI-Prolog

Adding rules from the console
Executingaquery
Examining and modifying your program
Stopping Prolog
The user’s initialisation file
Initialisation files and goals
Command line options
Informational command line options
Command line options for running Prolog
Controlling the stack sizes
Running goals from the command line

Compilation options
Maintenance options

Reuse of top-level bindings
Overview of the Debugger

Compilation
2.10.1 During program development
2.10.2 For running the result
Environment Control (Prolog flags)
An overview of hook predicates
Automatic loading of libraries

Packs: community add-ons

Garbage Collection
The SWI-Prolog syntax

SWI-Prolog 8.0 Reference Manual

2.16.1 ISO Syntax Support i e e e e 55

2.17 Rational trees (cyclicterms) e e e 61
2.18 Just-in-time clause indexing e 62
2.18.1 Deepindexing e e 63
2.18.2 Future directionso 64
2.18.3 Indexing and portability 64

2.19 Wide character support e e e 64
2.19.1 Wide character encodings on streams 65

220 System limits e e e e e 66
2.20.1 Limits on MEMOTIY @reas « . v v v v v v v v e et e e e 66
2.20.2 OtherLimits e 68
2.20.3 Reserved Names i i e 68

2.21 SWI-Prolog and 64-bitmachines L. 68
2.21.1 Supported platforms 68
2.21.2 Comparing 32- and 64-bits Prolog L. 69
2.21.3 Choosing between 32- and 64-bitProlog 69

3 Initialising and Managing a Prolog Project 71
3.1 Theprojectsourcefiles 71
3.1.1 File Names and Locations 71

3.1.2 ProjectSpecial Files 72

3.1.3 International source files oL 73

32 Usingmodules e e e e 73
3.3 Thetest-edit-reloadcycle L 74
3.3.1 Locating thingstoedit 74

3.3.2 Editing and incremental compilation 75

3.4 Using the PceEmacs built-ineditor L. 75
34.1 ActivatingPceEmacs oL oo 75

3.4.2 Bluffing through PceEmacs 76

343 PrologMode 78

3.5 The Graphical Debugger 80
3.5.1 Invoking the window-based debugger 80

3.6 The Prolog Navigator i i i e e e e e e 81
3.7 Cross-referencer v v v vt e e e e e e e e 81
3.8 Accessing the IDE from your program 83
39 Summaryofthe IDE 84
4 Built-in Predicates 85
4.1 Notation of Predicate Descriptions 85
4.2 Character representationo it e e e e e e e 86
4.3 Loading Prologsourcefiles L . 87
4.3.1 Conditional compilation and program transformation 98

4.3.2 Reloading files, active code and threads 102

433 Quickloadfiles e 104

4.4 EditorInterface L 105
4.4.1 Customizing the editorinterface 105

4.5 List the program, predicatesorclauses 107

SWI-Prolog 8.0 Reference Manual

Contents 3

4.6
4.7

4.8
4.9
4.10
4.11

4.12

4.13
4.14

4.15
4.16
4.17

4.18
4.19
4.20
4.21

4.22
4.23
4.24

4.25
4.26
4.27

Verify TypeofaTerm e 107
Comparison and Unificationof Terms 109
4.7.1 Standard Orderof Terms 109
4.7.2 Special unification and comparison predicates 111
Control Predicates e 113
Meta-Call Predicates e 115
Delimited continuationso e e 119
Exception handling L 119
4.11.1 Urgency of eXCeptions v v v v v i e e e e e 121
4.11.2 Debugging and eXceptionso e e e 121
4.11.3 Theexception term v v v v v v v e e e e e e 122
4.11.4 Printing MeSSAZES . + .« v v v v e e e e e e e e e e e e e e e e e e 122
Handling signals e 127
4.12.1 Notesonsignalhandling 128
DCG Grammarrules e e 128
Database L e 131
4.14.1 Managing (dynamic) predicates oL 132
4.14.2 Therecorded database 134
4143 Flags o o e e e 135
4144 TTries . . . oo e e e e 135
4.14.5 Update view o Lo e e e e e e 137
4.14.6 Indexing databases 137
Declaring predicate properties e e e e e e e 138
Examining the program L. oL e 139
Inputandoutput e e e e 145
4.17.1 Predefined stream aliases 145
4.17.2 ISO Input and Output Streams v v v v v vt et 146
4.17.3 Edinburgh-styleI/O. o 154
4.17.4 Switching between Edinburgh and ISOI/O 156
4.17.5 AddingIRIschemas 156
4.17.6 Write onto atoms, code-lists, etc. Lo 157
4.17.7 Fastbinaryterm I/O L 158
Status of streams L e e e e e 159
Primitive character /O 160
Termreading and writingo 164
Analysing and Constructing Terms 172
4.21.1 Non-logical operations onterms« v v v v v vt 175
Analysing and Constructing Atoms i e e e 176
Localization (locale) support e 179
Character properties v v v v v v e e e e e e e e e e e e e e e e e e 181
4.24.1 Case CONVEISION . .« v v v v v v vt et e e e e e e e e e 183
4.24.2 White space normalization 183
4.24.3 Language-specific comparisono e e e L 183
OPerators v v v e e e e e e e e e e e e e e e e 184
Character CONVersion o v v v v v it et e e e e e 185
Arithmetic o e 187
4.27.1 Special purpose integer arithmetic 187

SWI-Prolog 8.0 Reference Manual

4.27.2 General purpose arithmetic 188

4.28 Misc arithmetic support predicates e 197
4.29 Built-in listoperationso e e e 198
4.30 Finding all SolutionstoaGoal 201
431 Forall e e 203
4.32 Formatted Write o e e e e 203
4321 Writef e e 203
4322 Format i e e e e e e e 205
4.32.3 Programming Format, 208

433 Global variables e 208
4.33.1 Compatibility of SWI-Prolog Global Variables 210

4.34 Terminal Control e 210
4.35 Operating System Interaction oo 211
4.35.1 Windows-specific Operating System Interaction 213
4.35.2 Dealing withtimeanddate 214
4.35.3 Controlling the swipl-win.exe console window 220

4.36 File System Interaction L L e e 221
4.37 User Top-level Manipulation 226
4.38 Creating a Protocol of the User Interaction 227
4.39 Debugging and Tracing Programs L .. 228
4.40 Obtaining Runtime Statistics 0 it . 231
4.41 Executionprofiling 231
4.41.1 Profiling predicates Lo 231
4.41.2 Visualizing profilingdata, 234
4.41.3 Information gathering 235

4.42 Memory Managementot e e e e e e e e 236
443 Windows DDEinterface 238
4.43.1 DDEclientinterface e 238
4432 DDEservermodeo 239

444 Miscellaneous L. e e e e e 240
5 SWI-Prolog extensions 242
5.1 Listsarespecialo 242
5.1.1 Motivating’[|] and [] forlists 243

5.2 The string type and its double quoted syntax 243
5.2.1 Predicates that operate on Strin@so el 244

5.2.2 Representing text: strings, atoms and code lists 247

5.2.3 Adapting code for double quoted strings 248

5.24 Why has the representation of double quoted text changed? 249

5.3 Syntaxchanges 251
5.3.1 Operators and quoted atoms e 251

5.3.2 Compound terms with zero arguments 251

5.33 Blockoperators e 252

5.4 Dicts: structures with named arguments 253
54.1 Functionsondicts 254

5.4.2 Predicates for managing dicts oL oL 256

543 Whentousedicts?o e 259

SWI-Prolog 8.0 Reference Manual

Contents 5

5.4.4 A motivation for dicts as primary citizens 0.0 261

5.4.5 Implementation notes about dicts oL 261

5.5 Integration of strings and dicts in the libraries 262
5.5.1 Dicts and option processingl e e 262

5.5.2 Dictsin core data Structurest e bt e 262

5.5.3 Dicts,stringsand XMLo oo 262

5.54 Dicts, stringsand JSON e 262

5.5.5 Dicts, stringsand HTTP, 263

5.6 Remainin@isSues v v vt it e e e e e e e e e 263
6 Modules 264
6.1 Why Use Modules? e 264
6.2 DefiningaModule e 264
6.3 Importing Predicates intoaModule L. 265
6.4 Defining ameta-predicate e e e 267
6.5 Overruling Module Boundaries 269
6.5.1 Explicit manipulation of the callingcontext 269

6.6 Interacting with modules from the toplevel 270
6.7 Composing modules from othermodules 270
6.8 Operatorsand modules L o 271
6.9 Dynamic importing using import modules 0oL 271
6.10 Reserved Modules and using the ‘user’ module 272
6.11 An alternative import/export interface oL 0oL 272
6.12 Dynamic Modules e 273
6.13 Transparent predicates: definition and contextmodule 273
6.14 Module properties v . v i e e e e e e e e e e e e e e e 275
6.15 Compatibility of the Module System 276
7 Tabled execution (SLG resolution) 278
7.1 Example 1: using tabling for memoizing 278
7.2 Example 2: avoiding non-terminationo oo 280
7.3 Answer subsumption or mode directed tabling 0oL 281
7.4 Tabling predicate reference L L 282
7.5 About the tabling implementation 283
8 Constraint Logic Programming 285
8.1 Attributed variables 286
8.1.1 Attribute manipulation predicates oL 288

8.1.2 Attributed variable hooks oL oL oL 288

8.1.3 Operations on terms with attributed variables 290

8.1.4 Special purpose predicates for attributes 290

82 Coroutining e e 290
9 CHR: Constraint Handling Rules 293
9.1 Introduction e e e 293
9.2 Syntax and Semantics oL e e e 294
9.2.1 Syntaxof CHRrules 294

SWI-Prolog 8.0 Reference Manual

0.22 SemantiCs e e e e e e e e 295

9.3 CHR in SWI-Prolog Programs 296
9.3.1 Embedding in Prolog Programs 296

9.3.2 Constraintdeclaration oL 297

9.3.3 Compilation e e e 300

9.4 Debugging e e e e 300
0.4.1 Ports e 301

042 Tracing e e e e 301

9.4.3 CHR Debugging Predicates 302

9.5 Examples e e 303
9.6 Backwards Compatibility 304
9.6.1 The Old SICStus CHR implemenation 304

9.6.2 The Old ECLiPSe CHR implemenation 305

9.7 Programming Tipsand Tricks L o 305
9.8 Compiler Errors and Warnings 306
9.8.1 CHR CompilerErrors 306

10 Multithreaded applications 308
10.1 Creating and destroying Prolog threads 308
10.2 Monitoring threads L e 312
10.3 Thread communication L e 314
10.3.1 MesSage qUEULS . . v v v v v v e e e e e e e e e e e e e e e 314
10.3.2 Signallingthreads 318
10.3.3 Threads and dynamic predicates 318

10.4 Thread synchronisation 319
10.5 Thread support library(threadutil) 321
10.5.1 Debuggingthreads 321
10.5.2 Profilingthreads 322

10.6 Multithreaded mixed C and Prolog applications 322
10.6.1 A Prolog thread for each native thread (one-to-one) 323
10.6.2 Pooling Prolog engines (many-to-many) 324

10.7 Multithreading and the XPCE graphicssystem 325
11 Coroutining using Prolog engines 327
11.1 Examples using engines v v v v vt e e e e e e e e e e e 327
11.1.1 Aggregation using engines « .« v v v v v v v vt 327
11.1.2 State accumulation using engines L. 329
11.1.3 Scalable many-agent applications 331

11.2 Engine resource USAZE . . « v v v v v v v v e e e e e e e e e e e e e e 331
11.3 Engine predicate reference e 331
12 Foreign Language Interface 334
12.1 Overview of the Interface L . 334
12.2 Linking Foreign Modules 334
12.2.1 What linking is provided? 335
12.2.2 What kind of loading should I be using? 335

12.2.3 library(shlib): Utility library for loading foreign objects (DLLs, shared objects) 335

SWI-Prolog 8.0 Reference Manual

Contents 7

12.2.4 Low-level operations on shared libraries 337
12.2.5 StaticLinking 338

12.3 Interface Data Types o o o i e 339
12.3.1 Type term_t: areference toa Prologterm 339
12.3.2 Other foreign interface types e 341

12.4 The Foreign Include File 342
12.4.1 Argument Passing and Control 342
1242 Atomsand functors Lo 345
12.4.3 Analysing Terms via the Foreign Interface 346
12.4.4 Constructing Terms L e 354
12.4.5 Unifyingdata e e 357
12.4.6 Convenient functions to generate Prolog exceptions 364
12.4.7 Serializing and deserializing Prologterms 366
12.4.8 BLOBS: Using atoms to store arbitrary binary data 366
12.49 Exchanging GMPnumbers 368
12.4.10 Calling Prolog from C 370
12.4.11 Discarding Data L 372
12.4.12 Foreign Code and Modules 373
12.4.13 Prolog exceptions in foreigncode 374
12.4.14 Catching Signals (Software Interrupts) 376
12.4.15Miscellaneous oL e e e 378
12.4.16 Errors and warnings e e e 381
12.4.17 Environment Control from Foreign Code 381
12.4.18 Querying Prolog L e 382
12.4.19 Registering Foreign Predicates 382
12.4.20 Foreign Code Hooks 385
12.4.21 Storing foreigndata. L Lo 387
12.4.22 Embedding SWI-Prolog in other applications 390

12.5 Linking embedded applications using swipl-1d 394
12.5.1 Asimpleexample 396

12.6 The Prolog ‘home’ directory oo it 397
12.7 Example of Using the Foreign Interface 399
12.8 Notes on Using ForeignCode 401
12.8.1 Foreign debugging functions 401
12.8.2 Memory Allocationo o e 402
12.8.3 Compatibility between Prolog versions 403
12.8.4 Debugging and profiling foreign code (valgrind) 403
12.8.5 Name ConflictsinCmodules 404
12.8.6 Compatibility of the Foreign Interface 404

13 Deploying applications 405
13.1 Deployment options ottt e e e e e 405
13.2 Understanding saved stateso e 405
13.2.1 Creatingasavedstate 406
13.2.2 Limitations of gsave_program 0 408
13.2.3 Runtimes and Foreign Code 409

13.3 Stateinitializationo e e e 410

SWI-Prolog 8.0 Reference Manual

13.4

13.5
13.6

13.7

Using program reSOUICES . . v v v v v v v v v v e e e e e e e e e e e e e e e
134.1 Resourcesasfiles Lo
13.4.2 Access resources using Open_resource « « v v v o v v wu e .. .
13.4.3 Declarin@ reSOUrCeS« v v v v v v vt e e e e e e e e e e e e
13.4.4 Managing resource files
Debugging and updating deployed systems L.
Protecting yourcode
13.6.1 Obfuscating codeinsavedstates
Finding Applicationfiles

A The SWI-Prolog library

Al
A2
A3
A4

A5
A6
AT
A8

A9

library(aggregate): Aggregation operators on backtrackable predicates
library(ansi_term): Print decorated text to ANSIconsoles
library(apply): Apply predicatesonalist.
library(assoc): Association lists
A4l Introduction. L e e
A4.2 Creating association lists oL
A.4.3 Querying associationlistso
A.4.4 Modifying association lists L. oL oo
A4S Conversion predicates Lo e e e
A.4.6 Reasoning about association lists and their elements
library(broadcast): Broadcast and receive event notifications
library(charsio): I/O on Lists of Character Codes
library(check): Consistency checking
library(clpb): CLP(B): Constraint Logic Programming over Boolean Variables
A.8.1 Introduction. e e
A.8.2 Boolean expressions e e e e e e e e e e e e e
A.8.3 Interface predicates e
A84 Exampleso e e
A.8.5 Obtaining BDDs
A.8.6 Enabling monotonicCLP(B)
A.8.7 Example: Pigeons e
A.8.8 Example: Booleancircuit L oL
A.8.9 Acknowledgments
A.8.10 CLP(B) predicate index v v i vt
library(clpfd): CLP(FD): Constraint Logic Programming over Finite Domains
A9.1 Introduction. e
A.9.2 Arithmetic constraints o
A.9.3 Declarative integer arithmetic L.
A94 Example: Factorial relation.
A.9.5 Combinatorial constraintso
A9.6 Domains
A9.7 Example: Sudoku.
A9.8 Residualgoals
A99 Corerelationsandsearch L .
A.9.10 Example: Eightqueenspuzzle
A9.11 Optimisation o v i i e e e e e e e e e

SWI-Prolog 8.0 Reference Manual

Contents 9

A.9.12 Reification 444
A.9.13 Enabling monotonicCLP(FD) 445
A.9.14 Custom CONSLraints v v vt v vttt e e e e 445
A9.15 Applications e e 446
A.9.16 Acknowledgments 446
A9.17 CLP(FD) predicate index oo v v vttt 446
A.9.18 Closing and opening words about CLP(FD) 458
A.10 library(clpqr): Constraint Logic Programming over Rationals and Reals 458
A.10.1 Solverpredicates i i e e e 459
A.10.2 Syntax of the predicate arguments 460
A.103 Useofunification 460
A.10.4 Non-linear constraints o v v vt e 461
A.10.5 Status and known problems oL oo 461
A.11 library(csv): Process CSV (Comma-Separated Values)data 462
A.12 library(dcg/basics): Various general DCG utilities 464
A.13 library(dcg/high_order): High order grammar operations 466
A.14 library(debug): Print debug messages and test assertions 468
A.15 library(dicts): Dictutilities L 469
A.16 library(error): Error generating support. oo 471
A.17 library(gensym): Generate unique identifiers 474
A.18 library(iostream): Utilities to deal with streams 474
A.19 library(lists): List Manipulation, 476
A.20 library(main): Provide entry point for scripts 480
A.21 library(nb_set): Non-backtrackableset 481
A.22 library(www_browser): Activating your Web-browser 482
A.23 library(occurs): Finding and counting sub-terms 483
A.24 library(option): Option list processing v v v v v v v vt 483
A.25 library(optparse): command line parsing L. 485
A25.1 Notesand tipS o v v v i e e e e e e e e e e 490
A.26 library(ordsets): Ordered set manipulation, 492
A.27 library(pairs): Operations on key-value lists 494
A.28 library(persistency): Provide persistent dynamic predicates 495
A.29 library(pio): Pure /O e 498
A.29.1 library(pure_input): Pure Input from files and streams 498
A.30 library(predicate_options): Declare option-processing of predicates 500
A.30.1 The strength and weakness of predicate options 500
A.30.2 Options as arguments or environment? 501
A.30.3 Improving on the current situationo L. 501
A.31 library(prolog_pack): A package manager for Prolog 504
A.32 library(prolog_xref): Cross-reference data collection library 507
A32.1 Extendingthelibrary oL oo 508
A.33 library(quasi_quotations): Define Quasi Quotation syntax 508
A.34 library(random): Random numbers oo oL 510
A.35 library(readutil): Reading lines, streams and files 512
A.36 library(record): Access named fieldsinaterm 513
A.37 library(registry): Manipulating the Windows registry 515
A.38 library(settings): Setting managementottt 516

SWI-Prolog 8.0 Reference Manual

10

A.39 library(simplex): Solve linear programming problems
A39.1 Introductionl
A.39.2 Delayed column generationo
A.39.3 Solving LPs with special structure
A39.4 Examples e e e e e e e e

A.40 library(solution_sequences): Modify solution sequences

A.41 library(thread_pool): Resource bounded thread management

A.42 library(ugraphs): Unweighted Graphs

A.43 library(url): Analysing and constructing URL

A.44 library(varnumbers): Utilities for numbered terms

A .45 library(yall): Lambda expressions e

B Hackers corner
B.1 Examining the Environment Stack
B.2 Ancestralcuts e e
B.3 Intercepting the Tracer
B.4 Breakpoint and watchpoint handling
B.5 Adding context to errors: prolog_exception_hook
B.6 Hooks using the exception predicateo
B.7 Hooks for integrating libraries oL Lo
B.8 Hooks forloading files

C Compatibility with other Prolog dialects
C.1 Some considerations for writing portablecode

D Glossary of Terms

E SWI-Prolog License Conditions and Tools
E.1 Contributing to the SWI-Prolog project
E.2 Software support to keep track of license conditions
E.3 License conditions inherited fromusedcode
E.3.1 Cryptographicroutines v v v v vt

F Summary
F1 Predicates o e e e e e
F2 Library predicateso e e
F2.1 library(aggregate) e e e e e e
F2.2 library(ansiterm) e e e e
F2.3 library(apply) o o o e
F2.4 library(assoc) o i e e e e e e e e
F2.5 library(broadcast)
F2.6 library(charsio) e
F2.7 library(check) L
F2.8 library(clpb) e
F2.9 library(clpfd) e
F2.10 library(clpgr) o . 0 e
F2.11 library(csv) o e e e e e e

537
537
539
539
541
543
543
544
545

546
547

550

556
557
557
558
558

SWI-Prolog 8.0 Reference Manual

Contents 11
F.2.12 library(degbasics) o o i i e e e 579
F.2.13 library(dcghighorder) L 580
F2.14 library(debug) e 580
F2.15 library(dicts) o o e 580
F2.16 library(error) e e e e e e 581
F2.17 library(explain) e 581
F2.18 library(help) e 581
F2.19 library(iostream) e 581
F.2.20 library(summaries.d/iostream/tex) 581
F2.21 library(lists) o e e e e e e 581
F2.22 library(main) e e e 582
F2.23 1library(occurs) o v v it e e e e e e e 582
F.2.24 library(option) e 582
F2.25 library(optparse) v i i i i e e e e e e 583
F2.26 library(ordsets) o o i e 583
F2.27 library(persiStency) v v v v i e e e e e e e 583
F.2.28 library(predicate_options) 584
F2.29 library(prologpack) 584
F.2.30 library(prologxref)o 584
F2.31 library(pairs) o o i e e e e e e e e 584
F2.32 library(pio) o e e e e e e e e 585
F2.33 library(random) e 585
F2.34 library(readutil) e 585
F2.35 library(record) e 586
F2.36 library(registry) v v i e e e e e e e e e e 586
F.2.37 library(settings)« o o o i e e e 586
F2.38 library(simplex) o e e e e 586
F.2.39 library(ugraphs). e 586
F2.40 library(url) e 587
F2.41 library(Www_browser) i 587
F.2.42 library(solution Sequences) v v v v v v v vt e 587
F2.43 library(thread pool). 587
F2.44 library(varnumbers) e e e 587
F2.45 library(yall) o e e 588

F3 Arithmetic Functions e 589
F4 Operators o i it e e e e e e e e e 591

SWI-Prolog 8.0 Reference Manual

Introduction

This document is a reference manual. That means that it documents the system, but it does not
explain the basics of the Prolog language and it leaves many details of the syntax, semantics and built-
in primitives undefined where SWI-Prolog follows the standards. This manual is intended for people
that are familiar with Prolog. For those not familiar with Prolog, we recommend to start with a Prolog
textbook such as [1,1 Jor|[]. For more
advanced Prolog usage we recommend [].

1.1 Positioning SWI-Prolog

Most implementations of the Prolog language are designed to serve a limited set of use cases. SWI-
Prolog is no exception to this rule. SWI-Prolog positions itself primarily as a Prolog environment for
‘programming in the large’ and use cases where it plays a central role in an application, i.e., where
it acts as ‘glue’ between components. At the same time, SWI-Prolog aims at providing a productive
rapid prototyping environment. Its orientation towards programming in the large is backed up by scal-
ability, compiler speed, program structuring (modules), support for multithreading to accommodate
servers, Unicode and interfaces to a large number of document formats, protocols and programming
languages. Prototyping is facilitated by good development tools, both for command line usage as for
usage with graphical development tools. Demand loading of predicates from the library and a ‘make’
facility avoids the requirement for using declarations and reduces typing.

SWI-Prolog is traditionally strong in education because it is free and portable, but also because of
its compatibility with textbooks and its easy-to-use environment.

Note that these positions do not imply that the system cannot be used with other scenarios. SWI-
Prolog is used as an embedded language where it serves as a small rule subsystem in a large applica-
tion. It is also used as a deductive database. In some cases this is the right choice because SWI-Prolog
has features that are required in the application, such as threading or Unicode support. In general
though, for example, GNU-Prolog is more suited for embedding because it is small and can com-
pile to native code, XSB is better for deductive databases because it provides advanced resolution
techniques (tabling), and ECLiPSe is better at constraint handling.

The syntax and set of built-in predicates is based on the ISO standard []. Most
extensions follow the ‘Edinburgh tradition’ (DEC10 Prolog and C-Prolog) and Quintus Prolog
[]. The infrastructure for constraint programming is based on hProlog [1.

Some libraries are copied from the YAP' system. Together with YAP we developed a portability
framework (see section C). This framework has been filled for SICStus Prolog, YAP, IF/Prolog and
Ciao. SWI-Prolog version 7 introduces various extensions to the Prolog language (see section 5). The
string data type and its supporting set of built-in predicates is compatibility with ECLiPSe.

"http://www.dcc.fc.up.pt/~{}vsc/Yap/

SWI-Prolog 8.0 Reference Manual

http://www.dcc.fc.up.pt/~{}vsc/Yap/

1.2. STATUS AND RELEASES 13

1.2 Status and releases

This manual describes version 8.0 of SWI-Prolog. SWI-Prolog is widely considered to be a robust
and scalable implementation of the Prolog language. It is widely used in education and research.
In addition, it is in use for 24 x 7 mission critical commercial server processes. The site http:
//www.swi-prolog.org is hosted using the SWI-Prolog HTTP server infrastructure. It receives
approximately 2.3 million hits and serves approximately 300 Gbytes on manual data and downloads
each month. SWI-Prolog applications range from student assignments to commercial applications
that count more than one million lines of Prolog code.

SWI-Prolog has two development tracks. Stable releases have an even minor version number
(e.g.,6.2.1) and are released as a branch from the development version when the development version
is considered stable and there is sufficient new functionality to justify a stable release. Stable releases
often get a few patch updates to deal with installation issues or major flaws. A new Development
version is typically released every couple of weeks as a snapshot of the public git repository. ‘Extra
editions’ of the development version may be released after problems that severely hindered the user
in their progress have been fixed.

Known bugs that are not likely to be fixed soon are described as footnotes in this manual.

1.3 Should I be using SWI-Prolog?

There are a number of reasons why it might be better to choose a commercial, or another free, Prolog
system:

o SWI-Prolog comes with no warranties
Although the developers or the community often provide a work-around or a fix for a bug, there
is no place you can go to for guaranteed support. However, the full source archive is available
and can be used to compile and debug SWI-Prolog using free tools on all major platforms.
Users requiring more support should ensure access to knowledgeable developers.

e Performance is your first concern
Various free and commercial systems have better performance. But, ‘standard’ Prolog bench-
marks disregard many factors that are often critical to the performance of large applications.
SWI-Prolog is not good at fast calling of simple predicates, but it is fast with dynamic code,
meta-calling and predicates that contain large numbers of clauses or require more advanced
clauses indexing. Many of SWI-Prolog’s built-in predicates are written in C and have excellent
performance.

e You need features not offered by SWI-Prolog
Todays SWI-Prolog supports most features available from other Prolog systems. Still, there are
features that are not or poorly supported. Examples are tabling which, although provided, is
rather slow and does not support e.g., incremental tabling and well formed semantics. If you
require additional features and you have resources, be it financial or expertise, please contact
the developers.

On the other hand, SWI-Prolog offers some facilities that are widely appreciated by users:

e Nice environment
SWI-Prolog provides a good command line environment, including ‘Do What I Mean’, auto-
completion, history and a tracer that operates on single key strokes. The system automatically

SWI-Prolog 8.0 Reference Manual

http://www.swi-prolog.org
http://www.swi-prolog.org

14 CHAPTER 1. INTRODUCTION

recompiles modified parts of the source code using the make/0 command. The system can
be instructed to open an arbitrary editor on the right file and line based on its source database.
It ships with various graphical tools and can be combined with the SWI-Prolog editor, PDT
(Eclipse plugin for Prolog), VScode or GNU-Emacs.

o Fast compiler
Even very large applications can be loaded in seconds on most machines. If this is not enough,
there is the Quick Load Format. See gcompile/1 and gsave_program/2.

e Transparent compiled code
SWI-Prolog compiled code can be treated just as interpreted code: you can list it, trace it, etc.
This implies you do not have to decide beforehand whether a module should be loaded for
debugging or not, and the performance of debugged code is close to that of normal operation.

o Source level debugger
The source level debugger provides a good overview of your current location in the search tree,
variable bindings, your source code and open choice points. Choice point inspection provides
meaningful insight to both novices and experienced users. Avoiding unintended choice points
often provides a huge increase in performance and a huge saving in memory usage.

o Profiling
SWI-Prolog offers an execution profiler with either textual output or graphical output. Finding
and improving hotspots in a Prolog program may result in huge speedups.

o Flexibility
SWI-Prolog can easily be integrated with C, supporting non-determinism in Prolog calling C
as well as C calling Prolog (see section 12). It can also be embedded in external programs (see
section 12.5). System predicates can be redefined locally to provide compatibility with other
Prolog systems.

o Threads
Robust support for multiple threads may improve performance and is a key enabling factor for
deploying Prolog in server applications.

e [nterfaces
SWI-Prolog ships with many extension packages that provide robust interfaces to processes,
encryption, TCP/IP, TIPC, ODBC, SGML/XML/HTML, RDEF, JSON, YAML, HTTP, graphics
and much more.

1.4 Support the SWI-Prolog project

You can support the SWI-Prolog project in several ways. Academics are invited to cite one of the
publications> on SWI-Prolog. Users can help by identifying and/or fixing problems with the code or
its documentation.®. Users can contribute new features or, more lightweight, contribute packs*. Com-
mercial users may consider contacting the developers to sponsor the development of new features or
seek for opportunities to cooperate with the developers or other commercial users.

http://www.swi-prolog.org/Publications.html
3http ://www.swi-prolog.org/howto/SubmitPatch.html
*http://www.swi-prolog.org/pack/list
Smailto:info@swi—prolog.org

SWI-Prolog 8.0 Reference Manual

http://www.swi-prolog.org/Publications.html
http://www.swi-prolog.org/howto/SubmitPatch.html
http://www.swi-prolog.org/pack/list
mailto:info@swi-prolog.org

1.5. IMPLEMENTATION HISTORY 15

1.5 Implementation history

SWI-Prolog started back in 1986 with the requirement for a Prolog that could handle recursive inter-
action with the C-language: Prolog calling C and C calling Prolog recursively. In those days Prolog
systems were not very aware of their environment and we needed such a system to support interactive
applications. Since then, SWI-Prolog’s development has been guided by requests from the user com-
munity, especially focussing on (in arbitrary order) interaction with the environment, scalability, (I/O)
performance, standard compliance, teaching and the program development environment.

SWI-Prolog is based on a simple Prolog virtual machine called ZIP [,

] which defines only 7 instructions. Prolog can easily be compiled into this lan-
guage, and the abstract machine code is easily decompiled back into Prolog. As it is also possible
to wire a standard 4-port debugger in the virtual machine, there is no need for a distinction between
compiled and interpreted code. Besides simplifying the design of the Prolog system itself, this ap-
proach has advantages for program development: the compiler is simple and fast, the user does not
have to decide in advance whether debugging is required, and the system only runs slightly slower in
debug mode compared to normal execution. The price we have to pay is some performance degra-
dation (taking out the debugger from the VM interpreter improves performance by about 20%) and
somewhat additional memory usage to help the decompiler and debugger.

SWI-Prolog extends the minimal set of instructions described in [] to improve
performance. While extending this set, care has been taken to maintain the advantages of decompi-
lation and tracing of compiled code. The extensions include specialised instructions for unification,
predicate invocation, some frequently used built-in predicates, arithmetic, and control (; /2, | /2),
if-then (- >/ 2) and negation-by-failure (\+/1).

1.6 Acknowledgements

Some small parts of the Prolog code of SWI-Prolog are modified versions of the corresponding Edin-
burgh C-Prolog code: grammar rule compilation and writef /2. Also some of the C-code originates
from C-Prolog: finding the path of the currently running executable and some of the code underlying
absolute_file_name/2. Ideas on programming style and techniques originate from C-Prolog
and Richard O’Keefe’s thief editor. An important source of inspiration are the programming tech-
niques introduced by Anjo Anjewierden in PCE version 1 and 2.

Our special thanks go to those who had the fate of using the early versions of this system, sug-
gested extensions or reported bugs. Among them are Anjo Anjewierden, Huub Knops, Bob Wielinga,
Wouter Jansweijer, Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.

Martin Jansche (jansche@novelll.gs.uni-heidelberg.de) has been so kind to reor-
ganise the sources for version 2.1.3 of this manual. Horst von Brand has been so kind to fix many
typos in the 2.7.14 manual. Thanks! Randy Sharp fixed many issues in the 6.0.x version of the manual.

Bart Demoen and Tom Schrijvers have helped me adding coroutining, constraints, global variables
and support for cyclic terms to the kernel. Tom Schrijvers has provided a first clp(fd) constraint solver,
the CHR compiler and some of the coroutining predicates. Markus Triska contributed the current
clp(fd) implementation as well as the clp(b) implementation.

Tom Schrijvers and Bart Demoen initiated the implementation of delimited continuations (sec-
tion 4.10), which was used by Benoit Desouter and Tom Schrijvers to implement tabling (section 7)
as a library. Fabrizio Riguzzi added a first implementation for mode directed tabling (section 7.3).

The SWI-Prolog 7 extensions (section 5) are the result of a long heated discussion on the mail-

SWI-Prolog 8.0 Reference Manual

16 CHAPTER 1. INTRODUCTION

inglist. Nicos Angelopoulos’ wish for a smooth integration with the R language triggered the overall
intend of these extensions to enable a smoother integration of Prolog with other languages. Michael
Hendrix suggested and helped shaping SWI-Prolog quasi quotations.

Paul Singleton has integrated Fred Dushin’s Java-calls-Prolog side with his Prolog-calls-Java side
into the current bidirectional JPL interface package.

Richard O’Keefe is gratefully acknowledged for his efforts to educate beginners as well as valu-
able comments on proposed new developments.

Scientific Software and Systems Limited, www . sss.co.nz has sponsored the development of
the SSL library, unbounded integer and rational number arithmetic and many enhancements to the
memory management of the system.

Leslie de Koninck has made clp(QR) available to SWI-Prolog.

Jeff Rosenwald contributed the TIPC networking library and Google’s protocol buffer handling.

Paulo Moura’s great experience in maintaining Logtalk for many Prolog systems including SWI-
Prolog has helped in many places fixing compatibility issues. He also worked on the MacOS port and
fixed many typos in the 5.6.9 release of the documentation.

Kyndi (https://kyndi.com/) sponsored the development of the engines interface (chap-
ter 11). The final API was established after discussion with the founding father of engines, Paul Tarau
and Paulo Moura. Kyndi also sponsored JIT indexing on multiple arguments.

SWI-Prolog 8.0 Reference Manual

www.sss.co.nz
https://kyndi.com/

Overview

2.1 Getting started quickly

2.1.1 Starting SWI-Prolog
Starting SWI-Prolog on Unix

By default, SWI-Prolog is installed as ‘swipl’. The command line arguments of SWI-Prolog itself
and its utility programs are documented using standard Unix man pages. SWI-Prolog is normally
operated as an interactive application simply by starting the program:

S swipl
Welcome to SWI-Prolog

After starting Prolog, one normally loads a program into it using consult /1, which may be abbre-
viated by putting the name of the program file between square brackets. The following goal loads the
file likes.pl containing clauses for the predicates 1ikes/2:

27— [likes]. |
‘true. ‘
| |
- |

Alternatively, the source file may be given as command line arguments:

$ swipl likes.pl
Welcome to SWI-Prolog

After this point, Unix and Windows users unite, so if you are using Unix please continue at sec-
tion 2.1.2.

SWI-Prolog 8.0 Reference Manual

https://raw.githubusercontent.com/SWI-Prolog/swipl-devel/master/demo/likes.pl

18 CHAPTER 2. OVERVIEW

Starting SWI-Prolog on Windows

After SWI-Prolog has been installed on a Windows system, the following important new things are
available to the user:

e A folder (called directory in the remainder of this document) called swipl containing the
executables, libraries, etc., of the system. No files are installed outside this directory.

e A program swipl-win.exe, providing a window for interaction with Prolog. The program
swipl.exe is a version of SWI-Prolog that runs in a console window.

e The file extension .pl is associated with the program swipl-win.exe. Opening a .pl
file will cause swipl-win.exe to start, change directory to the directory in which the file to
open resides, and load this file.

The normal way to start the 1ikes.pl file mentioned in section 2.1.1 is by simply double-
clicking this file in the Windows explorer.

2.1.2 Adding rules from the console

Although we strongly advice to put your program in a file, optionally edit it and use make /0 to reload
it (see section 2.1.4), it is possible to manage facts and rules from the terminal. The most conveniant
way to add a few clauses is by consulting the pseudo file usexr. The input is ended using the system
end-of-file character.

?— [user].

|+ hello :— format (’Hello world™n’).
|+ "D

true.

?— hello.

Hello world

true.

The predicates assertz/1 and retract /1 are alternatives to add and remove rules and facts.

2.1.3 Executing a query

After loading a program, one can ask Prolog queries about the program. The query below asks Prolog
what food ‘sam’ likes. The system responds with X = (value) if it can prove the goal for a certain
X. The user can type the semi-colon (;) or spacebar! if (s)he wants another solution. Use the RETURN
key if you do not want to see the more answers. Prolog completes the output with a full stop (.) if
the user uses the RETURN key or Prolog knows there are no more answers. If Prolog cannot find
(more) answers, it writes false. Finally, Prolog answers using an error message to indicate the query
Or program contains an error.

'On most installations, single-character commands are executed without waiting for the RETURN key.

SWI-Prolog 8.0 Reference Manual

2.1. GETTING STARTED QUICKLY 19

?— likes (sam, X).
X = dahl ;
X

tandoori ;

X = chips.

Note that the answer written by Prolog is a valid Prolog program that, when executed, produces the
same set of answers as the original program.’

2.1.4 Examining and modifying your program

If properly configured, the predicate edit /1 starts the built-in or user configured editor on the ar-
gument. The argument can be anything that can be linked to a location: a file name, predicate name,
module name, etc. If the argument resolves to only one location the editor is started on this location,
otherwise the user is presented a choice.

If a graphical user interface is available, the editor normally creates a new window and the system
prompts for the next command. The user may edit the source file, save it and run make /0 to update
any modified source file. If the editor cannot be opened in a window it the same console and leaving
the editor runs make /0 to reload any source files that have been modified.

?— edit (likes).

true.
?— make.

o)

% /home/jan/src/pl-devel/linux/likes compiled 0.00 sec, 0 clauses

?— likes (sam, X).

The program can also be decompiled using 1isting/1 as below. The argument is 1isting/1 is
just a predicate name, a predicate indicator of the form Name/Arity,e.g., 2— listing(mild/1) .
or a head, e.g., ?— listing(likes (sam, _)., listing all matching clauses. The predicate
listing/0, i.e., without arguments lists the entire program.’

?— listing(mild) .
mild(dahl) .

mild (tandoori) .
mild (kurma) .

true.

2The SWI-Prolog top level differs in several ways from traditional Prolog top level. The current top level was designed
in cooperation with Ulrich Neumerkel.

3This lists several hook predicates that are defined by default and is typically not very informative.

SWI-Prolog 8.0 Reference Manual

20 CHAPTER 2. OVERVIEW

2.1.5 Stopping Prolog

The interactive toplevel can be stopped in two ways: enter the system end-of-file character (typically
Control-D) or by executing the halt /0 predicate:

?- halt.
$

2.2 The user’s initialisation file

After the system initialisation, the system consults (see consult /1) the user’s startup file. The base-
name of this file follows conventions of the operating system. On MS-Windows, it is the file swipl.
ini and on Unix systems .swiplrc. The file is searched using the file_search_path/2
clauses for user_profile.* The table below shows the default value for this search path. The
phrase (appdata) refers to the Windows CSIDL name for the folder. The actual name depends on the
Windows language. English versions typically use ApplicationData. See also win_folder/2

Unix | Windows
home | - (appdata)/SWI-Prolog

After the first startup file is found it is loaded and Prolog stops looking for further startup files. The
name of the startup file can be changed with the ‘~f file’ option. If File denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same conventions as for the default
startup file. Finally, if file is none, no file is loaded.

The installation provides a file customize/dotswiplrc with (commented) commands that
are often used to customize the behaviour of Prolog, such as interfacing to the editor, color selection
or history parameters. Many of the development tools provide menu entries for editing the startup file
and starting a fresh startup file from the system skeleton.

See also the —s (script) and —F (system-wide initialisation) in section 2.4 and section 2.3.

2.3 Initialisation files and goals

Using command line arguments (see section 2.4), SWI-Prolog can be forced to load files and execute
queries for initialisation purposes or non-interactive operation. The most commonly used options
are -f fileor —s file to make Prolog load a file, —-g goal to define initialisation goals and
-t goal to define the top-level goal. The following is a typical example for starting an application
directly from the command line.

machine% swipl -s load.pl -g go -t halt

It tells SWI-Prolog to load 1oad. pl, start the application using the entry point go/0 and —instead
of entering the interactive top level— exit after completing go/ 0.

4Older versions first searched in the current working directory. This feature has been removed for security reasons.
Users can implement loading a setup file from the working directory in their global preference file.

SWI-Prolog 8.0 Reference Manual

2.4. COMMAND LINE OPTIONS 21

The command line may have multiple ~g goal occurrences. The goals are executed in order.
Possible choice points of individual goals are pruned. If a goal fails execution stops with exit status
1. If a goal raises an exception, the exception is printed and the process stops with exit code 2.

The —g may be used to suppress all informational messages as well as the error message that is
normally printed if an initialisation goal fails.

In MS-Windows, the same can be achieved using a short-cut with appropriately defined command
line arguments. A typically seen alternative is to write a file run . p1 with content as illustrated below.
Double-clicking run . pl will start the application.

:— [load]. % load program
:— go. % run it
:— halt. % and exit

Section 2.10.2 discusses further scripting options, and chapter 13 discusses the generation of runtime
executables. Runtime executables are a means to deliver executables that do not require the Prolog
system.

2.4 Command line options

SWI-Prolog can be executed in one of the following modes:

swipl —--help

swipl —--version
swipl --arch
swipl —-—-dump-runtime-variables

These options must appear as only option. They cause Prolog to print an informational message
and exit. See section 2.4.1.

swipl [option ...] script-file [arg ...]
These arguments are passed on Unix systems if file that starts with
#!/path/to/executable [option ...] is executed. = Arguments after the script file
are made available in the Prolog flag argv.

swipl [option ...] prolog-file ... [[--] arg ...]
This is the normal way to start Prolog. The options are described in section 2.4.2, section 2.4.3
and section 2.4.4. The Prolog flag argv provides access to arg ... If the options are followed
by one or more Prolog file names (i.e., names with extension .pl, .prolog or (on Windows)
the user preferred extension registered during installation), these files are loaded. The first file
is registered in the Prolog flag associated_file. In addition, pl-win[.exe] switches
to the directory in which this primary source file is located using working directory/2.

swipl -0 output -c prolog-file ...
The —c option is used to compile a set of Prolog files into an executable. See section 2.4.5.

swipl -0 output -b bootfile prolog-file ...
Bootstrap compilation. See section 2.4.6.

SWI-Prolog 8.0 Reference Manual

22 CHAPTER 2. OVERVIEW

2.4.1 Informational command line options

——arch
When given as the only option, it prints the architecture identifier (see Prolog flag arch) and
exits. See also —dump-runtime-variables. Also available as —arch.

——dump-runtime-variables [=format]
When given as the only option, it prints a sequence of variable settings that can be used in
shell scripts to deal with Prolog parameters. This feature is also used by swipl-1d (see
section 12.5). Below is a typical example of using this feature.

‘eval ‘swipl —--dump-runtime-variables® ‘
cc -I$PLBASE/include -L$PLBASE/lib/$PLARCH |

The option can be followed by =sh to dump in POSIX shell format (default) or =cmd to dump
in MS-Windows cmd . exe compatible format.

—--help
When given as the only option, it summarises the most important options. Also available as —h
and —help.

—-version
When given as the only option, it summarises the version and the architecture identifier. Also
available as —v.

2.4.2 Command line options for running Prolog

——home=DIR
Use DIR as home directory. See section 12.6 for details.

——quiet
Set the Prolog flag verbose to silent, suppressing informational and banner messages.
Also available as —q.

——nodebug
Disable debugging. See the current prolog_flag/2 flag generate_debug_info for
details.

—--nosignals
Inhibit any signal handling by Prolog, a property that is sometimes desirable for embedded
applications. This option sets the flag signals to false. See section 12.4.22 for details.
Note that the handler to unblock system calls is still installed. This can be prevented using
—--sigalert=0 additionally. See ——sigalert.

—-nothreads
Disable threading for the multi-threaded version at runtime. See also the flags threads and
gc_thread.

SWI-Prolog 8.0 Reference Manual

2.4. COMMAND LINE OPTIONS 23

——pldoc [=port]
Start the PIDoc documentation system on a free network port and launch the user’s browser on
http://localhost :port. If port is specified, the server is started at the given port and the
browser is not launched.

——sigalert=NUM
Use signal NUM (1...31) for alerting a thread. This is needed to make thread_signal/2,
and derived Prolog signal handling act immediately when the target thread is blocked on an
interruptable system call (e.g., sleep/1, read/write to most devices). The default is to use
SIGUSR2. If NUM is 0 (zero), this handler is not installed. See prolog_alert_signal/2
to query or modify this value at runtime.

——no-tty
Unix only. Switches controlling the terminal for allowing single-character commands to the
tracer and get_single_char/1. By default, manipulating the terminal is enabled unless
the system detects it is not connected to a terminal or it is running as a GNU-Emacs inferior
process. See also tty_control.

——win_app
This option is available only in swipl-win.exe and is used for the start-menu item. If
causes plwin to start in the folder ...\My Documents\Prolog or local equivalent

thereof (see win_folder/2). The Prolog subdirectory is created if it does not exist.

-0
Optimised compilation. See current _prolog_flag/2 flag opt imise for details.

-1 file
Load file. This flag provides compatibility with some other Prolog systems.’ It is used in SWI-
Prolog to skip the program initialization specified using initialization/2 directives.
See also section 2.10.2, and initialize/0.

-s file
Use file as a script file. The script file is loaded after the initialisation file specified with the
—-f fileoption. Unlike -f file, using —s does not stop Prolog from loading the personal
initialisation file.

—f file
Use file as initialisation file instead of the default . swiplrc (Unix) or swipl.ini (Win-
dows). ‘~f none’ stops SWI-Prolog from searching for a startup file. This option can be
used as an alternative to —s file that stops Prolog from loading the personal initialisation
file. See also section 2.2.

=F script

Select a startup script from the SWI-Prolog home directory. The script file is named
(scripty .rc. The default script name is deduced from the executable, taking the leading
alphanumerical characters (letters, digits and underscore) from the program name. -F none
stops looking for a script. Intended for simple management of slightly different versions. One
could, for example, write a script iso.rc and then select ISO compatibility mode using
pl —-F iso or make alink from iso-pl topl.

SYAP, SICStus

SWI-Prolog 8.0 Reference Manual

24 CHAPTER 2. OVERVIEW

—x bootfile
Boot from bootfile instead of the system’s default boot file. A boot file is a file re-
sulting from a Prolog compilation using the —b or —c option or a program saved using
gsave_program/[1,2].

—-p alias=pathl[:path?2 ...]
Define a path alias for file_search_path. alias is the name of the alias, and argpathl ... is a
list of values for the alias. On Windows the list separator is ;. On other systems it is :. A
value is either a term of the form alias(value) or pathname. The computed aliases are added to
file_search_path/2 using asserta/1, so they precede predefined values for the alias.
See file_search_path/2 for details on using this file location mechanism.

——traditional
This flag disables the most important extensions of SWI-Prolog version 7 (see section 5) that
introduce incompatibilities with earlier versions. In particular, lists are represented in the
traditional way, double quoted text is represented by a list of character codes and the functional
notation on dicts is not supported. Dicts as a syntactic entity, and the predicates that act on
them, are still supported if this flag is present.

Stops scanning for more arguments, so you can pass arguments for your application after this
one. See current_prolog_-flag/2 using the flag argv for obtaining the command line
arguments.

2.4.3 Controlling the stack sizes

As of version 7.7.14 the stacks are no longer limited individually. Instead, only the combined size is
limited. Note that 32 bit systems still pose a 128Mb limit. See section 2.20.1. The combined limit is
by deault 1Gb on 64 bit machines and 512Mb on 32 bit machines.

For example, to limit the stacks to 32Gb use the command below. Note that the stack limits
apply per thread. Individual threads may be controlled using the stack_1imit(+Bytes) option of
thread_create. Any thread can call set_prolog_flag(stack_limit, Limit) (see stack_limit) to
adjust the stack limit. This limit is inherited by threads created from this thread.

$ swipl —--stack_limit=32g

——-stack_limitsize[bkmg]
Limit the combined size of the Prolog stacks to the indicated size. The suffix specifies the value
as bytes, Kbytes, Mbytes or Gbytes.

—-table_spacesize/bkmg]
Limit for the table space. This is where tries holding memoized® answers for tabling are
stored. The default is 1Gb on 64 bit machines and 512Mb on 32 bit machines. See the Prolog
flag table_space

The letter M is used because the T was already in use. It is a memnonic for Memoizing.

SWI-Prolog 8.0 Reference Manual

2.5. GNU EMACS INTERFACE 25

2.4.4 Running goals from the command line

-g goal
Goal is executed just before entering the top level. This option may appear multiple times. See

section 2.3 for details. If no initialization goal is present the system calls version/0 to print
the welcome message. The welcome message can be suppressed with ——quiet, but also with
—-g true. goal can be a complex term. In this case quotes are normally needed to protect it
from being expanded by the shell. A safe way to run a goal non-interactively is below. If go/0
succeeds —g halt causes the process to stop with exit code 0. If it fails, the exit code is 1;
and if it raises an exception, the exit code is 2.

I 1
[}

% swipl <options> -g go —g halt ‘

-t goal
Use goal as interactive top level instead of the default goal prolog/0. The goal can be a
complex term. If the top-level goal succeeds SWI-Prolog exits with status 0. If it fails the exit
status is 1. If the top level raises an exception, this is printed as an uncaught error and the
top level is restarted. This flag also determines the goal started by break /0 and abort /0.
If you want to prevent the user from entering interactive mode, start the application with
‘~g goal -t halt’.

2.4.5 Compilation options

—cfile...
Compile files into an ‘intermediate code file’. See section 2.10.

—o output
Used in combination with —c or —b to determine output file for compilation.
2.4.6 Maintenance options

The following options are for system maintenance. They are given for reference only.

=b initfile ... —c file . ..
Boot compilation. initfile ... are compiled by the C-written bootstrap compiler, file ... by the
normal Prolog compiler. System maintenance only.

—d rokenl,token2,...
Print debug messages for DEBUG statements tagged with one of the indicated tokens. Only
has effect if the system is compiled with the ~-DO_DEBUG flag. System maintenance only.

2.5 GNU Emacs Interface

Unfortunately the default Prolog mode of GNU Emacs is not very good. There are several alternatives
though:

e https://bruda.ca/emacs/prolog_mode_for_emacs
Prolog mode for Emacs and XEmacs maintained by Stefan Bruda.

SWI-Prolog 8.0 Reference Manual

https://bruda.ca/emacs/prolog_mode_for_emacs

26 CHAPTER 2. OVERVIEW

e https://www.metalevel.at/pceprolog/
Recommended configuration options for editing Prolog code with Emacs.

e https://www.metalevel.at/ediprolog/
Interact with SWI-Prolog directly in Emacs buffers.

e https://www.metalevel.at/etrace/
Trace Prolog code with Emacs.

2.6 Online Help

2.6.1 library(help): Text based manual

This module provides help/1 and apropos/1 that give help on a topic or searches the manual for
relevant topics.

By default the result of help/1 is sent through a pager such as 1less. This behaviour is con-
trolled by the following:

e The Prolog flag help_pager, which can be set to one of the following values:

false
Never use a pager.

default
Use default behaviour. This tries to determine whether Prolog is running interactively in
an environment that allows for a pager. If so it examines the environment variable PAGER
or otherwise tries to find the 1ess program.

Callable
A Callable term is interpreted as program_name (Arg, ...). For example,
less (' —r’) would be the default. Note that the program name can be an absolute path
if single quotes are used.

help [det]
help(+What) [det]
Show help for What. What is a term that describes the topics (s) to give help for. Notations
for What are:
Atom
This ambiguous form is most commonly used and shows all matching documents. For
example:

?— help (append) .

Name [/ Arity
Give help on predicates with matching Name/Arity. Arity may be unbound.

Name [/ Arity
Give help on the matching DCG rule (non-terminal)

SWI-Prolog 8.0 Reference Manual

https://www.metalevel.at/pceprolog/
https://www.metalevel.at/ediprolog/
https://www.metalevel.at/etrace/

2.6. ONLINE HELP 27

f(Name/Arity)
Give help on the matching Prolog arithmetic functions.

c(Name)
Give help on the matching C interface function

section(Label)
Show the section from the manual with matching Label.

If an exact match fails this predicates attempts fuzzy matching and, when successful, display
the results headed by a warning that the matches are based on fuzzy matching.

If possible, the results are sent through a pager such as the 1ess program. This behaviour is
controlled by the Prolog flag help_pager. See section level documentation.

See also apropos/1 for searching the manual names and summaries.

ShOW,htmlJIOOk(+HTML.‘String) [semidet,multifile]
Hook called to display the extracted HTML document. If this hook fails the HTML is rendered
to the console as plain text using html_text /2.

apropos(+Query) [det]
Print objects from the manual whose name or summary match with Query. Query takes one of
the following forms:

Type : Text
Find objects matching Text and filter the results by Type. Type matching is a case in-
tensitive prefix match. Defined types are section, cfunction, function,
iso_predicate, swi_builtin_predicate, library_predicate, dcg and
aliases chapter, arithmetic, c_function, predicate, nonterminal and
non_terminal. For example:

?— apropos (c:close).
?— apropos (f:min) .

Text
Text is broken into tokens. A topic matches if all tokens appear in the name or summary
of the topic. Matching is case insensitive. Results are ordered depending on the quality of
the match.

2.6.2 library(explain): Describe Prolog Terms

The library (explain) describes prolog-terms. The most useful functionality is its cross-
referencing function.

?— explain(subset(_,_)) .

"subset (_, _)" is a compound term
Referenced from 2-th clause of lists:subset/2
Referenced from 46-th clause of prolog_xref:imported/3
Referenced from 68-th clause of prolog_xref:imported/3

lists:subset/2 is a predicate defined in

SWI-Prolog 8.0 Reference Manual

28 CHAPTER 2. OVERVIEW

(I Repeat last query

'nr. Repeat query numbered (nr)
!'str. | Repeat last query starting with (str)
h. Show history of commands

'h. Show this list

Table 2.1: History commands

/staff/jan/lib/pl-5.6.17/1library/lists.pl:307
Referenced from 2-th clause of lists:subset/2
Possibly referenced from 2-th clause of lists:subset/2

Note that the help-tool for XPCE provides a nice graphical cross-referencer.

explain(@ Term) [det]
Give an explanation on 7erm. The argument may be any Prolog data object. If the argument
is an atom, a term of the form Name /Arity or a term of the form Module:Name/Arity,
explain/1 describes the predicate as well as possible references to it. See also gxref /0.

explain(@ Term, -Explanation) [nondet]
True when Explanation is an explanation of Term.

2.7 Command line history

SWI-Prolog offers a query substitution mechanism similar to what is seen in Unix shells. The avail-
ability of this feature is controlled by set_prolog_flag/2, using the history Prolog flag. By
default, history is available if no interactive command line editor is available. To enable history,
remembering the last 50 commands, put the following into your startup file (see section 2.2):

:— set_prolog_flag(history, 50).

The history system allows the user to compose new queries from those typed before and remembered
by the system. The available history commands are shown in table 2.1. History expansion is not done
if these sequences appear in quoted atoms or strings.

2.8 Reuse of top-level bindings

Bindings resulting from the successful execution of a top-level goal are asserted in a database if they
are not too large. These values may be reused in further top-level queries as $Var. If the same
variable name is used in a subsequent query the system associates the variable with the latest binding.
Example:

Note that variables may be set by executing =/2:

SWI-Prolog 8.0 Reference Manual

2.9. OVERVIEW OF THE DEBUGGER 29

1 ?- maplist(plus(l), ‘hello', X).
X = [105,102,109,109,112].

2 ?- format (' "s™n’, [S$X]).
ifmmp
true.

Figure 2.1: Reusing top-level bindings

?—- X = statistics.
X = statistics.

~J

?- S$X.

Started at Fri Aug 24 16:42:53 2018

0.118 seconds cpu time for 456,902 inferences
7,574 atoms, 4,058 functors, 2,912 predicates, 56 modules, 109,79

Limit Allocated In use

Local stack: - 20 Kb 1,888 Db
Global stack: - 60 Kb 36 Kb
Trail stack: - 30 Kb 4,112 Db
Total: 1,024 Mb 110 Kb 42 Kb

3 garbage collections gained 178,400 bytes in 0.000 seconds.

2 clause garbage collections gained 134 clauses in 0.000 seconds.
Stack shifts: 2 local, 2 global, 2 trail in 0.000 seconds

2 threads, 0 finished threads used 0.000 seconds

true.

o0 A o o o0 o A A O O o o o o°

2.9 Overview of the Debugger

SWI-Prolog has a traditional commandline debugger. It also provides programmatic access to the
debugger. This facility is used to provide a graphical debugger as well as remote debugging in the
web interface provided by SWISH.
SWI-Prolog has a 6-port tracer, extending the standard 4-port tracer [,
] with two additional ports. The standard ports are called call, exit,
redo, and fail. The additional unify port allows the user to inspect the result after unification of
the head. The additional exception port shows exceptions raised by throw/1 or one of the built-in
predicates. See section 4.11.
The tracer is started by the trace/0 command. If the system is in debug mode (see

SWI-Prolog 8.0 Reference Manual

1 VM-codes

https://swish.swi-prolog.org

30 CHAPTER 2. OVERVIEW

min_numlist ([H|T], Min) :-
min_numlist (T, H, Min).

min_numlist ([], Min, Min).

min_numlist ([H|T], MinO, Min) :-
Minl is min (H, MinO0),
min_numlist (T, Minl, Min).

1 ?- visible(+all), leash(—exit).
true.

2 ?— trace, min_numlist ([3, 2], X).
Call: (7) min_numlist([3, 2], _GO) ? creep
Unify: (7) min_numlist ([3, 2], _GO0)
Call: (8) min_numlist([2], 3, _GO) ? creep
Unify: (8) min_numlist([2], 3, _GO0)

© Call: (9) _G54 is min(2, 3) ? creep

© Exit: (9) 2 is min (2, 3)
Call: (9) min_numlist([], 2, _GO0) ? creep
Unify: (9) min_numlist([], 2, 2)
Exit: (9) min_numlist([], 2, 2)
Exit: (8) min_numlist([2], 3, 2)
Exit: (7) min_numlist([3, 2], 2)

X = 2.

Figure 2.2: Example trace of the program above showing all ports. The lines marked ~ indicate calls
to transparent predicates. See section 6.

debug/0) the trace is started, after reaching a spy point set using spy/1 or break point set us-
ing set breakpoint/4. The debugger is also started if an error(Formal, Extended) exception
is raised that is not caught.

If the native graphics plugin (XPCE) is available, the commands gt race/0 and gspy/1 acti-
vate the graphical debugger while tdebug/0 and tspy/1 allow debugging of arbitrary threads.

The interactive top-level goal trace/0 means “trace the next query”. The tracer shows
the port, displaying the port name, the current depth of the recursion and the goal. The goal
is printed using the Prolog predicate write_term/2. The style is defined by the Prolog flag
debugger_ write_options and can be modified using this flag or using the w, p and d com-
mands of the tracer.

On leashed ports (set with the predicate leash/1, default are call, exit, redo and fail)
the user is prompted for an action. All actions are single-character commands which are executed
without waiting for a return, unless the command line option ——no-tty is active. Tracer options:

+ (Spy)
Set a spy point (see spy/ 1) on the current predicate.

SWI-Prolog 8.0 Reference Manual

2.9. OVERVIEW OF THE DEBUGGER 31

~ (No spy)
Remove the spy point (see nospy /1) from the current predicate.

/ (Find)
Search for a port. After the °/’, the user can enter a line to specify the port to search for. This
line consists of a set of letters indicating the port type, followed by an optional term, that should
unify with the goal run by the port. If no term is specified it is taken as a variable, searching for
any port of the specified type. If an atom is given, any goal whose functor has a name equal to
that atom matches. Examples:

/£ Search for any fail port

/fe solve Search for a fail or exit port of any goal with name
solve

/c solve(a, _) Search for a call to solve/2 whose first argument

is a variable or the atom a
/a member (_, _) Search for any port on member /2. This is equiv-
alent to setting a spy point on member /2.

. (Repeat find)
Repeat the last find command (see /).

A (Alternatives)
Show all goals that have alternatives.

C (Context)
Toggle ‘Show Context’. If on, the context module of the goal is displayed between square
brackets (see section 6). Default is of £.

L (Listing)
List the current predicate with 1isting/1.

a (Abort)
Abort Prolog execution (see abort /0).

b (Break)
Enter a Prolog break environment (see break/0).

c (Creep)
Continue execution, stop at next port. (Also RETURN, SPACE).

d (Display)
Set the max_depth(Depth) option of debugger_write_options, limiting the depth to
which terms are printed. See also the w and p options.

e (Exit)
Terminate Prolog (see halt/0).

£ (Fail)
Force failure of the current goal.

SWI-Prolog 8.0 Reference Manual

32 CHAPTER 2. OVERVIEW

g (Goals)
Show the list of parent goals (the execution stack). Note that due to tail recursion optimization
a number of parent goals might not exist any more.

h (Help)
Show available options (also ‘7).

i (Ignore)
Ignore the current goal, pretending it succeeded.

1 (Leap)
Continue execution, stop at next spy point.

n (No debug)
Continue execution in ‘no debug’ mode.

p (Print)
Set the Prolog flag debugger write options to [quoted (true),
portray (true), max_depth(10), priority(699)]. This is the default.

r (Retry)
Undo all actions (except for database and I/O actions) back to the call port of the current goal
and resume execution at the call port.

s (Skip)
Continue execution, stop at the next port of this goal (thus skipping all calls to children of this
goal).

u (Up)
Continue execution, stop at the next port of the parent goal (thus skipping this goal and all
calls to children of this goal). This option is useful to stop tracing a failure driven loop.

w (Write)
Set the Prolog flag debuggerwrite options to [quoted(true),
attributes (write), priority(699)], bypassing portray/1, etc.

The ideal 4-port model [] as described in many Prolog books
[] is not visible in many Prolog implementations because code opti-
misation removes part of the choice and exit points. Backtrack points are not shown if either the goal
succeeded deterministically or its alternatives were removed using the cut. When running in debug
mode (debug/0) choice points are only destroyed when removed by the cut. In debug mode, last
call optimisation is switched off.”

Reference information to all predicates available for manipulating the debugger is in section 4.39.

2.10 Compilation

2.10.1 During program development

During program development, programs are normally loaded using the list abbreviation (?-
[load].). It is common practice to organise a project as a collection of source files and a load

"This implies the system can run out of stack in debug mode, while no problems arise when running in non-debug mode.

SWI-Prolog 8.0 Reference Manual

2.10. COMPILATION 33

file, a Prolog file containing only use_module/[1, 2] or ensure_loaded/1 directives, possi-
bly with a definition of the entry point of the program, the predicate that is normally used to start the
program. This file is often called 1oad.pl. If the entry point is called go, a typical session starts as:

% swipl
<banner>

1 ?- [load].
<compilation messages>
true.

2 ?- go.
<program interaction>

When using Windows, the user may open load.pl from the Windows explorer, which will cause
swipl-win.exe to be started in the directory holding 1oad.pl. Prolog loads 1oad.pl before
entering the top level. If Prolog is started from an interactive shell, one may choose the type swipl
-s load.pl.

2.10.2 For running the result

There are various options if you want to make your program ready for real usage. The best choice
depends on whether the program is to be used only on machines holding the SWI-Prolog development
system, the size of the program, and the operating system (Unix vs. Windows).

Using PrologScript

A Prolog source file can be used directly as a Unix program using the Unix #! magic start. The
Unix #! magic is allowed because if the first letter of a Prolog file is #, the first line is treated as
a comment.® To create a Prolog script, use one of the two alternatives below as first line. The first
can be used to bind a script to a specific Prolog installation, while the latter uses the default prolog
installed in $PATH.

#!/path/to/swipl
#!/usr/bin/env swipl

The interpretation of arguments to the executable in the HashBang line differs between Unix-derived
systems. For portability, the # ! must be followed immediately with an absolute path to the executable
and should have none or one argument. Neither the executable path, nor the argument shall use quotes
or spaces. When started this way, the Prolog flag argv contains the command line arguments that
follow the script invocation.

Starting with version 7.5.8, initialization/2 support the When options program and
main, allowing for the following definition of a Prolog script that evaluates an arithmetic expres-
sion on the command line. Note that main/0 is defined lib the library main. It calls main/1 with
the command line arguments after disabling signal handling.

8The #-sign can be the legal start of a normal Prolog clause. In the unlikely case this is required, leave the first line blank
or add a header comment.

SWI-Prolog 8.0 Reference Manual

34 CHAPTER 2. OVERVIEW

#!/usr/bin/env swipl
:— initialization(main, main).

main (Argv) :-—
concat_atom(Argv, ’ ', SingleArq),
term_to_atom(Term, SingleArqg),
Val is Term,
format (" "w™'n’, [Val]).

And here are two example runs:

% ./eval 1+2

w

% ./eval foo
ERROR: 1is/2: Arithmetic: ‘foo/0’ 1is not a function

Prolog script may be lauched for debugging or inspection purposes using the —1 or —t. For example,
-1 merely loads the script, ignoring main and program initialization.

swipl -1 eval 1+1
<banner>

?— main.
2
true.

We can also force the program to enter the interactive toplevel after the application is completed using
-t prolog:

swipl -t prolog eval 1+1
2

?_

The Windows version simply ignores the # ! line.’

Creating a shell script

With the introduction of PrologScript (see section 2.10.2), using shell scripts as explained in this
section has become redundant for most applications.

°0Older versions extracted command line arguments from the HashBang line. As of version 5.9 all relevant setup can
be achieved using directives. Due to the compatibility issues around HashBang line processing, we decided to remove it
completely.

SWI-Prolog 8.0 Reference Manual

2.10. COMPILATION 35

Especially on Unix systems and not-too-large applications, writing a shell script that simply loads
your application and calls the entry point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.

#!/bin/sh

base=<absolute-path-to-source>
PL=swipl

exec $PL -g -f "$base/load" --

:— initialization go.

go :-—
current_prolog_flag(argv, Arguments),

go (Arguments) .

go (Args) :-—

On Windows systems, similar behaviour can be achieved by creating a shortcut to Prolog, passing the
proper options or writing a . bat file.

Creating a saved state

For larger programs, as well as for programs that are required to run on systems that do not have
the SWI-Prolog development system installed, creating a saved state is the best solution. A saved
state is created using gsave_program/ [1, 2] or the —c command line option. A saved state is
a file containing machine-independent'” intermediate code in a format dedicated for fast loading.
Optionally, the emulator may be integrated in the saved state, creating a single file, but machine-
dependent, executable. This process is described in chapter 13.

Compilation using the -c command line option

This mechanism loads a series of Prolog source files and then creates a saved state as
gsave_program/2 does. The command syntax is:

% swipl [option ...] [-o output] -c file.pl

The options argument are options to gsave_program/2 written in the format below. The option
names and their values are described with gsave_program/2.

——option-name=option-value

10The saved state does not depend on the CPU instruction set or endianness. Saved states for 32- and 64-bits are not
compatible. Typically, saved states only run on the same version of Prolog on which they have been created.

SWI-Prolog 8.0 Reference Manual

36 CHAPTER 2. OVERVIEW

For example, to create a stand-alone executable that starts by executing main/0 and for which
the source is loaded through 1oad.p1l, use the command

o)

% swipl —--goal=main --stand_alone=true -o myprog -c load.pl

This performs exactly the same as executing

o)

% swipl
<banner>

?— [load].
?— gsave_program(myprog,
[goal (main),
stand_alone (true)
1) -
?— halt.

2.11 Environment Control (Prolog flags)

The predicates current_prolog_-flag/2 and set_prolog_-flag/2 allow the user to examine
and modify the execution environment. It provides access to whether optional features are available
on this version, operating system, foreign code environment, command line arguments, version, as
well as runtime flags to control the runtime behaviour of certain predicates to achieve compatibility
with other Prolog environments.

current_prolog_flag(?Key, -Value) [ISO]
The predicate current _prolog-flag/2 defines an interface to installation features: op-
tions compiled in, version, home, etc. With both arguments unbound, it will generate all
defined Prolog flags. With Key instantiated, it unifies Value with the value of the Prolog flag or
fails if the Key is not a Prolog flag.

Flags marked rw can be modified by the user using set prolog_flag/2. Flag values
are typed. Flags marked as bool can have the values true or false. The predicate
create_prolog_flag/3 may be used to create flags that describe or control behaviour of li-
braries and applications. The library sett ings provides an alternative interface for managing
notably application parameters.

Some Prolog flags are not defined in all versions, which is normally indicated in the documen-
tation below as “if present and true”. A boolean Prolog flag is true iff the Prolog flag is present
and the Value is the atom t rue. Tests for such flags should be written as below:

(current_prolog_flag(windows, true)
—-> <Do MS-Windows things>
; <Do normal things>

)

SWI-Prolog 8.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 37

Some Prolog flags are scoped to a source file. This implies that if they are set using a direc-
tive inside a file, the flag value encountered when loading of the file started is restored when
loading of the file is completed. Currently, the following flags are scoped to the source file:
generate_debug_info and optimise.

A new thread (see section 10) copies all flags from the thread that created the new thread (its
parent).'! As a consequence, modifying a flag inside a thread does not affect other threads.

access_level (atom, changeable)
This flag defines a normal ‘user’ view (user, default) or a ‘system’ view. In system view
all system code is fully accessible as if it was normal user code. In user view, certain
operations are not permitted and some details are kept invisible. We leave the exact
consequences undefined, but, for example, system code can be traced using system access
and system predicates can be redefined.

address_bits (integer)
Address size of the hosting machine. Typically 32 or 64. Except for the maximum stack
limit, this has few implications to the user. See also the Prolog flag arch.

agc_margin (integer, changeable)
If this amount of atoms possible garbage atoms exist perform atom garbage collection at
the first opportunity. Initial value is 10,000. May be changed. A value of O (zero) disables
atom garbage collection. See also PL_register_atom () 12

apple (bool)
If present and t rue, the operating system is MacOSX. Defined if the C compiler used
to compile this version of SWI-Prolog defines __APPLE___. Note that the unix is also
defined for MacOSX.

allow_dot_in_atom (bool, changeable)
If true (default false), dots may be embedded into atoms that are not quoted and
start with a letter. The embedded dot must be followed by an identifier continuation
character (i.e., letter, digit or underscore). The dot is allowed in identifiers in many
languages, which can make this a useful flag for defining DSLs. Note that this conflicts
with cascading functional notation. For example, Post .meta.author is read as
. (Post, ’meta.author’ if this flag is set to t rue.

allow_variable name_as_functor (bool, changeable)

If true (default is false), Functor (arg) 1is read as if it were written
"Functor’ (arg). Some applications use the Prolog read/1 predicate for
reading an application-defined script language. In these cases, it is often difficult to
explain to non-Prolog users of the application that constants and functions can only start
with a lowercase letter. Variables can be turned into atoms starting with an uppercase
atom by calling read_term/2 using the option variable_names and binding the
variables to their name. Using this feature, F(x) can be turned into valid syntax for such
script languages. Suggested by Robert van Engelen. SWI-Prolog specific.

argv (list, changeable)
List is a list of atoms representing the application command line arguments. Application

""This is implemented using the copy-on-write tecnhnique.
2Given that SWI-Prolog has no limit on the length of atoms, 10,000 atoms may still occupy a lot of memory. Applications
using extremely large atoms may wish to call garbage_collect_atoms/0 explicitly or lower the margin.

SWI-Prolog 8.0 Reference Manual

38

CHAPTER 2. OVERVIEW

command line arguments are those that have not been processed by Prolog during its
initialization. Note that Prolog’s argument processing stops at —— or the first non-option
argument. See also os_argv.'?

arch (atom)
Identifier for the hardware and operating system SWI-Prolog is running on. Used
to select foreign files for the right architecture. See also section 12.2.3 and
file_search_path/2.

associated_file (atom)
Set if Prolog was started with a prolog file as argument. Used by e.g., edit /0 to edit the
initial file.

autoload (bool, changeable)
If t rue (default) autoloading of library functions is enabled.

back_quotes (codes,chars,string,symbol_char, changeable)
Defines the term-representation for back-quoted material. The default is codes. If
—-—traditional is given, the default is symbol_char, which allows using ‘ in
operators composed of symbols.'*. See also section 5.2.

backtrace (bool, changeable)
If t rue (default), print a backtrace on an uncaught exception.

backtrace_depth (integer, changeable)
If backtraces on errors are enabled, this flag defines the maximum number of frames that
is printed (default 20).

backtrace_goal_depth (integer, changeable)
The frame of a backtrace is printed after making a shallow copy of the goal. This flag
determines the depth to which the goal term is copied. Default is ‘3’.

backtrace_show_lines (bool, changeable)
If t rue (default), try to reconstruct the line number at which the exception happened.

bounded (bool)
ISO Prolog flag. If true, integer representation is bound by min_integer and
max_integer. If false integers can be arbitrarily large and the min_integer and
max_integer are not present. See section 4.27.2.

break _level (integer)
Current break-level. The initial top level (started with —t) has value 0. See break/0.
This flag is absent from threads that are not running a top-level loop.

c_cc (atom, changeable)
Name of the C compiler used to compile SWI-Prolog. Normally either gcc or cc. See
section 12.5.

c_cflags (atom, changeable)
CFLAGS used to compile SWI-Prolog. See section 12.5.

c_ldflags (atom, changeable)
LDFLAGS used to link SWI-Prolog. See section 12.5.

BPrior to version 6.5.2, argv was defined as os_argv is now. The change was made for compatibility reasons and
because the current definition is more practical.
0lder versions had a boolean flag backquoted_strings, which toggled between st ring and symbol_char

SWI-Prolog 8.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 39

c_libs (atom, changeable)
Libraries needed to link executables that embed SWI-Prolog. Typically —~1swipl if the
SWI-Prolog kernel is a shared (DLL). If the SWI-Prolog kernel is in a static library, this
flag also contains the dependencies.

c libplso (atom, changeable)
Libraries needed to link extensions (shared object, DLL) to SWI-Prolog. Typically empty
on ELF systems and -1swipl on COFF-based systems. See section 12.5.

char_conversion (bool, changeable)
Determines whether character conversion takes place while reading terms. See also
char_conversion/2.

character_escapes (bool, changeable)
If true (default), read/1 interprets \ escape sequences in quoted atoms and strings.
May be changed. This flag is local to the module in which it is changed. See
section 2.16.1.

colon_sets_calling_context (bool)
Using the construct (module):(goal) sets the calling context for executing (goal). This
flag is defined by ISO/IEC 13211-2 (Prolog modules standard). See section 6.

color_term (bool, changeable)
This flag is managed by library ansi_term, which is loaded at startup if the two con-
ditions below are both true. Note that this implies that setting this flag to false from
the system or personal initialization file (see section 2.2 disables colored output. The
predicate message_property/2 can be used to control the actual color scheme
depending in the message type passed to print _message/2.

e stream property (current_output, tty(true))

e \+ current_prolog_flag(color_term, false)

compile_meta_arguments (atom, changeable)
Experimental flag that controls compilation of arguments passed to meta-calls marked ‘0’

Cn~

or (see meta_predicate/1). Supported values are:

false
(default). Meta-arguments are passed verbatim.

control
Compile meta-arguments that contain control structures ((A,B), (A;B), (A-;B;C),
etc.). If not compiled at compile time, such arguments are compiled to a temporary
clause before execution. Using this option enhances performance of processing
complex meta-goals that are known at compile time.

true
Also compile references to normal user predicates. This harms performance (a little),
but enhances the power of poor-mens consistency check used by make/0 and
implemented by 1ist_undefined/0.

always
Always create an intermediate clause, even for system predicates. This prepares for
replacing the normal head of the generated predicate with a special reference (similar
to database references as used by, e.g., assert /2) that provides direct access to the
executable code, thus avoiding runtime lookup of predicates for meta-calling.

SWI-Prolog 8.0 Reference Manual

40

CHAPTER 2. OVERVIEW

compiled_at (arom)
Describes when the system has been compiled. Only available if the C compiler used to
compile SWI-Prolog provides the - DATE__ and __TIME__ macros.

console_menu (bool)
Setto true in swipl-win.exe to indicate that the console supports menus. See also
section 4.35.3.

cpu_count (integer, changeable)
Number of physical CPUs or cores in the system. The flag is marked read-
write both to allow pretending the system has more or less processors. See also
thread_setconcurrency/2 and the library thread. This flag is not available on
systems where we do not know how to get the number of CPUs. This flag is not included
in a saved state (see gsave_program/1).

dde (bool)
Set to t rue if this instance of Prolog supports DDE as described in section 4.43.

debug (bool, changeable)
Switch debugging mode on/off. If debug mode is activated the system traps encountered
spy points (see spy/1) and trace points (see trace/1). In addition, last-call optimi-
sation is disabled and the system is more conservative in destroying choice points to
simplify debugging.
Disabling these optimisations can cause the system to run out of memory on programs
that behave correctly if debug mode is off.

debug_on_error (bool, changeable)
If t rue, start the tracer after an error is detected. Otherwise just continue execution. The
goal that raised the error will normally fail. See also the Prolog flag report_error.
Default is t rue.

debugger_write_options (term, changeable)
This argument is given as option-list to write_term/2 for printing goals by
the debugger. Modified by the ‘w’, ‘p’ and ‘(N) d° commands of the debug-
ger. Default is [quoted(true), portray(true), max_depth(10),
attributes (portray)].

debugger_show_context (bool, changeable)
If true, show the context module while printing a stack-frame in the tracer. Normally
controlled using the ‘C’ option of the tracer.

dialect (atom)
Fixed to swi. The code below is a reliable and portable way to detect SWI-Prolog.

is _dialect (swi) :-—
catch (current_prolog_flag(dialect, swi), _, fail).

double_quotes (codes,chars,atom,string, changeable)
This flag determines how double quoted strings are read by Prolog and is —like
character_escapes and back_quotes— maintained for each module. The default
is string, which produces a string as described in section 5.2. If ——traditional
is given, the default is codes, which produces a list of character codes, integers that
represent a Unicode code-point. The value chars produces a list of one-character atoms

SWI-Prolog 8.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 41

and the value at om makes double quotes the same as single quotes, creating a atom. See
also section 5.

editor (atom, changeable)
Determines the editor used by edit /1. See section 4.4.1 for details on selecting the
editor used.

emacs_inferior_process (bool)
If true, SWI-Prolog is running as an inferior process of (GNU/X-)Emacs. SWI-Prolog
assumes this is the case if the environment variable EMACS is t and INFERIOR is yes.

encoding (atom, changeable)
Default encoding used for opening files in text mode. The initial value is deduced from
the environment. See section 2.19.1 for details.

executable (atom)
Pathname of the running executable. Used by gsave_program/2 as default emulator.

exit_status (integer)
Set by halt/1 to its argument, making the exit status available to hooks registered with
at_halt/L1.

file_name_case_handling (arom, changeable)
This flag defines how Prolog handles the case of file names. The flag is used for case
normalization and to determine whether two names refer to the same file.!> It has one of
the following values:

case_sensitive
The filesystem is fully case sensitive. Prolog does not perform any case modification
or case insensitive matching. This is the default on Unix systems.

case_preserving
The filesystem is case insensitive, but it preserves the case with which the user has
created a file. This is the default on Windows systems.

case_insensitive
The filesystem doesn’t store or match case. In this scenario Prolog maps all file
names to lower case.

file_name_variables (bool, changeable)
If true (default false), expand \$\arg{varname} and ~ in arguments of built-in
predicates that accept a file name (open/3,exists_file/1,access_file/2,etc.).
The predicate expand_file name/2 can be used to expand environment variables
and wildcard patterns. This Prolog flag is intended for backward compatibility with older
versions of SWI-Prolog.

file_search_cache_time (number, changeable)
Time in seconds for which search results from absolute_file_name/3 are cached.
Within this time limit, the system will first check that the old search result satisfies the
conditions. Default is 10 seconds, which typically avoids most repetitive searches for
(library) files during compilation. Setting this value to O (zero) disables the cache.

SBUG: Note that file name case handling is typically a properly of the filesystem, while Prolog only has a global flag to
determine its file handling.

SWI-Prolog 8.0 Reference Manual

42

CHAPTER 2. OVERVIEW

gc (bool, changeable)
If true (default), the garbage collector is active. If false, neither garbage collection, nor
stack shifts will take place, even not on explicit request. May be changed.

gc_thread (bool)
If t rue (default if threading is enabled), atom and clause garbage collection are executed
in a seperate thread with the alias gc. Otherwise the thread that detected sufficient
garbage executes the garbage collector. As running these global collectors may take
relatively long, using a seperate thread improves real time behaviour. The gc thread can
be controlled using set _prolog.gc_thread/1.

generate_debug_info (bool, changeable)
If t rue (default) generate code that can be debugged using t race/0, spy/1, etc. Can
be set to false using the —-nodebug. This flag is scoped within a source file. Many of
the libraries have : - set_prolog_flag(generate_debug_info, false) to
hide their details from a normal trace.'¢

gmp_version (integer)
If Prolog is linked with GMP, this flag gives the major version of the GMP library used.
See also section 12.4.9.

gui (bool)
Set to t rue if XPCE is around and can be used for graphics.

history (integer, changeable)
If integer > 0, support Unix csh (1) -like history as described in section 2.7. Otherwise,
only support reusing commands through the command line editor. The default is to set
this Prolog flag to 0 if a command line editor is provided (see Prolog flag readline)
and 15 otherwise.

home (atom)
SWI-Prolog’s notion of the home directory. SWI-Prolog uses its home directory to find
its startup file as (home)/boot32.prc (32-bit machines) or (home)/boot 64 .prc
(64-bit machines) and to find its library as (home)/library.

hwnd (integer)
In swipl-win.exe, this refers to the MS-Windows window handle of the console
window.

integer_rounding_function (down,toward_zero)
ISO Prolog flag describing rounding by // and rem arithmetic functions. Value depends
on the C compiler used.

iso (bool, changeable)
Include some weird ISO compatibility that is incompatible with normal SWI-Prolog
behaviour. Currently it has the following effect:

e The //2 (float division) always returns a float, even if applied to integers that can be
divided.

o In the standard order of terms (see section 4.7.1), all floats are before all integers.

e atom_length/2 yields a type error if the first argument is a number.

15In the current implementation this only causes a flag to be set on the predicate that causes children to be hidden from
the debugger. The name anticipates further changes to the compiler.

SWI-Prolog 8.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 43

e clause/ [2, 3] raises a permission error when accessing static predicates.
e abolish/[1, 2] raises a permission error when accessing static predicates.
e Syntax is closer to the ISO standard:

— Unquoted commas and bars appearing as atoms are not allowed. Instead of
f(,,a) now write £ (' ,’,a). Unquoted commas can only be used to sep-
arate arguments in functional notation and list notation, and as a conjunction
operator. Unquoted bars can only appear within lists to separate head and tail,
like [Head|Taill], and as infix operator for alternation in grammar rules, like
a—> Db | c.

— Within functional notation and list notation terms must have priority below
1000. That means that rules and control constructs appearing as arguments need

bracketing. A term like [a :— b, c]. must now be disambiguated to mean
[(a :=— b), cl.or[(a :— b, ¢)].

— Operators appearing as operands must be bracketed. Instead of
X == -, true. writt X == (=), true. Currently, this is not en-

tirely enforced.

— Backslash-escaped newlines are interpreted according to the ISO standard. See
section 2.16.1.

large files (bool)
If present and true, SWI-Prolog has been compiled with large file support (LFS) and
is capable of accessing files larger than 2GB on 32-bit hardware. Large file support is
default on installations built using configure that support it and may be switched off
using the configure option ——disable-largefile.

last_call_optimisation (bool, changeable)
Determines whether or not last-call optimisation is enabled. Normally the value of this
flag is the negation of the debug flag. As programs may run out of stack if last-call
optimisation is omitted, it is sometimes necessary to enable it during debugging.

max_arity (unbounded)
ISO Prolog flag describing there is no maximum arity to compound terms.

max_integer (integer)
Maximum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.27.2.

max_tagged _integer (integer)
Maximum integer value represented as a ‘tagged’ value. Tagged integers require one
word storage. Larger integers are represented as ‘indirect data’ and require significantly
more space.

message_context (list(atom), changeable)
Context information to add to messages of the levels error and warning. The list may
contain the elements t hread to add the thread that generates the message to the message,
time or t ime(Format) to add a time stamp. The default time format is $T.%3£f. The
defaultis [thread]. See also format_time/3 and print_message/2.

min_integer (integer)
Minimum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.27.2.

SWI-Prolog 8.0 Reference Manual

44 CHAPTER 2. OVERVIEW

min_tagged_integer (integer)
Start of the tagged-integer value range.

mitigate_spectre (bool, changeable)

When t rue (default false), enforce mitigation against the Spectre timing-based secu-
rity vulnerability. Spectre based attacks can extract information from memory owned by
the process that should remain invisible, such as passwords or the private key of a web
server. The attacks work by causing speculative access to sensitive data, and leaking the
data via side-channels such as differences in the duration of successive instructions. An
example of a potentially vulnerable application is SWISH. SWISH allows users to run
Prolog code while the swish server must protect the privacy of other users as well as its
HTTPS private keys, cookies and passwords.

Currently, enabling this flag reduces the resolution of get_time/1 and
statistics/2 CPU time to 20us.

WARNING: Although a coarser timer makes a successful attack of this type harder, it
does not reliably prevent such attacks in general. Full mitigation may require compiler
support to disable speculative access to sensitive data.

occurs_check (atom, changeable)

This flag controls unification that creates an infinite tree (also called cyclic term) and can
have three values. Using false (default), unification succeeds, creating an infinite tree.
Using t rue, unification behaves as unify with_occurs_check/2, failing silently.
Using error, an attempt to create a cyclic term results in an occurs_check exception.
The latter is intended for debugging unintentional creations of cyclic terms. Note that this
flag is a global flag modifying fundamental behaviour of Prolog. Changing the flag from
its default may cause libraries to stop functioning properly.

open_shared _object (bool)
If true, open_shared_object/2 and friends are implemented, providing access to
shared libraries (. so files) or dynamic link libraries (. DLL files).

optimise (bool, changeable)
If true, compile in optimised mode. The initial value is t rue if Prolog was started with
the —O command line option. The opt imise flag is scoped to a source file.
Currently optimised compilation implies compilation of arithmetic, and deletion of redun-
dant t rue/ 0 that may result from expand_goal/2.

Later versions might imply various other optimisations such as integrating small predi-
cates into their callers, eliminating constant expressions and other predictable constructs.
Source code optimisation is never applied to predicates that are declared dynamic (see
dynamic/1).

os_argy (list, changeable)
List is a list of atoms representing the command line arguments used to invoke SWI-
Prolog. Please note that all arguments are included in the list returned. See argv to get
the application options.

pid (int)
Process identifier of the running Prolog process. Existence of this flag is implementation-
defined.

pipe (bool, changeable)

SWI-Prolog 8.0 Reference Manual

https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
https://swish.swi-prolog.org

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 45

If true, open (pipe (command), mode, Stream), etc. are supported. Can be
changed to disable the use of pipes in applications testing this feature. Not recommended.

posix_shell (atom, changeable)
Path to a POSIX compatible shell. This default is typically /bin/sh. This flag is used
by shell/1 and gsave_program/2.

print_write_options (term, changeable)
Specifies the options for write term/2 used by print/1 and print /2.

tmp_dir (atom, changeable)
Path to the temporary directory. initialised from the environment variable TMP or TEMP
in windows. If this variable is not defined a default is used. This default is typically /tmp
or c:/temp in windows.

prompt_alternatives_on (atom, changeable)
Determines prompting for alternatives in the Prolog top level. Default is determinism,
which implies the system prompts for alternatives if the goal succeeded while leaving
choice points. Many classical Prolog systems behave as groundness: they prompt for
alternatives if and only if the query contains variables.

protect_static_code (bool, changeable)
If true (default false), clause/2 does not operate on static code, providing some
basic protection from hackers that wish to list the static code of your Prolog program.
Once the flag is true, it cannot be changed back to false. Protection is default in
ISO mode (see Prolog flag i so). Note that many parts of the development environment
require clause/2 to work on static code, and enabling this flag should thus only be
used for production code.

gcompile (atom, changeable)
This option provides the default for the gcompile(+Atom) option of load_files/2.

readline (atom, changeable)
Specifies which form of command line editing is provided. Possible values are below. The
flag may be set from the user’s init file (see section 2.3) to one of false, readline or
editline. This causes the toplevel not to load a command line editor (false) or load
the specified one. If loading fails the flag is set to false.

false
No command line editing is available.

readline
The library readline is loaded, providing line editing based on the GNU readline
library.

editline
The library editline is loaded, providing line editing based on the BSD libedit.
This is the default if editline is available and can be loaded.

swipl_win
SWI-Prolog uses its own console (swipl-win.exe on Windows, the Qt based
swipl-win on MacOS) which provides line editing.

resource_database (arom)
Set to the absolute filename of the attached state. Typically this is the file boot 32 .prc,
the file specified with —x or the running executable. See also resource/3.

SWI-Prolog 8.0 Reference Manual

46

CHAPTER 2. OVERVIEW

report_error (bool, changeable)
If true, print error messages; otherwise suppress them. May be changed. See also the
debug_on_error Prolog flag. Default is t rue, except for the runtime version.

runtime (bool)
If present and t rue, SWI-Prolog is compiled with -DO_RUNTIME, disabling various
useful development features (currently the tracer and profiler).

sandboxed _load (bool, changeable)
If true (default false), load_files/2 calls hooks to allow library(sandbox) to
verify the safety of directives.

saved_program (bool)
If present and true, Prolog has been started from a state saved with
gsave_program/[1,2].

shared_object_extension (atom)
Extension used by the operating system for shared objects. .so for most Unix systems
and .d11 for Windows. Used for locating files using the file_type executable.
See also absolute_file_name/3.

shared_object_search_path (arom)
Name of the environment variable used by the system to search for shared objects.

signals (bool)
Determine whether Prolog is handling signals (software interrupts). This flag is false
if the hosting OS does not support signal handling or the command line option
-nosignals is active. See section 12.4.22 for details.

stack_limit (int, changeable)
Limits the combined sizes of the Prolog stacks for the current thread. See alse ——stack
and section 2.20.1.

stream_type_check (atom, changeable)
Defines whether and how strictly the system validates that byte I/O should not be applied
to text streams and text I/O should not be applied to binary streams. Values are false
(no checking), t rue (full checking) and 1oose. Using checking mode 1oose (default),
the system accepts byte I/O from text stream that use ISO Latin-1 encoding and accepts
writing text to binary streams.

system_thread_id (int)
Available in multithreaded version (see section 10) where the operating system provides
system-wide integer thread identifiers. The integer is the thread identifier used by the
operating system for the calling thread. See also thread_self/1.

table_space (integer, changeable)
Space reserved for storing answer tables for tabled predicates (see table/1).!” When
exceeded a resource_error(table_space) exception is raised.

threads (bool, changeable)
True when threads are supported. If the system is compiled without thread support the
value is false and read-only. Otherwise the value is t rue unless the system was started
with the ——nothreads. Threading may be disabled only if no threads are running. See
also the gc_thread flag.

"BUG: Currently only counts the space occupied by the nodes in the answer tries.

SWI-Prolog 8.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 47

timezone (integer)
Offset in seconds west of GMT of the current time zone. Set at initialization time
from the timezone variable associated with the POSIX tzset() function. See also
format_time/3.

toplevel _goal (term, changeable)
Defines the goal that is executed after running the initialization goals and entry point
(see —g, initialization/2 and section 2.10.2. The initial value is default,
starting a normal interactive session. This value may be changed using the com-
mand line option —t. The explicit value prolog is equavalent to default. If
initialization(Goal,main) is used and the toplevel is default, the toplevel is set
tohalt (see halt/0).

toplevel_mode (atom, changeable)

If backtracking (default), the toplevel backtracks after completing a query. If
recursive, the toplevel is implemented as a recursive loop. This implies that global
variables set using b_setval/2 are maintained between queries. In recursive mode,
answers to toplevel variables (see section 2.8) are kept in backtrackable global variables
and thus not copied. In backtracking mode answers to toplevel variables are kept in the
recorded database (see section 4.14.2).

The recursive mode has been added for interactive usage of CHR (see section 9),'® which
maintains the global constraint store in backtrackable global variables.

toplevel_print_anon (bool, changeable)
If t rue, top-level variables starting with an underscore (_) are printed normally. If false
they are hidden. This may be used to hide bindings in complex queries from the top level.

toplevel_print_factorized (bool, changeable)
If true (default false) show the internal sharing of subterms in the answer substi-
tution. The example below reveals internal sharing of leaf nodes in red-black trees as
implemented by the rbt rees predicate rb_new/1:

?—- set_prolog_flag(toplevel_print_factorized, true).
?— rb_new (X) .
X = t(_S1l, _S1), % where

S1 = black (", _G387, _G388, "’').

If this flag is false, the $ where notation is still used to indicate cycles as illustrated
below. This example also shows that the implementation reveals the internal cycle length,
and not the minimal cycle length. Cycles of different length are indistinguishable in Prolog

(as illustrated by S == R).

?- S =s(S), R=1s(s(R)), S == R.
S = s(8),

R = s(s(R)).

answer_write_options (term, changeable)
This argument is given as option-list to write_term/2 for printing results of
queries. Default is [quoted (true), portray(true), max-depth(10),
attributes (portray)].

18Suggested by Falco Nogatz

SWI-Prolog 8.0 Reference Manual

48 CHAPTER 2. OVERVIEW

toplevel_prompt (atom, changeable)
Define the prompt that is used by the interactive top level. The following ~ (tilde) se-
quences are replaced:

~m Type in module if not user (see module/1)

~1 Break level if not O (see break/0)

~d Debugging state if not normal execution (see debug/0, trace/0)
~1 History event if history is enabled (see flag history)

toplevel_var size (int, changeable)
Maximum size counted in literals of a term returned as a binding for a variable in a
top-level query that is saved for re-use using the $ variable reference. See section 2.8.

trace_gc (bool, changeable)
If true (default false), garbage collections and stack-shifts will be reported on the
terminal. May be changed. Values are reported in bytes as G+1', where G is the global
stack value and 7T’ the trail stack value. ‘Gained’ describes the number of bytes reclaimed.
‘used’ the number of bytes on the stack after GC and ‘free’ the number of bytes allocated,
but not in use. Below is an example output.

% GC: gained 236,416+163,424 in 0.00 sec; ‘
| used 13,448+5,808; free 72,568+47,440 |

traditional (bool)
Available in SWI-Prolog version 7. If t rue, ‘traditional’ mode has been selected using
——traditional. Notice that some SWI7 features, like the functional notation on
dicts, do not work in this mode. See also section 5.

tty_control (bool, changeable)
Determines whether the terminal is switched to raw mode for get _single_char/1,
which also reads the user actions for the trace. May be set. If this flag is false at
startup, command line editing is disabled. See also the ——no-tty command line option.

unix (bool)
If present and true, the operating system is some version of Unix. Defined if the C
compiler used to compile this version of SWI-Prolog either defines ___unix___ or unix.
On other systems this flag is not available. See also apple and windows.

unknown (fail,warning,error, changeable)

Determines the behaviour if an undefined procedure is encountered. If fail, the pred-
icate fails silently. If warn, a warning is printed, and execution continues as if the
predicate was not defined, and if error (default), an existence_error exception is
raised. This flag is local to each module and inherited from the module’s import-module.
Using default setup, this implies that normal modules inherit the flag from user, which
in turn inherit the value error from system. The user may change the flag for module
user to change the default for all application modules or for a specific module. It is
strongly advised to keep the error default and use dynamic/1 and/ormultifile/1
to specify possible non-existence of a predicate.

unload foreign libraries (bool, changeable)
If t rue (default false), unload all loaded foreign libraries. Default is false because
modern OSes reclaim the resources anyway and unloading the foreign code may cause
registered hooks to point to no longer existing data or code.

SWI-Prolog 8.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 49

user_flags (Atom, changeable)

Define the behaviour of set _prolog_flag/2 if the flag is not known. Values are
silent, warning and error. The first two create the flag on-the-fly, where
warning prints a message. The value error is consistent with ISO: it raises an
existence error and does not create the flag. See also create_prolog_flag/3. The
default is silent, but future versions may change that. Developers are encouraged to
use another value and ensure proper use of create prolog_flag/3 to create flags
for their library.

var_prefix (bool, changeable)
If true (default false), variables must start with an underscore (_). May be changed.
This flag is local to the module in which it is changed. See section 2.16.1.

verbose (atom, changeable)
This flag is used by print message/2. If its value is silent, messages of type
informational and banner are suppressed. The —g switches the value from the
initial normal to silent.

verbose_autoload (bool, changeable)
If t rue the normal consult message will be printed if a library is autoloaded. By default
this message is suppressed. Intended to be used for debugging purposes.

verbose_load (atom, changeable)
Determines messages printed for loading (compiling) Prolog files. Current values are
full (print a message at the start and end of each file loaded), normal (print a message
at the end of each file loaded), brief (print a message at end of loading the toplevel
file), and silent (no messages are printed, default). The value of this flag is normally
controlled by the option silent(Bool) provided by load_files/2.

verbose_file_search (bool, changeable)
If true (default false), print messages indicating the progress of
absolute_file name/[2, 3] in locating files. Intended for debugging com-
plicated file-search paths. See also file_search_path/2.

version (integer)
The version identifier is an integer with value:

10000 x Major + 100 x Minor + Patch

version_data (swi(Major, Minor, Patch, Extra))
Part of the dialect compatibility layer; see also the Prolog flag dialect and section C.
Extra provides platform-specific version information as a list. Extra is used for tagged
versions such as “7.4.0-rc1”, in which case Extra contains a term tag(rcl).

version_git (atom)
Available if created from a git repository. See git—-describe for details.

windows (bool)
If present and t rue, the operating system is MS-Windows.

wine_version (atom)
If present, SWI-Prolog is the MS-Windows version running under the Wine emulator.
warn_override_implicit_import (bool, changeable)
If t rue (default), a warning is printed if an implicitly imported predicate is clobbered by
a local definition. See use_module/1 for details.

SWI-Prolog 8.0 Reference Manual

https://www.winehq.org/

50 CHAPTER 2. OVERVIEW

win_file_access_check (atom, changeable)
Controls the behaviour or access_file/2 under Windows. There is no reliable way to
check access to files and directories on Windows. This flag allows for switching between
three alternative approximations.

access
Use Windows _waccess() function. This ignores ACLs (Access Control List) and
thus may indicate that access is allowed while it is not.

getfilesecurity
Use the Windows GetFileSecurity() function. This does not work on all file systems,
but is probably the best choice on file systems that do support it, notably local NTFS
volumes.

openclose
Try to open the file and close it. This works reliable for files, but not for directories.
Currently directories are checked using _-waccess(). This is the default.

windows (bool)
If present and t rue, the operating system is an implementation of Microsoft Windows.
This flag is only available on MS-Windows based versions. See also unix.

write_attributes (atom, changeable)
Defines how write/1 and friends write attributed variables. The option values are
described with the attributes option of write_term/3. Defaultis ignore.

write_help_with_overstrike (bool)
Internal flag used by help/1 when writing to a terminal. If present and t rue it prints
bold and underlined text using overstrike.

xpce (bool)
Available and set to t rue if the XPCE graphics system is loaded.

xpce_version (atom)
Available and set to the version of the loaded XPCE system.

xref (bool, changeable)
If t rue, source code is being read for analysis purposes such as cross-referencing. Oth-
erwise (default) it is being read to be compiled. This flag is used at several places by
term expansion/2 and goal_expansion/2 hooks, notably if these hooks use
side effects. See also the libraries prolog_source and prolog_xref.

set_prolog_flag(:Key, +Value) [ISO]
Define a new Prolog flag or change its value. Key is an atom. If the flag is a system-
defined flag that is not marked changeable above, an attempt to modify the flag yields
a permission_error. If the provided Value does not match the type of the flag, a
type_error is raised.

Some flags (e.g., unknown) are maintained on a per-module basis. The addressed module is
determined by the Key argument.

In addition to ISO, SWI-Prolog allows for user-defined Prolog flags. The type of the flag is de-
termined from the initial value and cannot be changed afterwards. Defined types are boolean
(if the initial value is one of false, true, on or of f), atom if the initial value is any other

SWI-Prolog 8.0 Reference Manual

2.12. AN OVERVIEW OF HOOK PREDICATES 51

atom, integer if the value is an integer that can be expressed as a 64-bit signed value. Any
other initial value results in an untyped flag that can represent any valid Prolog term.

The behaviour when Key denotes a non-existent key depends on the Prolog flag
user_flags. The default is to define them silently. New code is encouraged to use
create_prolog_flag/3 for portability.

create_prolog _flag(+Key, +Value, +Options) [YAP]
Create a new Prolog flag. The ISO standard does not foresee creation of new flags, but many
libraries introduce new flags. Options is a list of the options below. See also user_flags.

access(+Access)
Define access rights for the flag. Values are read_write and read_only. The default
is read write.

type(+Atrom)
Define a type restriction. Possible values are boolean, atom, integer, float and
term. The default is determined from the initial value. Note that t e rm restricts the term
to be ground.

keep(+Boolean)
If true, do not modify the flag if it already exists. Otherwise (default), this predicate
behaves as set prolog_flag/2 if the flag already exists.

2.12 An overview of hook predicates

SWI-Prolog provides a large number of hooks, mainly to control handling messages, debugging,
startup, shut-down, macro-expansion, etc. Below is a summary of all defined hooks with an indication
of their portability.

e portray/1
Hook into write_term/3 to alter the way terms are printed (ISO).

e message_hook/3
Hook into print message/2 to alter the way system messages are printed (Quin-
tus/SICStus).

e message_property/2
Hook into print _message/ 2 that defines prefix, output stream, color, etc.

e message_prefix_hook/2
Hook into print _message/2 to add additional prefixes to the message such as the time and
thread.

e library._directory/1
Hook into absolute_file_name/ 3 to define new library directories (most Prolog systems).

e file search path/2
Hook into absolute_file_name/ 3 to define new search paths (Quintus/SICStus).

SWI-Prolog 8.0 Reference Manual

52

CHAPTER 2. OVERVIEW

2.13

term_expansion/2
Hook into 1oad_files/2 to modify read terms before they are compiled (macro-processing)
(most Prolog systems).

goal_expansion/2
Same as term_expansion/2 for individual goals (SICStus).

prolog_load_file/2

Hook into load_files/2 to load other data formats for Prolog sources from ‘non-file’ re-
sources. The load_files/2 predicate is the ancestor of consult/1, usemodule/1,
etc.

prolog_edit:locate/3
Hook into edit /1 to locate objects (SWI).

prolog_edit:edit_source/1
Hook into edit /1 to call an internal editor (SWI).

prolog_edit:edit_command/2
Hook into edit /1 to define the external editor to use (SWI).

prolog_list_goal/1l
Hook into the tracer to list the code associated to a particular goal (SWI).

prolog_trace_interception/4
Hook into the tracer to handle trace events (SWI).

prolog:debug_control_hook/1
Hook in spy/1, nospy/1, nospyall/0 and debugging/0 to extend these control pred-
icates to higher-level libraries.

prolog:help_hook/1
Hook in help/0, help/1 and apropos/1 to extend the help system.

resource/3
Define a new resource (not really a hook, but similar) (SWI).

exception/3
Old attempt to a generic hook mechanism. Handles undefined predicates (SWI).

attr_unify hook/2
Unification hook for attributed variables. Can be defined in any module. See section 8.1 for
details.

Automatic loading of libraries

If —at runtime— an undefined predicate is trapped, the system will first try to import the pred-
icate from the module’s default module (see section 6.9. If this fails the auto loader is acti-
vated.!” On first activation an index to all library files in all library directories is loaded in core

19Actually, the hook user:exception/3 is called; only if this hook fails does it call the autoloader.

SWI-Prolog 8.0 Reference Manual

2.13. AUTOMATIC LOADING OF LIBRARIES 53

(see library_directory/1, file_search_path/2 and reload_library_index/0). If
the undefined predicate can be located in one of the libraries, that library file is automatically loaded
and the call to the (previously undefined) predicate is restarted. By default this mechanism loads the
file silently. The current prolog_flag/2 key verbose_autoloadis provided to get verbose
loading. The Prolog flag autoload can be used to enable/disable the autoload system.

Autoloading only handles (library) source files that use the module mechanism described in chap-
ter 6. The files are loaded with use _module/2 and only the trapped undefined predicate is imported
into the module where the undefined predicate was called. Each library directory must hold a file
INDEX.pl that contains an index to all library files in the directory. This file consists of lines of the
following format:

index (Name, Arity, Module, File).

The predicate make/0 updates the autoload index. It searches for all library directories
(see library._directory/1 and file_search_path/2) holding the file MKINDEX.pl or
INDEX.pl. If the current user can write or create the file INDEX.pl and it does not exist or
is older than the directory or one of its files, the index for this directory is updated. If the file
MKINDEX.pl exists, updating is achieved by loading this file, normally containing a directive calling
make_library_index/2. Otherwise make_library_index/1 is called, creating an index for
all = .pl files containing a module.
Below is an example creating an indexed library directory.

mkdir ~/lib/prolog
cd “/lib/prolog
swipl —-g true -t 'make_library_index(.)’

o° o o°

If there is more than one library file containing the desired predicate, the following search schema is
followed:

1. If there is a library file that defines the module in which the undefined predicate is trapped, this
file is used.

2. Otherwise library files are considered in the order they appearinthe 1ibrary_ directory/1
predicate and within the directory alphabetically.

autoload_path(+DirAlias)
Add DirAlias to the libraries that are used by the autoloader. This extends the search path
autoload and reloads the library index. For example:

:— autoload_path(library (http)) .

If this call appears as a directive, it is term-expanded into a clause for
user:file_search path/2 and a directive calling reload_library_index/O.
This keeps source information and allows for removing this directive.

make _library_index(+Directory)
Create an index for this directory. The index is written to the file 'INDEX.pl’ in the specified
directory. Fails with a warning if the directory does not exist or is write protected.

SWI-Prolog 8.0 Reference Manual

54 CHAPTER 2. OVERVIEW

make _library_index(+Directory, +ListOfPatterns)
Normally used in MKINDEX . p1, this predicate creates INDEX . pl for Directory, indexing all
files that match one of the file patterns in ListOfPatterns.

Sometimes library packages consist of one public load file and a number of files used by this
load file, exporting predicates that should not be used directly by the end user. Such a library
can be placed in a sub-directory of the library and the files containing public functionality can
be added to the index of the library. As an example we give the XPCE library’s MKINDEX . p1,
including the public functionality of trace/browse.pl to the autoloadable predicates for
the XPCE package.

:— make_library_index(’'.’,
["x.pl",
"trace/browse.pl’

1)

reload library_index
Force reloading the index after modifying the set of library directories by changing the rules for
library.-directory/1l, file_search_path/2, adding or deleting INDEX.pl files.
This predicate does not update the INDEX . pl files. Check make_library_index/[1, 2]
and make /0 for updating the index files.

Normally, the index is reloaded automatically if a predicate cannot be found in the index and
the set of library directories has changed. Using reload_library_index/0 is necessary if
directories are removed or the order of the library directories is changed.

When creating an executable using either gsave_program/2 or the —c command line options,
it is necessarry to load all predicates that would normally be autoloaded explicitly. This is discussed
in section 13. See autoload/0.

2.14 Packs: community add-ons

SWI-Prolog has a mechanism for easy incorporation of community extensions. See the pack landing
page for details and available packs. This section documents the built-in predicates to attach packs.
Predicates for creating, registering and installing packs are provided by the library prolog_pack.

attach_packs
Attaches all packs in subdirectories of directories that are accessible through the file search
path (see absolute_file name/3) pack. The default for this search path is:

user:file_search_path (pack, app_data(pack)).
user:file_search_path(pack, swi (pack)).

The predicate attach_packs/0 is called on startup of SWI-Prolog.

attach_packs(+Directory)

Attach all packs in subdirectories of Directory. Same as attach_packs(Directory, []).
attach_packs(+Directory, +Options)

Attach all packs in subdirectories of Directory. Options is one of:

SWI-Prolog 8.0 Reference Manual

http://www.swi-prolog.org/pack/list
http://www.swi-prolog.org/pack/list

2.15. GARBAGE COLLECTION 55

search(+Where)
Determines the order in which pack library directories are searched. Default is to add new
packages at the end (1ast). Using first, new packages are added at the start.

duplicate(+Action)
Determines what happens if a pack with the same name is already attached. Default is
warning, which prints a warning and ignores the new pack. Other options are keep,
which is like warning but operates silently and replace, which detaches the old pack
and attaches the new.

The predicate attach_packs/2 can be used to attach packages that are bundled with an
application.

2.15 Garbage Collection

SWI-Prolog provides garbage collection, last-call optimization and atom garbage collection. These
features are controlled using Prolog flags (see current _prolog_flag/2).

2.16 The SWI-Prolog syntax

SWI-Prolog syntax is close to ISO-Prolog standard syntax, which is based on the Edinburgh Prolog
syntax. A formal description can be found in the ISO standard document. For an informal introduction
we refer to Prolog text books (see section 1) and online tutorials. In addition to the differences from
the ISO standard documented here, SWI-Prolog offers several extensions, some of which also extend
the syntax. See section 5 for more information.

2.16.1 1ISO Syntax Support

This section lists various extensions w.r.t. the ISO Prolog syntax.

Processor Character Set

The processor character set specifies the class of each character used for parsing Prolog source text.
Character classification is fixed to Unicode. See also section 2.19.

Nested comments

SWI-Prolog allows for nesting /+ ...x/ comments. Where the ISO standard accepts
/% .../* ...%/ as a comment, SWI-Prolog will search for a terminating /. This is useful
if some code with /+ .. .x/ comment statements in it should be commented out. This modification

also avoids unintended commenting in the example below, where the closing =/ of the first comment
has been forgotten.?’

i
‘ /* comment ‘

2Recent copies of GCC give a style warning if / + is encountered in a comment, which suggests that this problem has
been recognised more widely.

SWI-Prolog 8.0 Reference Manual

http://www.swi-prolog.org/Links.html
http://www.unicode.org/

56 CHAPTER 2. OVERVIEW

code

/* second comment =/

code

Character Escape Syntax

Within quoted atoms (using single quotes: ’ (atom)’) special characters are represented using escape
sequences. An escape sequence is led in by the backslash (\) character. The list of escape sequences is
compatible with the ISO standard but contains some extensions, and the interpretation of numerically
specified characters is slightly more flexible to improve compatibility. Undefined escape characters
raise a syntax_error exception.’!

\a
Alert character. Normally the ASCII character 7 (beep).
\b
Backspace character.
\c
No output. All input characters up to but not including the first non-layout character are skipped.
This allows for the specification of pretty-looking long lines. Not supported by ISO. Example:
format (' This is a long line that looks better if it was \c
split across multiple physical lines in the input’)
\(NEWLINE)

When in ISO mode (see the Prolog flag i so), only skip this sequence. In native mode, white
space that follows the newline is skipped as well and a warning is printed, indicating that this
construct is deprecated and advising to use \c. We advise using \c or putting the layout
before the \, as shown below. Using \ ¢ is supported by various other Prolog implementations
and will remain supported by SWI-Prolog. The style shown below is the most compatible
solution.””

format (' This is a long line that looks better if it was \
split across multiple physical lines in the input’)

instead of

split across multiple physical lines in the input’)

format (' This is a long line that looks better if it was\

21Up to SWI-Prolog 6.1.9, undefined escape characters were copied verbatim, i.e., removing the backslash.
*Future versions will interpret \ (return) according to ISO.

SWI-Prolog 8.0 Reference Manual

2.16. THE SWI-PROLOG SYNTAX 57

Note that SWI-Prolog also allows unescaped newlines to appear in quoted material. This is not
allowed be the ISO standard, but used to be common practice before.

\e
Escape character (ASCII 27). Not ISO, but widely supported.

\f
Form-feed character.

\n
Next-line character.

\r
Carriage-return only (i.e., go back to the start of the line).

\s
Space character. Intended to allow writing 0’ \ s to get the character code of the space charac-
ter. Not ISO.

\t
Horizontal tab character.

\v
Vertical tab character (ASCII 11).

\xXX. .\
Hexadecimal specification of a character. The closing \ is obligatory according to the ISO
standard, but optional in SWI-Prolog to enhance compatibility with the older Edinburgh stan-
dard. The code \xa\3 emits the character 10 (hexadecimal ‘a’) followed by ‘3’. Characters
specified this way are interpreted as Unicode characters. See also \u.

\uXXXX
Unicode character specification where the character is specified using exactly 4 hexadecimal
digits. This is an extension to the ISO standard, fixing two problems. First, where \ x defines
a numeric character code, it doesn’t specify the character set in which the character should be
interpreted. Second, it is not needed to use the idiosyncratic closing \ ISO Prolog syntax.

\UXXXXXXXX
Same as \uXXXX, but using 8 digits to cover the whole Unicode set.

\40
Octal character specification. The rules and remarks for hexadecimal specifications apply to
octal specifications as well.

\\
Escapes the backslash itself. Thus, \\’ is an atom consisting of a single \.

\ ’

Single quote. Note that "\’’ and '’’’ both describe the atom with a single ’, i.e.,
T\'! == ''7'7 jgtrue.

SWI-Prolog 8.0 Reference Manual

58 CHAPTER 2. OVERVIEW

\ n
Double quote.

\ \
Back quote.

Character escaping is only available if current _prolog.flag (character_escapes, true)
is active (default). See current prolog_flag/2. Character escapes conflict with writef/2
in two ways: \40 is interpreted as decimal 40 by writef/2, but as octal 40 (decimal 32)
by read. Also, the writef/2 sequence \1 is illegal. It is advised to use the more widely
supported format/ [2, 3] predicate instead. If you insist upon using writef /2, either switch
character_escapesto false,oruse double \\,asinwritef ("\\1).

Syntax for non-decimal numbers

SWI-Prolog implements both Edinburgh and ISO representations for non-decimal numbers. Accord-
ing to Edinburgh syntax, such numbers are written as (radix)’ (number), where (radix) is a number
between 2 and 36. ISO defines binary, octal and hexadecimal numbers using 0 [bxo] (number). For
example: A is 0b100 \/ 0xf00 is a valid expression. Such numbers are always unsigned.

Using digit groups in large integers

SWI-Prolog supports splitting long integers into digit groups. Digit groups can be separated with
the sequence (underscore), (optional white space). If the (radix) is 10 or lower, they may also be
separated with exactly one space. The following all express the integer 1 million:

1_000_000
1 000 000
1_000_/*morex/000

Integers can be printed using this notation with format /2, using the ~ I format specifier. For exam-
ple:

?— format (' "I’, [10000007).
1_000_000

The current syntax has been proposed by Ulrich Neumerkel on the SWI-Prolog mailinglist.

NaN and Infinity floats and their syntax

SWI-Prolog supports reading and printing ‘special’ floating point values according to Proposal for
Prolog Standard core update wrt floating point arithmetic by Joachim Schimpf and available in
ECLiPSe Prolog. In particular,

o Infinity is printed as 1.0Inf or —1.0Inf. Any sequence matching the regular expression
[+-1?\sd+[.]\sd+Inf is mapped to plus or minus infinity.

SWI-Prolog 8.0 Reference Manual

http://eclipseclp.org/Specs/core_update_float.html
http://eclipseclp.org/Specs/core_update_float.html

2.16. THE SWI-PROLOG SYNTAX 59

e NaN (Not a Number) is printed as 1.xxxNaN, where /.xxx is the float after replacing the
exponent by ‘1°. Such numbers are read, resulting in the same NaN. The NaN constant can also
be produced using the function nan/0, e.g.,

A = 1.5NaN.

?-— A is nan.

Note that, compliant with the ISO standard, SWI-Prolog arithmetic (see section 4.27) never returns
one of the above values but instead raises an exception, e.g.,

ERROR: //2: Arithmetic: evaluation error: ‘zero_divisor’

27— A is 1/0.

There is one exception to this rule. For compatibility the functions inf /0 and nan/Oreturn1.0Inf
and the default system NaN. The ability to create, read and write such values is primarily provided to
exchange data with languages that can represent the full range of IEEE doubles.

Force only underscore to introduce a variable

According to the ISO standard and most Prolog systems, identifiers that start with an uppercase letter
or an underscore are variables. In the past, Prolog by BIM provided an alternative syntax, where
only the underscore () introduces a variable. As of SWI-Prolog 7.3.27 SWI-Prolog supports this
alternative syntax, controlled by the Prolog flag var prefix. As the character_escapes flag,
this flag is maintained per module, where the default is false, supporting standard syntax.

Having only the underscore introduce a variable is particularly useful if code contains identifiers
for case sensitive external languages. Examples are the RDF library where code frequently specifies
property and class names>’ and the R interface for specifying functions or variables that start with an
uppercase character. Lexical databases where part of the terms start with an uppercase letter is another
category were the readability of the code improves using this option.

Unicode Prolog source

The ISO standard specifies the Prolog syntax in ASCII characters. As SWI-Prolog supports Unicode
in source files we must extend the syntax. This section describes the implication for the source files,
while writing international source files is described in section 3.1.3.

The SWI-Prolog Unicode character classification is based on version 6.0.0 of the Unicode stan-
dard. Please note that char_type/2 and friends, intended to be used with all text except Prolog
source code, is based on the C library locale-based classification routines.

e Quoted atoms and strings
Any character of any script can be used in quoted atoms and strings. The escape sequences
\uXXXX and \UXXXXXXXX (see section 2.16.1) were introduced to specify Unicode code
points in ASCII files.

2 Samer Abdallah suggested this feature based on experience with non-Prolog users using the RDF library.

SWI-Prolog 8.0 Reference Manual

60 CHAPTER 2. OVERVIEW

o Atoms and Variables
We handle them in one item as they are closely related. The Unicode standard defines a syntax
for identifiers in computer languages.’* In this syntax identifiers start with ID_Start followed
by a sequence of ID_Continue codes. Such sequences are handled as a single token in SWI-
Prolog. The token is a variable iff it starts with an uppercase character or an underscore (_).
Otherwise it is an atom. Note that many languages do not have the notion of character case. In
such languages variables must be written as _name.

o White space
All characters marked as separators (Z*) in the Unicode tables are handled as layout characters.

o Control and unassigned characters
Control and unassigned (C*) characters produce a syntax error if encountered outside quoted
atoms/strings and outside comments.

e Other characters
The first 128 characters follow the ISO Prolog standard. Unicode symbol and punctuation
characters (general category S* and P*) act as glueing symbol characters (i.e., just like ==: an
unquoted sequence of symbol characters are combined into an atom).

Other characters (this is mainly No: a numeric character of other type) are currently handled as
‘solo’.

Singleton variable checking

A singleton variable is a variable that appears only one time in a clause. It can always be replaced
by _, the anonymous variable. In some cases, however, people prefer to give the variable a name.
As mistyping a variable is a common mistake, Prolog systems generally give a warning (controlled
by style_check/1) if a variable is used only once. The system can be informed that a variable is
meant to appear once by starting it with an underscore, e.g., _Name. Please note that any variable,
except plain _, shares with variables of the same name. The term t (_X, _X) is equivalent to
t (X, X), which is different fromt (_, _).

As Unicode requires variables to start with an underscore in many languages, this schema needs
to be extended.” First we define the two classes of named variables.

o Named singleton variables
Named singletons start with a double underscore (__) or a single underscore followed by an
uppercase letter, e.g., ___var or _Var.

e Normal variables
All other variables are ‘normal’ variables. Note this makes _var a normal variable.2°
Any normal variable appearing exactly once in the clause and any named singleton variables
appearing more than once are reported. Below are some examples with warnings in the right column.
Singleton messages can be suppressed using the st yle_check/1 directive.

24http ://www.unicode.org/reports/tr31/
%5 After a proposal by Richard O’ Keefe.
%Some Prolog dialects write variables this way.

SWI-Prolog 8.0 Reference Manual

http://www.unicode.org/reports/tr31/

2.17. RATIONAL TREES (CYCLIC TERMS) 61

test().

test(_a). Singleton variables: [_a]

test(_12). Singleton variables: [_12]

test(A). Singleton variables: [A]

test(_A).

test(__a).

test(_,).

test(_a, _a).

test(__a, __a). | Singleton-marked variables appearing more than once: [-_a]
test(_A, _A). | Singleton-marked variables appearing more than once: [_A]
test(A, A).

Semantic singletons Starting with version 6.5.1, SWI-Prolog has syntactic singletons and seman-
tic singletons. The first are checked by read_clause/3 (and read_term/3 using the option
singletons(warning)). The latter are generated by the compiler for variables that appear alone in
a branch. For example, in the code below the variable X is not a syntactic singleton, but the variable
X does not communicate any bindings and replacing X with _ does not change the semantics.

test :—
(test_1 (X)
; test_ 2 (X)

2.17 Rational trees (cyclic terms)

SWI-Prolog supports rational trees, also known as cyclic terms. ‘Supports’ is so de-
fined that most relevant built-in predicates terminate when faced with rational trees. Al-
most all SWI-Prolog’s built-in term manipulation predicates process terms in a time that is
linear to the amount of memory used to represent the term on the stack. The follow-
ing set of predicates safely handles rational trees: =../2, ==/2, =@=/2, =/2, @</2,
@=</2,0@>=/2,@>/2, \==/2,\=0@=/2, \=/2, acyclic_term/1, bagof/3, compare/3,
copy-term/2, cyclic_term/1, dif/2, duplicate_term/2, findall/3, ground/1,
term_hash/2, numbervars/3, numbervars/4, recorda/3, recordz/3, setof/3,
subsumes_term/2, term_variables/2, throw/1l, unify_with_occurs_check/2,
unifiable/3,when/2,write/1 (and related predicates) .

In addition, some built-ins recognise rational trees and raise an appropriate exception. Arithmetic
evaluation belongs to this group. The compiler (asserta/1, etc.) also raises an exception. Future
versions may support rational trees. Predicates that could provide meaningful processing of rational
trees raise a representation_error. Predicates for which rational trees have no meaningful
interpretation raise a t ype_error. For example:

1 ?2- A = f(A), asserta(a(d)).
ERROR: asserta/l: Cannot represent due to ‘cyclic_term’
2 ?- A = 1+A, B is A.

SWI-Prolog 8.0 Reference Manual

62 CHAPTER 2. OVERVIEW

‘ERROR: is/2: Type error: ‘expression’ expected, found ‘
| ‘@(S_1,[S_1=1+5_1])’ (cyclic term) |

2.18 Just-in-time clause indexing

SWI-Prolog provides ‘just-in-time’ indexing over multiple arguments.”’ ‘Just-in-time’ means that
clause indexes are not built by the compiler (or asserta/1 for dynamic predicates), but on the
first call to such a predicate where an index might help (i.e., a call where at least one argument is
instantiated). This section describes the rules used by the indexing logic. Note that this logic is not
‘set in stone’. The indexing capabilities of the system will change. Although this inevitably leads to
some regressing on some particular use cases, we strive to avoid significant slowdowns.

The list below describes the clause selection process for various predicates and calls. The alterna-
tives are considered in the order they are presented.

e Special purpose code
Currently two special cases are recognised by the compiler: static code with exactly one clause
and static code with two clauses, one where the first argument is the empty list ([]) and one
where the first argument is a non-empty list ([__|_1).

e Linear scan on first argument
The principal clause list maintains a key for the first argument. An indexing key is either a
constant or a functor (name/arity reference). Calls with an instantiated first argument and less
than 10 clauses perform a linear scan for a possible matching clause using this index key. If the
result is deterministic it is used. Otherwise the system looks for better indexes.”®.

e Hash lookup
If none of the above applies, the system considers the available hash tables for which the corre-
sponding argument is instantiated. If a table is found with acceptable characteristics, it is used.
Otherwise it assesses the clauses for all instantiated arguments and selects the best candidate
for creating a new hash table. If there is no single argument that provides an acceptable hash
quality it will search for a combination of arguments.”” Searching for index candidates is only
performed on the first 254 arguments.

If a single-argument index contains multiple compound terms with the same name and arity
and at least one non-variable argument, a /ist index is created. A subsequent query where this
argument is bound to a compound causes jiti indexing to be applied recursively on the arguments
of the term. This is called deep indexing.’® See also section 2.18.1

Clauses that have a variable at an otherwise indexable argument must be linked into all hash
buckets. Currently, predicates that have more than 10% such clauses for a specific argument are
not considered for indexing on that argument.

T indexing was added in version 5.11.29 (Oct. 2011).

BUp to 7.7.2 this result was used also when non-deterministic.
PThe last step was added in SWI-Prolog 7.5.8.

3Deep indexing was added in version 7.7.4.

SWI-Prolog 8.0 Reference Manual

2.18. JUST-IN-TIME CLAUSE INDEXING 63

Disregarding variables, the suitability of an argument for hashing is expressed as the number of
unique indexable values divided by the standard deviation of the number of duplicate values for
each value plus one.>!

The indexes of dynamic predicates are deleted if the number of clauses is doubled since
its creation or reduced below 1/4th. The JIT approach will recreate a suitable index on
the next call. Indexes of running predicates cannot be deleted. They are added to a ‘re-
moved index list’ associated to the predicate. Outdated indexes of predicates are reclaimed
by garbage_collect_clauses/0. The clause garbage collector is scheduled automati-
cally, based on time and space based heuristics. See garbage_collect_clauses/0 for
details.

The library prolog_jiti provides jiti_1ist /0,1 to list the characteristics of all or some of
the created hash tables.

Dynamic predicates are indexed using the same rules as static predicates, except that the special
purpose schemes are never applied. In addition, the JITI index is discarded if the number of clauses
has doubled since the predicate was last assessed or shrinks below one fourth. A subsequent call
reassesses the statistics of the dynamic predicate and, when applicable, creates a new index.

2.18.1 Deep indexing

As introduced in section 2.18, deep indexing creates hash tables distinguish clauses that share a com-
pound with the same name and arity. Deep indexes allow for efficient lookup of arbitrary terms.
Without it is advised to flatten the term, i.e., turn F(X) into two arguments for the fact, one argument
denoting the functor F' and the second the argument X. This works fine as long as the arity of the
each of the terms is the same. Alternatively we can use term_hash/2 or term_hash/4 to add a
column holding the hash of the term. That approach can deal with arbitrary arities, but requires us
to know that the term is ground (term_hash/2) or up to which depth we get sufficient selectivity
(term_hash/4).

Deep indexing does not require this knowledge and leads to efficient lookup regardless of the
instantiation of the query and term. The current version does come with some limitations:

e The decision which index to use is taken independently at each level. Future versions may be
smarter on this.

e Deep indexing only applies to a single argument indexes (on any argument).

e Currently, the depth of indexing is limited to 7 levels.

Note that, when compiling DCGs (see section 4.13) and the first body term is a literal, it is
included into the clause head. See for example the grammar and its plain Prolog representation below.

det (det (a), sg) -—> "a",
det (det (an), pl) —--> "an".
det (det (the), _) ——> "the".

3 Earlier versions simply used the number of unique values, but poor distribution of values makes a table less suitable.
This was analysed by Fabien Noth and Giinter Kniesel.

SWI-Prolog 8.0 Reference Manual

64 CHAPTER 2. OVERVIEW

‘?— listing (det) . ‘
‘det(det(a), sg, [97|A], A). ‘
‘det (det (an), pl, [97, 110[A], A). |
‘det (det (the), _, [116, 104, 101|A], A). |

Deep argument indexing will create indexes for the 3rd list argument, providing speedup and making
clause selection deterministic if all rules start with a literal and all literals are unique in the first 6
elements. Note that deep index creation stops as soon as a determistic choice can be made or there are
no two clauses that have the same name/arity combination.

2.18.2 Future directions

e The ‘special cases’ can be extended. This is notably attractive for static predicates with a
relatively small number of clauses where a hash lookup is too costly.

e Create an efficient decision diagram for selecting between low numbers of static clauses.

e Implement a better judgements for selecting between deep and plain indexes.

2.18.3 Indexing and portability

The base-line functionality of Prolog implementations provides indexing on constants and functor
(name/arity) on the first argument. This must be your assumption if wide portability of your program
is important. This can typically be achieved by exploiting term_hash/2 or term_hash/4 and/or
maintaining multiple copies of a predicate with reordered arguments and wrappers that update all
implementations (assert/retract) and selects the appropriate implementation (query).

YAP provides full JIT indexing, including indexing arguments of compound terms. YAP’s index-
ing has been the inspiration for enhancing SWI-Prolog’s indexing capabilities.

2.19 Wide character support

SWI-Prolog supports wide characters, characters with character codes above 255 that cannot be rep-
resented in a single byte. Universal Character Set (UCS) is the ISO/IEC 10646 standard that specifies
a unique 31-bit unsigned integer for any character in any language. It is a superset of 16-bit Unicode,
which in turn is a superset of ISO 8859-1 (ISO Latin-1), a superset of US-ASCII. UCS can handle
strings holding characters from multiple languages, and character classification (uppercase, lowercase,
digit, etc.) and operations such as case conversion are unambiguously defined.

For this reason SWI-Prolog has two representations for atoms and string objects (see section 5.2).
If the text fits in ISO Latin-1, it is represented as an array of 8-bit characters. Otherwise the text is
represented as an array of 32-bit numbers. This representational issue is completely transparent to the
Prolog user. Users of the foreign language interface as described in chapter 12 sometimes need to be
aware of these issues though.

Character coding comes into view when characters of strings need to be read from or written to
file or when they have to be communicated to other software components using the foreign language
interface. In this section we only deal with I/O through streams, which includes file I/O as well as I/O
through network sockets.

SWI-Prolog 8.0 Reference Manual

2.19. WIDE CHARACTER SUPPORT 65

2.19.1 Wide character encodings on streams

Although characters are uniquely coded using the UCS standard internally, streams and files are byte
(8-bit) oriented and there are a variety of ways to represent the larger UCS codes in an 8-bit octet
stream. The most popular one, especially in the context of the web, is UTF-8. Bytes 0 ... 127
represent simply the corresponding US-ASCII character, while bytes 128 ... 255 are used for multi-
byte encoding of characters placed higher in the UCS space. Especially on MS-Windows the 16-bit
Unicode standard, represented by pairs of bytes, is also popular.

Prolog I/O streams have a property called encoding which specifies the used encoding that influ-
ences get_code/2 and put_code/2 as well as all the other text I/O predicates.

The default encoding for files is derived from the Prolog flag encoding, which is initialised
from the environment. If the environment variable LANG ends in "UTF-8”, this encoding is as-
sumed. Otherwise the default is text and the translation is left to the wide-character functions
of the C library.*> The encoding can be specified explicitly in 1oad_files/2 for loading Prolog
source with an alternative encoding, open/4 when opening files or using set_stream/2 on any
open stream. For Prolog source files we also provide the encoding/1 directive that can be used
to switch between encodings that are compatible with US-ASCII (ascii, iso_latin_1, utf8
and many locales). See also section 3.1.3 for writing Prolog files with non-US-ASCII characters
and section 2.16.1 for syntax issues. For additional information and Unicode resources, please visit
http://www.unicode.org/.

SWI-Prolog currently defines and supports the following encodings:

octet
Default encoding for binary streams. This causes the stream to be read and written fully
untranslated.

ascii
7-bit encoding in 8-bit bytes. Equivalent to iso_latin_1, but generates errors and warnings
on encountering values above 127.

iso_latin_1
8-bit encoding supporting many Western languages. This causes the stream to be read and
written fully untranslated.

text
C library default locale encoding for text files. Files are read and written using the C library
functions mbrtowc() and wertomb(). This may be the same as one of the other locales, notably
it may be the same as 1so_latin_1 for Western languages and ut £8 in a UTF-8 context.
utf8
Multi-byte encoding of full UCS, compatible with ascii. See above.
unicode_be
Unicode Big Endian. Reads input in pairs of bytes, most significant byte first. Can only repre-
sent 16-bit characters.
unicode_le

Unicode Little Endian. Reads input in pairs of bytes, least significant byte first. Can only
represent 16-bit characters.

32The Prolog native UTF-8 mode is considerably faster than the generic mbrtowc() one.

SWI-Prolog 8.0 Reference Manual

http://www.unicode.org/

66 CHAPTER 2. OVERVIEW

Note that not all encodings can represent all characters. This implies that writing text to a stream
may cause errors because the stream cannot represent these characters. The behaviour of a stream
on these errors can be controlled using set_stream/2. Initially the terminal stream writes the
characters using Prolog escape sequences while other streams generate an I/O exception.

BOM: Byte Order Mark

From section 2.19.1, you may have got the impression that text files are complicated. This section
deals with a related topic, making life often easier for the user, but providing another worry to the
programmer. BOM or Byte Order Marker is a technique for identifying Unicode text files as well as
the encoding they use. Such files start with the Unicode character OXFEFF, a non-breaking, zero-width
space character. This is a pretty unique sequence that is not likely to be the start of a non-Unicode
file and uniquely distinguishes the various Unicode file formats. As it is a zero-width blank, it even
doesn’t produce any output. This solves all problems, or ...

Some formats start off as US-ASCII and may contain some encoding mark to switch to UTF-8,
such as the encoding="UTF-8" in an XML header. Such formats often explicitly forbid the use
of a UTF-8 BOM. In other cases there is additional information revealing the encoding, making the
use of a BOM redundant or even illegal.

The BOM is handled by SWI-Prolog open/4 predicate. By default, text files are probed for the
BOM when opened for reading. If a BOM is found, the encoding is set accordingly and the property
bom(true) is available through stream_property/2. When opening a file for writing, writing a
BOM can be requested using the option bom(true) with open/4.

2.20 System limits

2.20.1 Limits on memory areas

The SWI-Prolog engine uses three stacks the local stack (also called environment stack) stores the
environment frames used to call predicates as well as choice points. The global stack (also called
heap) contains terms, floats, strings and large integers. Finally, the trail stack records variable bind-
ings and assignments to support backtracking. The internal data representation limits these stacks to
128 MB (each) on 32-bit processors. More generally to gbits-per-pointer—s bytes, which implies they
are virtually unlimited on 64-bit machines.

As of version 7.7.14, the stacks are restricted by the writeable flag stack_limit or the com-
mand line option ——stack_limit. This flag limits the combined size of the three stacks per thread.
The default limit is currently 512 Mbytes on 32-bit machines, which imposes no additional limit
considering the 128 Mbytes hard limit on 32-bit and 1 Gbytes on 64-bit machines.

Considering portability, applications that need to modify the default limits are advised to do so
using the Prolog flag stack_limit.

The heap

With the heap, we refer to the memory area used by malloc() and friends. SWI-Prolog uses the area
to store atoms, functors, predicates and their clauses, records and other dynamic data. No limits are
imposed on the addresses returned by malloc() and friends.

SWI-Prolog 8.0 Reference Manual

2.20. SYSTEM LIMITS

67

Option

Area name

Description

local stack

global stack

trail stack

The local stack is used to store
the execution environments of
procedure invocations. The
space for an environment is re-
claimed when it fails, exits with-
out leaving choice points, the al-
ternatives are cut off with the
1/0 predicate or no choice points
have been created since the invo-
cation and the last subclause is
started (last call optimisation).
The global stack is used to store
terms created during Prolog’s
execution. Terms on this stack
will be reclaimed by backtrack-
ing to a point before the term
was created or by garbage col-
lection (provided the term is no
longer referenced).

The trail stack is used to store as-
signments during execution. En-
tries on this stack remain alive
until backtracking before the
point of creation or the garbage
collector determines they are no
longer needed.

As the trail and global stacks
are garbage collected together, a
small trail can cause an exces-
sive amount of garbage collec-
tions. To avoid this, the trail
is automatically resized to be at
least 1/6th of the size of the
global stack.

Table 2.2: Memory areas

SWI-Prolog 8.0 Reference Manual

68 CHAPTER 2. OVERVIEW

2.20.2 Other Limits

Clauses The only limit on clauses is their arity (the number of arguments to the head), which is
limited to 1024. Raising this limit is easy and relatively cheap; removing it is harder.

Atoms and Strings SWI-Prolog has no limits on the length of atoms and strings. The number of
atoms is limited to 16777216 (16M) on 32-bit machines. On 64-bit machines this is virtually
unlimited. See also section 12.4.2.

Memory areas On 32-bit hardware, SWI-Prolog data is packed in a 32-bit word, which contains both
type and value information. The size of the various memory areas is limited to 128 MB for each
of the areas, except for the program heap, which is not limited. On 64-bit hardware there are no
meaningful limits.

Nesting of terms Most built-in predicates that process Prolog terms create an explicitly managed
stack and perform optimization for processing the last argument of a term. This implies they
can process deeply nested terms at constant and low usage of the C stack, and the system raises
a resource error if no more stack can be allocated. Currently only read/1 and write/1 (and
all variations thereof) still use the C stack and may cause the system to crash in an uncontrolled
way (i.e., not mapped to a Prolog exception that can be caught).

Integers On most systems SWI-Prolog is compiled with support for unbounded integers by means of
the GNU GMP library. In practice this means that integers are bound by the global stack size.
Too large integers cause a resource_error. On systems that lack GMP, integers are 64-bit
on 32- as well as 64-bit machines.

Integers up to the value of the max_tagged_integer Prolog flag are represented
more efficiently on the stack. For integers that appear in clauses, the value (below
max_tagged_integer or not) has little impact on the size of the clause.

Floating point numbers Floating point numbers are represented as C-native double precision floats,
64-bit IEEE on most machines.
2.20.3 Reserved Names

The boot compiler (see —b option) does not support the module system. As large parts of the sys-
tem are written in Prolog itself we need some way to avoid name clashes with the user’s predicates,
database keys, etc. Like Edinburgh C-Prolog [] all predicates, database keys, etc., that
should be hidden from the user start with a dollar ($) sign.

2.21 SWI-Prolog and 64-bit machines

Most of today’s 64-bit platforms are capable of running both 32-bit and 64-bit applications. This asks
for some clarifications on the advantages and drawbacks of 64-bit addressing for (SWI-)Prolog.

2.21.1 Supported platforms

SWI-Prolog can be compiled for a 32- or 64-bit address space on any system with a suitable C com-
piler. Pointer arithmetic is based on the type (u)intptr_t from stdint . h, with suitable emulation on
MS-Windows.

SWI-Prolog 8.0 Reference Manual

2.21. SWI-PROLOG AND 64-BIT MACHINES 69

2.21.2 Comparing 32- and 64-bits Prolog

Most of Prolog’s memory usage consists of pointers. This indicates the primary drawback: Prolog
memory usage almost doubles when using the 64-bit addressing model. Using more memory means
copying more data between CPU and main memory, slowing down the system.

What then are the advantages? First of all, SWI-Prolog’s addressing of the Prolog stacks does not
cover the whole address space due to the use of fype tag bits and garbage collection flags. On 32-bit
hardware the stacks are limited to 128 MB each. This tends to be too low for demanding applications
on modern hardware. On 64-bit hardware the limit is 23? times higher, exceeding the addressing
capabilities of today’s CPUs and operating systems. This implies Prolog can be started with stack
sizes that use the full capabilities of your hardware.

Multi-threaded applications profit much more because every thread has its own set of stacks. The
Prolog stacks start small and are dynamically expanded (see section 2.20.1). The C stack is also
dynamically expanded, but the maximum size is reserved when a thread is started. Using 100 threads
at the maximum default C stack of 8Mb (Linux) costs 800Mb virtual memory!*

The implications of theoretical performance loss due to increased memory bandwidth implied by
exchanging wider pointers depend on the design of the hardware. We only have data for the popular
1IA32 vs. AMDG64 architectures. Here, it appears that the loss is compensated for by an instruction set
that has been optimized for modern programming. In particular, the AMD64 has more registers and
the relative addressing capabilities have been improved. Where we see a 10% performance degra-
dation when placing the SWI-Prolog kernel in a Unix shared object, we cannot find a measurable
difference on AMD64.

2.21.3 Choosing between 32- and 64-bit Prolog

For those cases where we can choose between 32 and 64 bits, either because the hardware and OS
support both or because we can still choose the hardware and OS, we give guidelines for this decision.

First of all, if SWI-Prolog needs to be linked against 32- or 64-bit native libraries, there is no
choice as it is not possible to link 32- and 64-bit code into a single executable. Only if all required
libraries are available in both sizes and there is no clear reason to use either do the different character-
istics of Prolog become important.

Prolog applications that require more than the 128 MB stack limit provided in 32-bit addressing
mode must use the 64-bit edition. Note however that the limits must be doubled to accommodate the
same Prolog application.

If the system is tight on physical memory, 32-bit Prolog has the clear advantage of using only
slightly more than half of the memory of 64-bit Prolog. This argument applies as long as the applica-
tion fits in the virtual address space of the machine. The virtual address space of 32-bit hardware is
4GB, but in many cases the operating system provides less to user applications.

The only standard SWI-Prolog library adding significantly to this calculation is the RDF database
provided by the semweb package. It uses approximately 80 bytes per triple on 32-bit hardware and
150 bytes on 64-bit hardware. Details depend on how many different resources and literals appear in
the dataset as well as desired additional literal indexes.

Summarizing, if applications are small enough to fit comfortably in virtual and physical memory,
simply take the model used by most of the applications on the OS. If applications require more than
128 MB per stack, use the 64-bit edition. If applications approach the size of physical memory, fit

33C-recursion over Prolog data structures is removed from most of SWI-Prolog. When removed from all predicates it
will often be possible to use lower limits in threads. See http://www.swi-prolog.org/Devel/CStack.html

SWI-Prolog 8.0 Reference Manual

http://www.swi-prolog.org/Devel/CStack.html

70 CHAPTER 2. OVERVIEW

in the 128 MB stack limit and fit in virtual memory, the 32-bit version has clear advantages. For
demanding applications on 64-bit hardware with more than about 6GB physical memory the 64-bit
model is the model of choice.

SWI-Prolog 8.0 Reference Manual

Initialising and Managing a
Prolog Project

Prolog text-books give you an overview of the Prolog language. The manual tells you what predicates
are provided in the system and what they do. This chapter explains how to run a project. There is
no ultimate ‘right’ way to do this. Over the years we developed some practice in this area and SWI-
Prolog’s commands are there to support this practice. This chapter describes the conventions and
supporting commands.

The first two sections (section 3.1 and section 3.2) only require plain Prolog. The remainder
discusses the use of the built-in graphical tools that require the XPCE graphical library installed on
your system.

3.1 The project source files

Organisation of source files depends largely on the size of your project. If you are doing exercises for
a Prolog course you’ll normally use one file for each exercise. If you have a small project you’ll work
with one directory holding a couple of files and some files to link it all together. Even bigger projects
will be organised in sub-projects, each using its own directory.

3.1.1 File Names and Locations
File Name Extensions

The first consideration is what extension to use for the source files. Tradition calls for
.pl, but conflicts with Perl force the use of another extension on systems where ex-
tensions have global meaning, such as MS-Windows. On such systems .pro is the
common alternative. On MS-Windows, the alternative extension is stored in the reg-
istry key HKEY_CURRENT_USER/Software/SWI/Prolog/fileExtension or
HKEY_LOCAL_MACHINE/Software/SWI/Prolog/fileExtension. All versions of
SWI-Prolog load files with the extension .pl as well as with the registered alternative extension
without explicitly specifying the extension. For portability reasons we propose the following
convention:

If there is no conflict because you do not use a conflicting application or the system does not force
a unique relation between extension and application, use .p1.

With a conflict choose . pro and use this extension for the files you want to load through your file
manager. Use . p1 for all other files for maximal portability.

Project Directories

Large projects are generally composed of sub-projects, each using its own directory or directory struc-

ture. If nobody else will ever touch your files and you use only one computer, there is little to worry

SWI-Prolog 8.0 Reference Manual

72 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

about, but this is rarely the case with a large project.

To improve portability, SWI-Prolog uses the POSIX notation for filenames, which uses the
forward slash (/) to separate directories. Just before reaching the file system, SWI-Prolog uses
prolog_to_os_filename/2 to convert the filename to the conventions used by the hosting oper-
ating system. It is strongly advised to write paths using the /, especially on systems using the \ for
this purpose (MS-Windows). Using \ violates the portability rules and requires you to double the \
due to the Prolog quoted-atom escape rules.

Portable code should use prolog_to_os_filename/2 to convert computed paths into system
paths when constructing commands for shel1/1 and friends.

Sub-projects using search paths

Thanks to Quintus, Prolog adapted an extensible mechanism for searching files using
file_search_path/2. This mechanism allows for comfortable and readable specifications.

Suppose you have extensive library packages on graph algorithms, set operations and GUI primi-
tives. These sub-projects are likely candidates for re-use in future projects. A good choice is to create
a directory with sub-directories for each of these sub-projects.

Next, there are three options. One is to add the sub-projects to the directory hierarchy of the
current project. Another is to use a completely dislocated directory. Third, the sub-project can be
added to the SWI-Prolog hierarchy. Using local installation, a typical file_search_path/2 is:

:— prolog_load_context (directory, Dir),
asserta (user:file_search_path (myapp, Dir)).

user:file_search_path (graph, myapp (graph)) .
user:file_search_path (ui, myapp (ui)) .

When using sub-projects in the SWI-Prolog hierarchy, one should use the path alias swi as basis. For
a system-wide installation, use an absolute path.

Extensive sub-projects with a small well-defined API should define a load file with calls to
use_module/1 to import the various library components and export the AP

3.1.2 Project Special Files

There are a number of tasks you typically carry out on your project, such as loading it, creating a
saved state, debugging it, etc. Good practice on large projects is to define small files that hold the
commands to execute such a task, name this file after the task and give it a file extension that makes
starting easy (see section 3.1.1). The task load is generally central to these tasks. Here is a tentative
list:

e Joad.pl
Use this file to set up the environment (Prolog flags and file search paths) and load the sources.
Quite commonly this file also provides convenient predicates to parse command line options
and start the application.

e run.pl
Use this file to start the application. Normally it loads 1oad.pl in silent-mode, and calls one
of the starting predicates from load.pl.

SWI-Prolog 8.0 Reference Manual

3.2. USING MODULES 73

e save.pl
Use this file to create a saved state of the application by loading load.pl and calling
gsave_program/2 to generate a saved state with the proper options.

e debug.pl
Loads the program for debugging. In addition to loading 1oad.pl this file defines rules for
portray/1 to modify printing rules for complex terms and customisation rules for the debug-
ger and editing environment. It may start some of these tools.

3.1.3 International source files

As discussed in section 2.19, SWI-Prolog supports international character handling. Its internal en-
coding is UNICODE. I/O streams convert to/from this internal format. This section discusses the
options for source files not in US-ASCIL.

SWI-Prolog can read files in any of the encodings described in section 2.19. Two encodings are of
particular interest. The t ext encoding deals with the current locale, the default used by this computer
for representing text files. The encodings ut £8, unicode_le and unicode_be are UNICODE
encodings: they can represent—in the same file—characters of virtually any known language. In
addition, they do so unambiguously.

If one wants to represent non US-ASCII text as Prolog terms in a source file, there are several
options:

o Use escape sequences
This approach describes NON-ASCII as sequences of the form \octa/\. The numerical argu-
ment is interpreted as a UNICODE character.' The resulting Prolog file is strict 7-bit US-ASCII,
but if there are many NON-ASCII characters it becomes very unreadable.

o Use local conventions
Alternatively the file may be specified using local conventions, such as the EUC encoding for
Japanese text. The disadvantage is portability. If the file is moved to another machine, this
machine must use the same locale or the file is unreadable. There is no elegant way if files from
multiple locales must be united in one application using this technique. In other words, it is fine
for local projects in countries with uniform locale conventions.

o Using UTF-8 files
The best way to specify source files with many NON-ASCII characters is definitely the use of
UTF-8 encoding. Prolog can be notified of this encoding in two ways, using a UTF-8 BOM (see
section 2.19.1) or using the directive : — encoding (ut£8) . Many of today’s text editors,
including PceEmacs, are capable of editing UTF-8 files. Projects that were started using local
conventions can be re-coded using the Unix iconv tool or often using commands offered by
the editor.

3.2 Using modules

Modules have been debated fiercely in the Prolog world. Despite all counter-arguments we feel they
are extremely useful because:

"To my knowledge, the ISO escape sequence is limited to 3 octal digits, which means most characters cannot be repre-
sented.

SWI-Prolog 8.0 Reference Manual

74

CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

o They hide local predicates

This is the reason they were invented in the first place. Hiding provides two features. They
allow for short predicate names without worrying about conflicts. Given the flat name-space in-
troduced by modules, they still require meaningful module names as well as meaningful names
for exported predicates.

They document the interface

Possibly more important than avoiding name conflicts is their role in documenting which part
of the file is for public usage and which is private. When editing a module you may assume you
can reorganise anything except the name and the semantics of the exported predicates without
worrying.

They help the editor

The PceEmacs built-in editor does on-the-fly cross-referencing of the current module, colouring
predicates based on their origin and usage. Using modules, the editor can quickly find out what
is provided by the imported modules by reading just the first term. This allows it to indicate in
real-time which predicates are not used or not defined.

Using modules is generally easy. Only if you write meta-predicates (predicates reasoning about

other predicates) that are exported from a module is a good understanding required of the resolution
of terms to predicates inside a module. Here is a typical example from readutil.

:— module (read_util,

[read_line_to_codes/2,
read_line to_codes/3,
read_stream_to_codes/2,
read_stream to_ codes/3,
read_file_to_codes/3,
read_file to_terms/3

+Fd, -Codes

+Fd, —-Codes, ?Tail

+Fd, -Codes

+Fd, —-Codes, ?Tail
+File, -Codes, +Options
+File, -Terms, +Options

o o° o° o° o oP

3.3 The test-edit-reload cycle

SWI-Prolog does not enforce the use of a particular editor for writing Prolog source code. Editors are
complicated programs that must be mastered in detail for real productive programming. If you are
familiar with a specific editor you should not be forced to change. You may specify your favourite
editor using the Prolog flag editor, the environment variable EDITOR or by defining rules for
prolog_edit:edit_source/1.

The use of a built-in editor, which is selected by setting the Prolog flag editor to pce_emacs,

has advantages. The XPCE editor object, around which the built-in PceEmacs is built, can be opened
as a Prolog stream allowing analysis of your source by the real Prolog system.

3.3.1 Locating things to edit

The central predicate for editing something is edit/1, an extensible front-end that searches for
objects (files, predicates, modules, as well as XPCE classes and methods) in the Prolog database.

SWI-Prolog 8.0 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 75

If multiple matches are found it provides a choice. Together with the built-in completion on atoms
bound to the TAB key this provides a quick way to edit objects:

?— edit (country) .
Please select item to edit:

1 chat:country/10 " /staff/jan/lib/prolog/chat/countr.pl’ :16
2 chat:country/1 " /staff/jan/lib/prolog/chat/world0.pl’ :72

Your choice?

3.3.2 Editing and incremental compilation

One of the nice features of Prolog is that the code can be modified while the program is running.
Using pure Prolog you can trace a program, find it is misbehaving, enter a break environment, modify
the source code, reload it and finally do refry on the misbehaving predicate and try again. This
sequence is not uncommon for long-running programs. For faster programs one will normally abort
after understanding the misbehaviour, edit the source, reload it and try again.

One of the nice features of SWI-Prolog is the availability of make/0, a simple predicate that
checks all loaded source files to see which ones you have modified. It then reloads these files, consid-
ering the module from which the file was loaded originally. This greatly simplifies the trace-edit-verify
development cycle. For example, after the tracer reveals there is something wrong with prove/ 3,
you do:

?— edit (prove) .

Now edit the source, possibly switching to other files and making multiple changes. After finishing,
invoke make /0, either through the editor Ul (Compile/Make (Control-C Control-M)) or on
the top level, and watch the files being reloaded.”

o)

% show compiled into photo_gallery 0.03 sec, 3,360 bytes

?— make.

3.4 Using the PceEmacs built-in editor

3.4.1 Activating PceEmacs

Initially edit /1 uses the editor specified in the EDITOR environment variable. There are two ways
to force it to use the built-in editor. One is to set the Prolog flag editor to pce_emacs and the
other is by starting the editor explicitly using the emacs/ [0, 1] predicates.

2Watching these files is a good habit. If expected files are not reloaded you may have forgotten to save them from the
editor or you may have been editing the wrong file (wrong directory).

SWI-Prolog 8.0 Reference Manual

76 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

3.4.2 Bluffing through PceEmacs

PceEmacs closely mimics Richard Stallman’s GNU-Emacs commands, adding features from modern
window-based editors to make it more acceptable for beginners.”

At the basis, PceEmacs maps keyboard sequences to methods defined on the extended editor
object. Some frequently used commands are, with their key-binding, presented in the menu bar above
each editor window. A complete overview of the bindings for the current mode is provided through
Help/Show key bindings (Control-h Control-b).

Edit modes

Modes are the heart of (Pce)Emacs. Modes define dedicated editing support for a particular kind of
(source) text. For our purpose we want Prolog mode. There are various ways to make PceEmacs use
Prolog mode for a file.

e Using the proper extension
If the file ends in . p1 or the selected alternative (e.g. . pro) extension, Prolog mode is selected.

e Using #!/path/to/.../swipl
If the file is a Prolog Script file, starting with the line #! /path/to/swipl options, Prolog
mode is selected regardless of the extension.

e Using —x— Prolog —x-—
If the above sequence appears in the first line of the file (inside a Prolog comment) Prolog mode
is selected.

e Explicit selection
Finally, using File/Mode/Prolog you can switch to Prolog mode explicitly.

Frequently used editor commands

Below we list a few important commands and how to activate them.

o Cut/Copy/Paste

These commands follow Unix/X11 traditions. You’re best suited with a three-button mouse.
After selecting using the left-mouse (double-click uses word-mode and triple line-mode), the
selected text is automatically copied to the clipboard (X11 primary selection on Unix). Cut is
achieved using the DEL key or by typing something else at the location. Paste is achieved using
the middle-mouse (or wheel) button. If you don’t have a middle-mouse button, pressing the
left- and right-button at the same time is interpreted as a middle-button click. If nothing helps,
there is the Edit/Paste menu entry. Text is pasted at the caret location.

e Undo
Undo is bound to the GNU-Emacs Control-_ as well as the MS-Windows Control-Z sequence.

e Abort
Multi-key sequences can be aborted at any stage using Control-G.

*Decent merging with MS-Windows control-key conventions is difficult as many conflict with GNU-Emacs. Especially
the cut/copy/paste commands conflict with important GNU-Emacs commands.

SWI-Prolog 8.0 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 77

e Find
Find (Search) is started using Control-S (forward) or Control-R (backward). PceEmacs imple-
ments incremental search. This is difficult to use for novices, but very powerful once you get
the clue. After one of the above start keys, the system indicates search mode in the status line.
As you are typing the search string, the system searches for it, extending the search with every
character you type. It illustrates the current match using a green background.

If the target cannot be found, PceEmacs warns you and no longer extends the search string.*
During search, some characters have special meaning. Typing anything but these characters
commits the search, re-starting normal edit mode. Special commands are:

Control-S
Search forwards for next.

Control-R
Search backwards for next.

Control-W
Extend search to next word boundary.

Control-G
Cancel search, go back to where it started.

ESC

Commit search, leaving caret at found location.

Backspace
Remove a character from the search string.

e Dynamic Abbreviation
Also called dabbrev, dynamic abbreviation is an important feature of Emacs clones to support
programming. After typing the first few letters of an identifier, you may press Alt-/, causing
PceEmacs to search backwards for identifiers that start the same and use it to complete the text
you typed. A second Alt-/ searches further backwards. If there are no hits before the caret, it
starts searching forwards. With some practice, this system allows for entering code very fast
with nice and readable identifiers (or other difficult long words).

e Open (a file)
Is called File/Find file (Control-x Control-f). By default the file is loaded into the
current window. If you want to keep this window, press Alt-s or click the little icon at the
bottom left to make the window sticky.

o Split view
Sometimes you want to look at two places in the same file. To do this, use Control-x 2 to create
a new window pointing to the same file. Do not worry, you can edit as well as move around in
both. Control-x 1 kills all other windows running on the same file.

These are the most commonly used commands. In section 3.4.3 we discuss specific support for
dealing with Prolog source code.

*GNU-Emacs keeps extending the string, but why? Adding more text will not make it match.

SWI-Prolog 8.0 Reference Manual

78 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

3.4.3 Prolog Mode

In the previous section (section 3.4.2) we explained the basics of PceEmacs. Here we continue with
Prolog-specific functionality. Possibly the most interesting is Syntax highlighting. Unlike most editors
where this is based on simple patterns, PceEmacs syntax highlighting is achieved by Prolog itself ac-
tually reading and interpreting the source as you type it. There are three moments at which PceEmacs
checks (part of) the syntax.

o After typing a .
After typing a . that is not preceded by a symbol character, the system assumes you completed
a clause, tries to find the start of this clause and verifies the syntax. If this process succeeds it
colours the elements of the clause according to the rules given below. Colouring is done using
information from the last full check on this file. If it fails, the syntax error is displayed in the
status line and the clause is not coloured.

e After the command Control-c Control-s
Acronym for Check Syntax, it performs the same checks as above for the clause surrounding
the caret. On a syntax error, however, the caret is moved to the expected location of the error.’

o After pausing for two seconds
After a short pause (2 seconds), PceEmacs opens the edit buffer and reads it as a whole, creating
an index of defined, called, dynamic, imported and exported predicates. After completing this,
it re-reads the file and colours all clauses and calls with valid syntax.

e After typing Control-1 Control-|
The Control-l command re-centers the window (scrolls the window to make the caret the center
of the window). Typing this command twice starts the same process as above.

The colour schema itself is defined in emacs/prolog_colour. The colouring can be extended
and modified using multifile predicates. Please check this source file for details. In general, underlined
objects have a popup (right-mouse button) associated with common commands such as viewing the
documentation or source. Bold text is used to indicate the definition of objects (typically predicates
when using plain Prolog). Other colours follow intuitive conventions. See table 3.4.3.

Layout support Layout is not ‘just nice’, it is essential for writing readable code. There is much
debate on the proper layout of Prolog. PceEmacs, being a rather small project, supports only one
particular style for layout.® Below are examples of typical constructs.

head (argl, arg2).

head (argl, arg2) :— !.

head (Argl, arg2) :- !,
calll (Argl).

head (Argl, arg2) :-—

5In most cases the location where the parser cannot proceed is further down the file than the actual error location.
®Defined in Prolog in the file emacs/prolog.mode, you may wish to extend this. Please contribute your extensions!

SWI-Prolog 8.0 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 79

Clauses
Blue bold | Head of an exported predicate
Red bold Head of a predicate that is not called
Black bold | Head of remaining predicates

Calls in the clause body
Blue Call to built-in or imported predicate
Red Call to undefined predicate
Purple Call to dynamic predicate

Other entities
Dark green | Comment

Dark blue | Quoted atom or string
Brown Variable

Table 3.1: Colour conventions

(if (Argl)
-> then
; else

head (Argl)

a (many,
long,
arguments (with,
many,
more),
and ([a,
long,
list,
with,
ay,
| tail
1)) .

PceEmacs uses the same conventions as GNU-Emacs. The TAB key indents the current line according
to the syntax rules. Alt-q indents all lines of the current clause. It provides support for head, calls
(indented 1 tab), if-then-else, disjunction and argument lists broken across multiple lines as illustrated
above.

SWI-Prolog 8.0 Reference Manual

80 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

Finding your way around

The command Alt-. extracts name and arity from the caret location and jumps (after conformation
or edit) to the definition of the predicate. It does so based on the source-location database of loaded
predicates also used by edit /1. This makes locating predicates reliable if all sources are loaded and
up-to-date (see make/0).

In addition, references to files in use_module/ [1, 2], consult /1, etc. are red if the file can-
not be found and underlined blue if the file can be loaded. A popup allows for opening the referenced
file.

3.5 The Graphical Debugger

SWI-Prolog offers two debuggers. One is the traditional text console-based 4-port Prolog tracer and
the other is a window-based source level debugger. The window-based debugger requires XPCE
installed. It operates based on the prolog_trace_interception/4 hook and other low-level
functionality described in chapter B.

Window-based tracing provides a much better overview due to the eminent relation to your source
code, a clear list of named variables and their bindings as well as a graphical overview of the call and
choice point stack. There are some drawbacks though. Using a textual trace on the console, one can
scroll back and examine the past, while the graphical debugger just presents a (much better) overview
of the current state.

3.5.1 Invoking the window-based debugger

Whether the text-based or window-based debugger is used is controlled using the predicates
guitracer/0 and noguitracer/0. Entering debug mode is controlled using the normal pred-
icates for this: trace/0 and spy/1. In addition, PceEmacs prolog mode provides the command
Prolog/Break at (Control—-c b) to insert a break-point at a specific location in the source code.

The graphical tracer is particulary useful for debugging threads. The tracer must be loaded from
the main thread before it can be used from a background thread.

guitracer
This predicate installs the above-mentioned hooks that redirect tracing to the window-based
environment. No window appears. The debugger window appears as actual tracing is started
through t race/0, by hitting a spy point defined by spy /1 or a break point defined using the
PceEmacs command Prolog/Break at (Control-c b).

noguitracer
Disable the hooks installed by guitracer/0, reverting to normal text console-based tracing.

gtrace
Utility defined as guitracer, trace.

gdebug
Utility defined as guitracer, debug.

gspy(+Predicate)
Utility defined as guitracer, spy (Predicate).

SWI-Prolog 8.0 Reference Manual

3.6. THE PROLOG NAVIGATOR 81

3.6 The Prolog Navigator

Another tool is the Prolog Navigator. This tool can be started from PceEmacs using the command
Browse/Prolog navigator, from the GUI debugger or using the programmatic IDE interface de-
scribed in section 3.8.

3.7 Cross-referencer

A cross-referencer is a tool that examines the caller-callee relation between predicates, and, using this
information to explicate dependency relations between source files, finds calls to non-existing pred-
icates and predicates for which no callers can be found. Cross-referencing is useful during program
development, reorganisation, clean-up, porting and other program maintenance tasks. The dynamic
nature of Prolog makes the task non-trivial. Goals can be created dynamically using call/1 after
construction of a goal term. Abstract interpretation can find some of these calls, but they can also come
from external communication, making it impossible to predict the callee. In other words, the cross-
referencer has only partial understanding of the program, and its results are necessarily incomplete.
Still, it provides valuable information to the developer.

SWI-Prolog’s cross-referencer is split into two parts. The standard Prolog library prolog_xref
is an extensible library for information gathering described in section A.32, and the XPCE library
pce_xref provides a graphical front-end for the cross-referencer described here. We demonstrate
the tool on CHAT®80, a natural language question and answer system by Fernando C.N. Pereira and
David H.D. Warren.

gxref
Run cross-referencer on all currently loaded files and present a graphical overview of the result.
As the predicate operates on the currently loaded application it must be run after loading the
application.

The left window (see figure 3.1) provides browsers for loaded files and predicates. To avoid
long file paths, the file hierarchy has three main branches. The first is the current directory hold-
ing the sources. The second is marked alias, and below it are the file-search-path aliases (see
file_search_path/2 and absolute_file_name/3). Here you find files loaded from the sys-
tem as well as modules of the program loaded from other locations using the file search path. All
loaded files that fall outside these categories are below the last branch called /. Files where the
system found suspicious dependencies are marked with an exclamation mark. This also holds for
directories holding such files. Clicking on a file opens a File info window in the right pane.

The File info window shows a file, its main properties, its undefined and not-called predicates and
its import and export relations to other files in the project. Both predicates and files can be opened
by clicking on them. The number of callers in a file for a certain predicate is indicated with a blue
underlined number. A left-click will open a list and allow editing the calling predicate.

The Dependencies (see figure 3.2) window displays a graphical overview of dependencies be-
tween files. Using the background menu a complete graph of the project can be created. It is also
possible to drag files onto the graph window and use the menu on the nodes to incrementally expand
the graph. The underlined blue text indicates the number of predicates used in the destination file.
Left-clicking opens a menu to open the definition or select one of the callers.

SWI-Prolog 8.0 Reference Manual

82

CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

4 Prolog XREF

File View

Files 1 Predicates]
E—g{p:ria]am

—E] plrc
& aggregpl

—@ chatops.pl

cities.pl
F® clotab.pl
—@ contai.pl
~a‘ countr.pl
8¢ ndtabl.pl
newdic.pl
—E] newg.pl
& ptree.pl
& aplan.pl
—a‘ readin.pl
—a’ rivers.pl
~ Q] scopes.pl
7E] slots.pl
FB takepl
—a’ templa.pl
~ Q] world0.pl

—a‘ xgrun.pl

®) user_preiile

Dependencies I File info]

= chattop.pl
Modified: | Tue Dec 2 16:10:31 2003
L Called by
display/1 check_word/2, control/, failure0
otherwise/0 show_results3
pp_quant’2 report_item/2
time test/0
version/0 runtime_entry/1
Nof called
runtime_entry/1
test'0
Defined Used by
hil0 chat.pl (1}
test_chat/0 plrc (1)
quote’! ptree.pl (1)
From Uses
newdic.pl word/1
newg.pl sentence/S
ptree.pl print_tree
qgplan.pl qplan/2
readin.pl read_in/1
scopes.pl clausify/2
slots.pl i_sentence/2
talkr.pl answer/1, holds/2, seto3, write_tree
ST
]

| Undefined predicate version/0

Figure 3.1: File info for chattop.pl, part of CHAT80

File View

Files 1 Prsd\::ales]

E—%{p{imam

—I!] plrc
& aggreg.pl
~a‘ border.pl
—E] chat.pl
—a‘ chatops.pl
—E] chattop.pl
~a‘ cities.pl
F® clotab.pl
—a‘ contai.pl
—a‘ countr.pl
& ndtabl pl
newdic.pl
—E] newg.pl
& piree.pl
& aplan.pl
—a‘ readin.pl
—a‘ rivers.pl
—@ scopes.pl
7E] slots.pl
F® takepl
—a‘ templa.pl
—@ world0.pl
~a‘ xgrun.pl
alias
) library
®1 library
#) pee_boot

=

(#) user_profile

Dependencies I File info]

= xgrun.pl lotab.pl
readin.pl
chal.pl
piree.pl
Pl
slols.pl
qplan.pl
[) Definition
ndia| ndra costi5 cities.pl rido.pl
nd/s - nial.pl
aggreg.pl
border.pl
countr.pl
[rivers.pl
*|[4] [»]

Figure 3.2: Dependencies between source files of CHATS0

SWI-Prolog 8.0 Reference Manual

3.8. ACCESSING THE IDE FROM YOUR PROGRAM 83

Module and non-module files The cross-referencer threads module and non-module project files
differently. Module files have explicit import and export relations and the tool shows the usage and
consistency of the relations. Using the Header menu command, the tool creates a consistent import
list for the module that can be included in the file. The tool computes the dependency relations
between the non-module files. If the user wishes to convert the project into a module-based one,
the Header command generates an appropriate module header and import list. Note that the cross-
referencer may have missed dependencies and does not deal with meta-predicates defined in one
module and called in another. Such problems must be resolved manually.

Settings The following settings can be controlled from the settings menu:

Warn autoload
By default disabled. If enabled, modules that require predicates to be autoloaded are flagged
with a warning and the file info window of a module shows the required autoload predicates.

Warn not called
If enabled (default), the file overview shows an alert icon for files that have predicates that are
not called.

3.8 Accessing the IDE from your program

Over the years a collection of IDE components have been developed, each with its own interface.
In addition, some of these components require each other, and loading IDE components must be on
demand to avoid the IDE being part of a saved state (see gsave_program/2). For this reason,
access to the IDE is concentrated on a single interface called prolog_ide/1:

prolog_ide(+Action)
This predicate ensures the IDE-enabling XPCE component is loaded, creates the XPCE class
prolog_ide and sends Action to its one and only instance @prolog_ide. Action is one of the
following:

open_navigator(+Directory)
Open the Prolog Navigator (see section 3.0) in the given Directory.

open_debug_status
Open a window to edit spy and trace points.

open_query_window
Open a little window to run Prolog queries from a GUI component.

thread_monitor
Open a graphical window indicating existing threads and their status.

debug_monitor
Open a graphical front-end for the debug library that provides an overview of the topics
and catches messages.

xref
Open a graphical front-end for the cross-referencer that provides an overview of predicates
and their callers.

SWI-Prolog 8.0 Reference Manual

84

CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

3.9

Summary of the IDE

The SWI-Prolog development environment consists of a number of interrelated but not (yet) integrated

tools.

Here is a list of the most important features and tips.

e Atom completion

The console’ completes a partial atom on the TAB key and shows alternatives on the command
Alt-?.

Use edit /1 for finding locations
The command edit /1 takes the name of a file, module, predicate or other entity registered
through extensions and starts the user’s preferred editor at the right location.

Select editor
External editors are selected using the EDITOR environment variable, by setting the Prolog flag
editor, or by defining the hook prolog_edit:edit_source/1.

Update Prolog after editing
Using make/ 0, all files you have edited are re-loaded.

PceEmacs
Offers syntax highlighting and checking based on real-time parsing of the editor’s buffer, layout
support and navigation support.

Using the graphical debugger

The predicates guitracer/0 and noguitracer/0 switch between traditional text-based
and window-based debugging. The tracer is activated using the trace/0, spy/1 or menu
items from PceEmacs or the Prolog Navigator.

The Prolog Navigator
Shows the file structure and structure inside the file. It allows for loading files, editing, setting
Spy points, etc.

"On Windows this is realised by swipl-win.exe, on Unix through the GNU readline library, which is included automati-
cally when found by configure.

SWI-Prolog 8.0 Reference Manual

Built-in Predicates

4.1 Notation of Predicate Descriptions

We have tried to keep the predicate descriptions clear and concise. First, the predicate name is printed
in bold face, followed by the arguments in italics. Arguments are preceded by a mode indicator.
There is no complete agreement on mode indicators in the Prolog community. We use the following
definitions:'

++ Argument must be ground, i.e., the argument may not contain a variable

anywhere.
+ Argument must be fully instantiated to a term that satisfies the type.
This is not necessarily ground, e.g., the term [_] is a [list, although its

only member is unbound.

- Argument is an output argument. Unless specified otherwise,
output arguments need not to be unbound. For example, the
goal findall (X, Goal, [T]) is good style and equivalent to
findall (X, Goal, Xs), Xs = [T]? Note that the determin-
ism specification, e.g., “det” only applies if this argument is unbound.

— Argument must be unbound. Typically used by predicates that create
‘something’ and return a handle to the created object, such as open/ 3
which creates a stream.

? Argument must be bound to a partial term of the indicated type.
Note that a variable is a partial term for any type. Think of the
argument as either input or output or both input and output. For

example, in stream_property (S, reposition (Bool)), the
reposition part of the term is input and the uninstantiated Bool is
output.

Argument is a meta-argument. Implies +. See chapter 6 for more infor-
mation on module handling.
@ Argument is not further instantiated. Typically used for type tests.
Argument contains a mutable structure that may be modified using
setarg/3 ornb_setarg/3.

Referring to a predicate in running text is done using a predicate indicator. The canonical and
most generic form of a predicate indicator is a term (module):(name)/{arity). If the module is irrele-
vant (built-in predicate) or can be inferred from the context it is often omitted. Compliant to the ISO
standard draft on DCG (see section 4.13), SWI-Prolog also allows for [(module)]:(name)//{arity) to

!These definitions are taken from PIDoc. The current manual has only one mode declaration per predicate and therefore
predicates with mode (+,-) and (-,+) are described as (?,?). The @-mode is often replaced by +.

SWI-Prolog 8.0 Reference Manual

86 CHAPTER 4. BUILT-IN PREDICATES

refer to a grammar rule. For all non-negative arity, (name)//(arity) is the same as (name)/(arity)+2,
regardless of whether or not the referenced predicate is defined or can be used as a grammar rule. The
//-notation can be used in all places that traditionally allow for a predicate indicator, e.g., the module
declaration, spy/1, and dynamic/1.

4.2 Character representation

In traditional (Edinburgh) Prolog, characters are represented using character codes. Character codes
are integer indices into a specific character set. Traditionally the character set was 7-bit US-ASCII.
8-bit character sets have been allowed for a long time, providing support for national character sets,
of which iso-latin-1 (ISO 8859-1) is applicable to many Western languages.

ISO Prolog introduces three types, two of which are used for characters and one for accessing
binary streams (see open/4). These types are:

e code
A character code is an integer representing a single character. As files may use multi-byte
encoding for supporting different character sets (utf-8 encoding for example), reading a code
from a text file is in general not the same as reading a byte.

e char
Alternatively, characters may be represented as one-character atoms. This is a natural repre-
sentation, hiding encoding problems from the programmer as well as providing much easier
debugging.

e byte
Bytes are used for accessing binary streams.

In SWI-Prolog, character codes are always the Unicode equivalent of the encoding. That is,
if get_code/1 reads from a stream encoded as KOI8-R (used for the Cyrillic alphabet), it re-
turns the corresponding Unicode code points. Similarly, assembling or disassembling atoms using
atom_codes/2 interprets the codes as Unicode points. See section 2.19.1 for details.

To ease the pain of the two character representations (code and char), SWI-Prolog’s built-in predi-
cates dealing with character data work as flexible as possible: they accept data in any of these formats
as long as the interpretation is unambiguous. In addition, for output arguments that are instantiated,
the character is extracted before unification. This implies that the following two calls are identical,
both testing whether the next input character is an a.

peek_code (Stream, a).
peek_code (Stream, 97).

The two character representations are handled by a large number of built-in predicates,
all of which are ISO-compatible. For converting between code and character there is
char_code/2. For breaking atoms and numbers into characters there are atom_chars/2,
atom_codes/2, number_chars/2 and number_codes/2. For character I/O on streams
there are get_char/[1,2], get_code/[1,2], get_byte/[1,2], peek_char/[1,2],
peek_code/[1,2], peek byte/[1,2], put_code/[1l,2], put_char/[1,2] and
put_byte/[1,2]. The Prolog flag double_quotes controls how text between double quotes is
interpreted.

SWI-Prolog 8.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 87

4.3 Loading Prolog source files

This section deals with loading Prolog source files. A Prolog source file is a plain text file containing
a Prolog program or part thereof. Prolog source files come in three flavours:

A traditional Prolog source file contains Prolog clauses and directives, but no module declara-
tion (see module/1). They are normally loaded using consult /1 or ensure_loaded/1.
Currently, a non-module file can only be loaded into a single module.’

A module Prolog source file starts with a module declaration. The subsequent Prolog code is loaded
into the specified module, and only the exported predicates are made available to the context
loading the module. Module files are normally loaded with use module/ [1, 2]. See chap-
ter 6 for details.

An include Prolog source file is loaded using the include/1 directive, textually including Prolog
text into another Prolog source. A file may be included into multiple source files and is typically
used to share declarations such as multifile or dynamic between source files.

Prolog source files are located using absolute_file_name/3 with the following options:

locate_prolog_file(Spec, Path) :-
absolute_file name (Spec,
[file_type (prolog),
access (read)

1,
Path) .

The file_type(prolog) option is used to determine the extension of the file using
prolog_file_type/2. The default extension is .pl. Spec allows for the path alias construct de-
fined by absolute_file_name/3. The most commonly used path alias is 1 ibrary(LibraryFile).
The example below loads the library file ordsets.pl (containing predicates for manipulating or-
dered sets).

:— use_module (library (ordsets)) .

SWI-Prolog recognises grammar rules (DCG) as defined in []. The user
may define additional compilation of the source file by defining the dynamic multifile predicates
term_expansion/2,termexpansion/4,goal_expansion/2 and goal_expansion/4.
It is not allowed to use assert/1l, retract/1l or any other database predicate in
term_expansion/2 other than for local computational purposes.* Code that needs to create ad-
ditional clauses must use compile_aux_clauses/1. See library (apply. macros) for an
example.

A directive is an instruction to the compiler. Directives are used to set (predicate) properties (see
section 4.15), set flags (see set _prolog_flag/2) and load files (this section). Directives are terms
of the form : - (ferm).. Here are some examples:

3This limitation may be lifted in the future. Existing limitations in SWI-Prolog’s source code administration make this
non-trivial.
It does work for normal loading, but not for gcompile/1.

SWI-Prolog 8.0 Reference Manual

88 CHAPTER 4. BUILT-IN PREDICATES

Predicate if must_be_module import
consult/1 true false all
ensure_loaded/1 not_loaded false all
use_module/1 not_loaded true all
use_module/2 not_loaded true specified
reexport/1 not_loaded true all
reexport/2 not_loaded true specified

Table 4.1: Properties of the file-loading predicates. The import column specifies what is imported if
the loaded file is a module file.

:— use_module (library(lists)) .
:— dynamic
store/2. % Name, Value

The directive initialization/1 can be used to run arbitrary Prolog goals. The specified goal is
started after loading the file in which it appears has completed.

SWI-Prolog compiles code as it is read from the file, and directives are executed as goals. This
implies that directives may call any predicate that has been defined before the point where the directive
appears. It also accepts ?— (term). as a synonym.

SWI-Prolog does not have a separate reconsult/1 predicate. Reconsulting is implied auto-
matically by the fact that a file is consulted which is already loaded.

Advanced topics are handled in subsequent sections: mutually dependent files (section 4.3.2),
multithreaded loading (section 4.3.2) and reloading running code (section 4.3.2).

The core of the family of loading predicates is 1oad_files/2. The predicates consult/1,
ensure_loaded/1,usemodule/1,usemodule/2 and reexport /1 pass the file argument
directly to 1oad_-files/2 and pass additional options as expressed in the table 4.1:

load _files(: Files)
Equivalent to 1oad_files(Files, []). Same as consult/1, See load_files/2 for sup-
ported options.

load files(. Files, +Options)
The predicate 1oad_files/2 is the parent of all the other loading predicates except for
include/1. It currently supports a subset of the options of Quintus load_files/2. Files
is either a single source file or a list of source files. The specification for a source file is handed
to absolute_file_name/2. See this predicate for the supported expansions. Options is a
list of options using the format OptionName(OptionValue).

The following options are currently supported:

autoload(Bool)
If true (default false), indicate that this load is a demand load. This implies that,
depending on the setting of the Prolog flag verbose_autoload, the load action is
printed at level informational or silent. See also print message/2 and
current_prolog_flag/2.

SWI-Prolog 8.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 89

check_script(Bool)
If false (default true), do not check the first character to be # and skip the first line
when found.

derived_from(File)
Indicate that the loaded file is derived from File. Used by make/0 to time-check and
load the original file rather than the derived file.

dialect(+Dialect)
Load Files with enhanced compatibility with the target Prolog system identified by Di-
alect. See expects_dialect/1 and section C for details.

encoding(Encoding)
Specify the way characters are encoded in the file. Default is taken from the Prolog flag
encoding. See section 2.19.1 for details.

expand(Bool)
If t rue, run the filenames through expand_file_name/2 and load the returned files.
Defaultis false, except for consult /1 which is intended for interactive use. Flexible
location of files is defined by file_search path/2.

format(+Format)
Used to specify the file format if data is loaded from a stream using the st ream(Stream)
option. Default is source, loading Prolog source text. If glf, load QLF data (see
qcompile/1).

if(Condition)
Load the file only if the specified condition is satisfied. The value true loads the file
unconditionally, changed loads the file if it was not loaded before or has been modified
since it was loaded the last time, and not_loaded loads the file if it was not loaded
before.

imports(/mport)

Specify what to import from the loaded module. The default for use module/1 is
all. Import is passed from the second argument of use_module/2. Traditionally it is
a list of predicate indicators to import. As part of the SWI-Prolog/YAP integration, we
also support Pred as Name to import a predicate under another name. Finally, Import
can be the term except(Exceptions), where Exceptions is a list of predicate indicators
that specify predicates that are not imported or Pred as Name terms to denote renamed
predicates. See also reexport /2 and use_module/2.’

If Import equals all, all operators are imported as well. Otherwise, operators are not
imported. Operators can be imported selectively by adding terms op(Pri,Assoc, Name) to
the Import list. If such a term is encountered, all exported operators that unify with this
term are imported. Typically, this construct will be used with all arguments unbound to
import all operators or with only Name bound to import a particular operator.

modified(7imeStamp)
Claim that the source was loaded at TimeStamp without checking the source. This option
is intended to be used together with the stream(/npuf) option, for example after
extracting the time from an HTTP server or database.

SBUG: NamelArity as NewName is currently implemented using a link clause. This harms efficiency and does not allow
for querying the relation through predicate_property/2.

SWI-Prolog 8.0 Reference Manual

920 CHAPTER 4. BUILT-IN PREDICATES

module(+Module)
Load the indicated file into the given module, overruling the module name specified in
the : — module (Name, ...) directive. This currently serves two purposes: (1) allow

loading two module files that specify the same module into the same process and force
and (2): force loading source code in a specific module, even if the code provides its own
module name. Experimental.

must_be_module(Bool)

If t rue, raise an error if the file is not a module file. Used by use_module/[1,2].
qcompile(Arom)

How to deal with quick-load-file compilation by gcompile/1. Values are:

never
Default. Do not use qcompile unless called explicitly.

auto
Use qcompile for all writeable files. See comment below.

large
Use qcompile if the file is ‘large’. Currently, files larger than 100 Kbytes are consid-
ered large.

part
If load_files/2 appears in a directive of a file that is compiled into Quick Load
Format using gcompile/1, the contents of the argument files are included in the
.qlf file instead of the loading directive.

If this option is not present, it uses the value of the Prolog flag gcompi 1e as default.

optimise(+Boolean)
Explicitly set the optimization for compiling this module. See opt imise.

redefine_module(+Action)
Defines what to do if a file is loaded that provides a module that is already loaded from
another file. Action is one of false (default), which prints an error and refuses to load
the file, or t rue, which uses unload_file/1 on the old file and then proceeds loading
the new file. Finally, there is ask, which starts interaction with the user. ask is only
provided if the stream user_input is associated with a terminal.

reexport(Bool)
If t rue re-export the imported predicate. Used by reexport/1 and reexport /2.

register(Bool)
If false, do not register the load location and options. This option is used by
make/0 and load_hotfixes/1 to avoid polluting the load-context database. See
source_file property/2.

sandboxed(Bool)
Load the file in sandboxed mode. This option controls the flag sandboxed_load. The
only meaningful value for Bool is t rue. Using false while the Prolog flag is set to
true raises a permission error.

scope_settings(Bool)
Scope style_check/1 and expects_dialect/1 to the file and files loaded from
the file after the directive. Default is t rue. The system and user initialization files (see
—f and -F) are loading with scope_settings(false).

SWI-Prolog 8.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 91

silent(Bool)
If true, load the file without printing a message. The specified value is the default for
all files loaded as a result of loading the specified files. This option writes the Prolog flag
verbose_load with the negation of Bool.

stream(/nput)
This SWI-Prolog extension compiles the data from the stream Input. If this option is
used, Files must be a single atom which is used to identify the source location of the
loaded clauses as well as to remove all clauses if the data is reconsulted.
This option is added to allow compiling from non-file locations such as databases, the
web, the user (see consult /1) or other servers. It can be combined with format(glf)
to load QLF data from a stream.

The 1oad_files/2 predicate can be hooked to load other data or data from objects other than
files. See prolog_-load_-file/2 for a description and http/http_-load for an example.
All hooks for 1load_files/2 are documented in section B.8§.

consult(:File)
Read File as a Prolog source file. Calls to consult/1 may be abbreviated by just typing a
number of filenames in a list. Examples:

?— consult (load) . % consult 1oad or 1load.pl
?— [library(lists)]. % load library lists
?- [user]. % Type program on the terminal

The predicate consult/1 is equivalentto load_files (File, []), except for handling
the special file user, which reads clauses from the terminal. See also the stream(Input)
option of load_files/2. Abbreviation using ?— [filel,file2] . does not work for
the empty list ([]). This facility is implemented by defining the list as a predicate. Applications
may only rely on using the list abbreviation at the Prolog toplevel and in directives.

ensure_loaded(: File)
If the file is not already loaded, this is equivalent to consult /1. Otherwise, if the file defines
a module, import all public predicates. Finally, if the file is already loaded, is not a module
file, and the context module is not the global user module, ensure_loaded/1 will call
consult/1.

With this semantics, we hope to get as close as possible to the clear semantics with-
out the presence of a module system. Applications using modules should consider using
use_module/[1,2].

Equivalent to 1oad_files (Files, [if (not_loaded)]) .6

include(+File) [150]
Textually include the content of File at the position where the directive
:— include (File) . appears. The include construct is only honoured if it appears
as a directive in a source file. Textual include (similar to C/C++ #include) is obviously useful

0n older versions the condition used to be if (changed). Poor time management on some machines or copying
often caused problems. The make /0 predicate deals with updating the running system after changing the source code.

SWI-Prolog 8.0 Reference Manual

92

CHAPTER 4. BUILT-IN PREDICATES

for sharing declarations such as dynamic/1 or multifile/1 by including a file with
directives from multiple files that use these predicates.

Textually including files that contain clauses is less obvious. Normally, in SWI-Prolog, clauses
are owned by the file in which they are defined. This information is used to replace the old
definition after the file has been modified and is reloaded by, e.g., make /0. As we understand
it, include/1 is intended to include the same file multiple times. Including a file holding
clauses multiple times into the same module is rather meaningless as it just duplicates the same
clauses. Including a file holding clauses in multiple modules does not suffer from this problem,
but leads to multiple equivalent copies of predicates. Using use_module/1 can achieve the
same result while sharing the predicates.

If include/1 is used to load files holding clauses, and if these files are loaded only once,
then these include/ 1 directives can be replaced by other predicates (such as consult/1).
However, there are several cases where either include/1 has no alternative, or using any
alternative also requires other changes. An example of the former is using include/1 to
share directives. An example of the latter are cases where clauses of different predicates
are distributed over multiple files: If these files are loaded with include/1, the directive
discontiguous/1 is appropriate, whereas if they are consulted, one must use the directive
multifile/1.

To accommodate included files holding clauses, SWI-Prolog distinguishes between the source
location of a clause (in this case the included file) and the owner of a clause (the file that includes
the file holding the clause). The source location is used by, e.g., edit /1, the graphical tracer,
etc., while the owner is used to determine which clauses are removed if the file is modified.
Relevant information is found with the following predicates:

e source_file/2 describes the owner relation.
e predicate_property/2 describes the source location (of the first clause).
e clause_property/2 provides access to both source and ownership.

e source_file property/2 can be used to query include relationships between files.

require(+ListOfNameAndArity)

Declare that this file/module requires the specified predicates to be defined “with their com-
monly accepted definition”. This predicate originates from the Prolog portability layer for
XPCE. It is intended to provide a portable mechanism for specifying that this module requires
the specified predicates.

The implementation normally first verifies whether the predicate is already defined. If not, it
will search the libraries and load the required library.

SWI-Prolog, having autoloading, does not load the library. Instead it creates a procedure header
for the predicate if it does not exist. This will flag the predicate as ‘undefined’. See also
check/0 and autoload/0.

encoding(+Encoding)

This directive can appear anywhere in a source file to define how characters are encoded in the
remainder of the file. It can be used in files that are encoded with a superset of US-ASCII,
currently UTF-8 and ISO Latin-1. See also section 2.19.1.

SWI-Prolog 8.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 93

make

Consult all source files that have been changed since they were consulted. It checks all loaded
source files: files loaded into a compiled state using pl —-c ... and files loaded using
consult/1 or one of its derivatives. The predicate make/0 is called after edit/1,
automatically reloading all modified files. If the user uses an external editor (in a separate
window), make /0 is normally used to update the program after editing. In addition, make /0
updates the autoload indices (see section 2.13) and runs list_undefined/0 from the
check library to report on undefined predicates.

library_directory(?Atom)
Dynamic predicate used to specify library directories. Default . /1ib, ~/1ib/prolog and
the system’s library (in this order) are defined. The user may add library directories using
assertz/1,asserta/1 or remove system defaults using retract /1. Deprecated. New
code should use file_search_path/2.

file_search_path(+Alias, -Path)
Dynamic multifile hook predicate used to specify ‘path aliases’. This hook is called by
absolute_file_name/ 3 to search files specified as A1ias(Name), e.g., 1ibrary(lists).
This feature is best described using an example. Given the definition:

file_search_path(demo, ’/usr/lib/prolog/demo’) .

the file specification demo (myfile) will be expanded to /usr/lib/prolog/demo/
myfile. The second argument of file_search_path/2 may be another alias.

Below is the initial definition of the file search path. This path implies swi ({Path)) and refers
to a file in the SWI-Prolog home directory. The alias foreign ((Path)) is intended for storing
shared libraries (. so or .DLL files). See also use_foreign_ library/1.

user:file_search_path(library, X) :-
library_directory (X) .
user:file_search_path(swi, Home) :-
current_prolog_flag(home, Home).
user:file_search_path(foreign, swi (ArchLib)) :-
current_prolog_flag(arch, Arch),
atom_concat (" 1ib/’, Arch, ArchLib).
user:file_search_path(foreign, swi(lib)).
user:file_search_path(path, Dir) :-
getenv (' PATH’, Path),
(current_prolog_flag(windows, true)
-> atomic_list_concat (Dirs, (;), Path)
; atomic_list_concat (Dirs, :, Path)
)

member (Dir, Dirs).

The file_search_path/2 expansion is used by all loading predicates as well as by
absolute_file_name/[2, 3].

SWI-Prolog 8.0 Reference Manual

94 CHAPTER 4. BUILT-IN PREDICATES

The Prolog flag verbose_file_search can be set to true to help debugging Prolog’s
search for files.

expand._file_search_path(+Spec, -Path) [nondet]
Unifies Path with all possible expansions of the filename specification Spec. See also
absolute_file_name/3.

prolog_file_type(?Extension, ?Type)
This dynamic multifile predicate defined in module user determines the extensions considered
by file_search_path/2. Extension is the filename extension without the leading dot, and
Type denotes the type as used by the file _type(Type) option of file search path/2.
Here is the initial definition of prolog_file_type/2:

user:prolog_file_type (pl, prolog) .

user:prolog_file_type (Ext, prolog) :-—
current_prolog_flag(associate, Ext),
Ext \== pl.

user:prolog_file_type(qlf, glf).

user:prolog_file_ type (Ext, executable) :-
current_prolog_flag(shared_object_extension, Ext).

Users can add extensions for Prolog source files to avoid conflicts (for example with perl)
as well as to be compatible with another Prolog implementation. We suggest using .pro for
avoiding conflicts with perl. Overriding the system definitions can stop the system from
finding libraries.

source_file(?File)
True if File is a loaded Prolog source file. File is the absolute and canonical path to the source
file.

source_file(:Pred, ?File)
True if the predicate specified by Pred is owned by file File, where File is an absolute path name
(see absolute_file_name/2). Can be used with any instantiation pattern, but the database
only maintains the source file for each predicate. If Pred is a multifile predicate this predicate
succeeds for all files that contribute clauses to Pred.” See also clause_property/2. Note
that the relation between files and predicates is more complicated if include/1 is used. The
predicate describes the owner of the predicate. See include/1 for details.

source _file_property(?File, ?Property)
True when Property is a property of the loaded file File. If File is non-var, it can be a file
specification that is valid for 1oad_files/2. Defined properties are:

derived_from(Original, OriginalModified)
File was generated from the file Original, which was last modified at time OriginalMod-
ified at the time it was loaded. This property is available if File was loaded using the
derived_from(Original) option to load_files/2.

"The current implementation performs a linear scan through all clauses to establish this set of files.

SWI-Prolog 8.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 95

includes(/ncludedFile, IncludedFileModified)
File used include/1 to include IncludedFile. The last modified time of IncludedFile
was IncludedFileModified at the time it was included.

included_in(MasterFile, Line)
File was included into MasterFile from line Line. This is the inverse of the includes
property.

load_context(Module, Location, Options)
Module is the module into which the file was loaded. If File is a module, this is the
module into which the exports are imported. Otherwise it is the module into which the
clauses of the non-module file are loaded. Location describes the file location from
which the file was loaded. It is either a term (file):(line) or the atom user if the file was
loaded from the terminal or another unknown source. Options are the options passed to
load_files/2. Note that all predicates to load files are mapped to load_-files/2,
using the option argument to specify the exact behaviour.

load_count(-Count)
Count is the number of times the file have been loaded, i.e., 1 (one) if the file has been
loaded once.

modified(Stamp)
File modification time when File was loaded. This is used by make /0 to find files whose
modification time is different from when it was loaded.

source(Source)
One of £ile if the source was loaded from a file, resource if the source was loaded
from a resource or state if the file was included in the saved state.

module(Module)
File is a module file that declares the module Module.

number_of_clauses(Counr)
Count is the number of clauses associated with File. Note that clauses loaded from in-
cluded files are counted as part of the main file.

reloading
Present if the file is currently being reloaded.

unload _file(+File)
Remove all clauses loaded from File. If File loaded a module, clear the module’s export list
and disassociate it from the file. File is a canonical filename or a file indicator that is valid for
load_files/2.

This predicate should be used with care. The multithreaded nature of SWI-Prolog makes re-
moving static code unsafe. Attempts to do this should be reserved for development or situations
where the application can guarantee that none of the clauses associated to File are active.

prolog_load_context(?’Key, ?Value)
Obtain context information during compilation. This predicate can be used from directives
appearing in a source file to get information about the file being loaded as well as by the
term_expansion/2 and goal_expansion/2 hooks. See also source_location/2
and if/1. The following keys are defined:

SWI-Prolog 8.0 Reference Manual

CHAPTER 4. BUILT-IN PREDICATES

Key Description

directory Directory in which source lives

dialect Compatibility mode. See expects_dialect/1.

file Similar to source, but returns the file being included when called while
an include file is being processed

module Module into which file is loaded

reload true if the file is being reloaded. Not present on first load

script Boolean that indicates whether the file is loaded as a script file (see —s)

source File being loaded. If the system is processing an included file, the value
is the main file. Returns the original Prolog file when loading a . gl £
file.

stream Stream identifier (see current_input/1)

term position Start position of last term read. See also stream property/2
(position property and st ream_position_data/3.}

term Term being expanded by expand_term/2.

variable_names | A list of ‘Name = Var’ of the last term read. See read_term/2 for
details.

The directory is commonly used to add rules to file_search path/2, setting up a
search path for finding files with absolute_file_name/3. For example:

:— dynamic user:file_search_path/2.
:— multifile user:file_search_path/2.

:— prolog_load_context (directory, Dir),

asserta(user:file_search_path (my_program_home, Dir)).

absolute_file_name (my_program_home (' README.TXT’), ReadMe,
[access(read) 1),

source_location(-File, -Line)

If the last term has been read from a physical file (i.e., not from the file user or a string), unify
File with an absolute path to the file and Line with the line number in the file. New code should
use prolog_load_context/2.

at_halt(:Goal)

Register Goal to be run from PL_cleanup (), which is called when the system halts. The
hooks are run in the reverse order they were registered (FIFO). Success or failure executing
a hook is ignored. If the hook raises an exception this is printed using print message/2.
An attempt to call halt/ [0, 1] from a hook is ignored. Hooks may call cancel_halt/1,
causing halt/0 and PL_halt (0) to print a message indicating that halting the system has
been cancelled.

SWI-Prolog 8.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 97

cancel_halt(+Reason)
If this predicate is called from a hook registered with at_halt /1, halting Prolog is cancelled
and an informational message is printed that includes Reason. This is used by the development
tools to cancel halting the system if the editor has unsafed data and the user decides to cancel.

:- initialization(: Goal) [1S0]
Call Goal after loading the source file in which this directive appears has been completed. In
addition, Goal is executed if a saved state created using gsave_program/1 is restored.

The ISO standard only allows for using : — Term if Term is a directive. This means that
arbitrary goals can only be called from a directive by means of the initialization/1
directive. SWI-Prolog does not enforce this rule.

The initialization/1 directive must be used to do program initialization in saved states
(see gsave_program/1). A saved state contains the predicates, Prolog flags and operators
present at the moment the state was created. Other resources (records, foreign resources, etc.)
must be recreated using initialization/1 directives or from the entry goal of the saved
state.

Up to SWI-Prolog 5.7.11, Goal was executed immediately rather than after load-
ing the program text in which the directive appears as dictated by the ISO stan-
dard. In many cases the exact moment of execution is irrelevant, but there are
exceptions. For example, load_foreign_library/1l must be executed immedi-
ately to make the loaded foreign predicates available for exporting. SWI-Prolog
now provides the directive use_foreign_library/1 to ensure immediate loading as
well as loading after restoring a saved state. If the system encounters a directive
:— initialization(load_foreign_library(...)), it will load the foreign li-
brary immediately and issue a warning to update your code. This behaviour can be extended
by providing clauses for the multifile hook predicate prolog:initialize_now(Term, Ad-
vice), where Advice is an atom that gives advice on how to resolve the compatibility issue.

initialization(:Goal, + When)
Similar to initialization/1, but allows for specifying when Goal is executed while
loading the program text:

now
Execute Goal immediately.

after_load
Execute Goal after loading the program text in which the directive appears. This is the
same as initialization/1.

prepare_state
Execute Goal as part of gsave program/2. This hook can be used for example to
eagerly execute initialization that is normally done lazily on first usage.

restore_state

Do not execute Goal while loading the program, but only when restoring a saved state.’
program

Execute Goal once after executing the —g goals at program startup. Registered goals

Used to be called restore. restore is still accepted for backward compatibility.

SWI-Prolog 8.0 Reference Manual

98 CHAPTER 4. BUILT-IN PREDICATES

are executed in the order encountered and a failure or exception causes the Prolog to
exit with non-zero exit status. These goals are not executed if the —1 is given to merely
load files. In that case they may be executed explicitly using initialize/0. See also
section 2.10.2.
main

When Prolog starts, the last goal registered using initialization(Goal, main) is
executed as main goal. If Goal fails or raises an exception, the process terminates with
non-zero exit code. If not explicitly specified using the —t the foplevel goal is set to
halt /0, causing the process to exit with status 0. An explicitly specified toplevel is exe-
cuted normally. This implies that -t prolog causes the application to start the normal
interactive toplevel after completing Goal. See also the Prolog flag toplevel _goal
and section 2.10.2.

initialize [det]
Run all initialization goals registered using initialization(Goal, program). Raises an er-
ror initialization_error(Reason, Goal, File:Line) if Goal fails or raises an exception.
Reason is failed or the exception raised.

compiling
True if the system is compiling source files with the —c option or gcompile/1 into
an intermediate code file. Can be used to perform conditional code optimisations in
term expansion/2 (see also the —O option) or to omit execution of directives during
compilation.

4.3.1 Conditional compilation and program transformation

ISO Prolog defines no way for program transformations such as macro expansion or conditional com-
pilation. Expansion through term_expansion/2 and expand_term/2 can be seen as part of the
de-facto standard. This mechanism can do arbitrary translation between valid Prolog terms read from
the source file to Prolog terms handed to the compiler. As term_expansion/2 can return a list,
the transformation does not need to be term-to-term.

Various Prolog dialects provide the analogous goal_expansion/2 and expand_goal/2 that
allow for translation of individual body terms, freeing the user of the task to disassemble each clause.

term_expansion(+7Terml, -Term2)
Dynamic and multifile predicate, normally not defined. When defined by the user all terms
read during consulting are given to this predicate. If the predicate succeeds Prolog will assert
Term?2 in the database rather than the read term (Terml). Term2 may be a term of the form
?— Goal. or :— Goal. Goal is then treated as a directive. If Term2 is a list, all terms of
the list are stored in the database or called (for directives). If Term2 is of the form below, the
system will assert Clause and record the indicated source location with it:

"$source_location’ ((File), (Line)) :(Clause)

When compiling a module (see chapter 6 and the directive module/2), expand_term/2
will first try term_expansion/2 in the module being compiled to allow for term expan-
sion rules that are local to a module. If there is no local definition, or the local definition
fails to translate the term, expand_term/2 will try term_expansion/2 in module user.

SWI-Prolog 8.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 929

For compatibility with SICStus and Quintus Prolog, this feature should not be used. See also
expand_term/2, goal_expansion/2 and expand_goal/2.

expand_term(+Terml, -Term?2)
This predicate is normally called by the compiler on terms read from the input to perform
preprocessing. It consists of four steps, where each step processes the output of the previous
step.

1. Test conditional compilation directives and translate all input to [] if we are in a ‘false
branch’ of the conditional compilation. See section 4.3.1.

2. Call term_expansion/2. This predicate is first tried in the module that is be-
ing compiled and then in modules from which this module inherits according to
default_module/2. The output of the expansion in a module is used as input for the
next module. Using the default setup and when compiling a normal application module M,
this implies expansion is executed in M, user and finally in system. Library modules
inherit directly from system and can thus not be re-interpreted by term expansion rules
inuser.

3. Call DCG expansion (dcg_translate_rule/2).
4. Call expand_goal/2 on each body term that appears in the output of the previous steps.

goal _expansion(+Goall, -Goal2)
Like term_expansion/2, goal_expansion/2 provides for macro expansion of Prolog
source code. Between expand_term/2 and the actual compilation, the body of clauses anal-
ysed and the goals are handed to expand_goal/2, which uses the goal _expansion/2
hook to do user-defined expansion.

The predicate goal_expansion/2 is first called in the module that is being compiled, and
then follows the module inheritance path as defined by default module/2, i.e., by de-
fault user and system. If Goal is of the form Module:Goal where Module is instantiated,
goal_expansion/2 is called on Goal using rules from module Module followed by default
modules for Module.

Only goals appearing in the body of clauses when reading a source file are expanded using
this mechanism, and only if they appear literally in the clause, or as an argument to a defined
meta-predicate that is annotated using ‘0’ (see meta_predicate/1). Other cases need a real
predicate definition.

The expansion hook can use prolog_-load_context /2 to obtain information about the con-
text in which the goal is exanded such as the module, variable names or the encapsulating term.

expand_goal(+Goall, -Goal2)
This predicate is normally called by the compiler to perform preprocessing using
goal_expansion/2. The predicate computes a fixed-point by applying transforma-
tions until there are no more changes. If optimisation is enabled (see ~O and optimise),
expand_goal/2 simplifies the result by removing unneeded calls to true/0 and fail/0
as well as unreachable branches.

compile_aux_clauses(+ Clauses)
Compile clauses on behalf of goal_expansion/2. This predicate compiles the argument

SWI-Prolog 8.0 Reference Manual

100

CHAPTER 4. BUILT-IN PREDICATES

clauses into static predicates, associating the predicates with the current file but avoids changing
the notion of current predicate and therefore discontiguous warnings.

Note that in some cases multiple expansions of similar goals can share the same compiled
auxiliary predicate. In such cases, the implementation of goal_expansion/2 can use
predicate_property/2 using the property defined to test whether the predicate is al-
ready defined in the current context.

dcg_translate rule(+/n, -Out)

This predicate performs the translation of a term Head-->Body into a normal Prolog clause.
Normally this functionality should be accessed using expand_term/2.

var_property(+Var, ?Property)

True when Property is a property of Var. These properties are available during goal- and
term-expansion. Defined properties are below. Future versions are likely to provide more
properties, such as whether the variable is a singleton or whether the variable is referenced in
the remainder of the term. See also goal_expansion/2.

fresh(Bool)
Bool has the value true if the variable is guaranteed to be unbound at entry of the goal,
otherwise its value is false. This implies that the variable first appears in this goal or a
previous appearance was in a negation (\+/1) or a different branch of a disjunction.

name(Name)
True when variable appears with the given name in the source.

Program transformation with source layout info

This sections documents extended versions of the program transformation predicates that also trans-
form the source layout information. Extended layout information is currently processed, but unused.
Future versions will use for the following enhancements:

e More precise locations of warnings and errors
e More reliable setting of breakpoints

e More reliable source layout information in the graphical debugger.

expand_goal(+Goall, ?Layoutl, -Goal2, -Layout2)
goal_expansion(+Goall, ?Layoutl, -Goal2, -Layout2)
expand_term(+7Terml, ?Layoutl, -Term2, -Layout2)
term_expansion(+7erml, ?Layoutl, -Term?2, -Layout2)

dcg_translate rule(+/n, ?Layoutln, -Out, -LayoutOut)

These versions are called before their 2-argument counterparts. The input layout term is either
a variable (if no layout information is available) or a term carrying detailed layout information
as returned by the subterm positions of read_term/2.

SWI-Prolog 8.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 101

Conditional compilation

Conditional compilation builds on the same principle as term_expansion/2,
goal_expansion/2 and the expansion of grammar rules to compile sections of the source
code conditionally. One of the reasons for introducing conditional compilation is to simplify writing
portable code. See section C for more information. Here is a simple example:

:— 1f (\+source_exports (library (lists), suffix/2)).

suffix (Suffix, List) :-—
append(_, Suffix, List).

:— endif.

Note that these directives can only appear as separate terms in the input. Typical usage scenarios
include:

e [oad different libraries on different dialects.
e Define a predicate if it is missing as a system predicate.
e Realise totally different implementations for a particular part of the code due to different capa-
bilities.
e Realise different configuration options for your software.
- if(:Goal)
Compile subsequent code only if Goal succeeds. For enhanced portability, Goal is processed

by expand_goal/2 before execution. If an error occurs, the error is printed and processing
proceeds as if Goal has failed.

:- elif (:Goal)
Equivalent to : - else. :-if(Goal). .. :- endif. In a sequence as below, the
section below the first matching e1if is processed. If no test succeeds, the else branch is
processed.

:— if (testl).
section_1.

:— elif (test2).
section_2.

:— elif (test3).
section_3.

:— else.
section_else.
:— endif.

:- else
Start ‘else’ branch.

:- endif
End of conditional compilation.

SWI-Prolog 8.0 Reference Manual

102

CHAPTER 4. BUILT-IN PREDICATES

4.3.2 Reloading files, active code and threads

Traditionally, Prolog environments allow for reloading files holding currently active code. In particu-
lar, the following sequence is a valid use of the development environment:

Trace a goal

Find unexpected behaviour of a predicate
Enter a break using the b command

Fix the sources and reload them using make /0

Exit the break, retry executing the now fixed predicate using the r command

Reloading a previously loaded file is safe, both in the debug scenario above and when the code
is being executed by another thread. Executing threads switch atomically to the new definition of
modified predicates, while clauses that belong to the old definition are (eventually) reclaimed by
garbage_collect_clauses/0.'Y Below we describe the steps taken for reloading a file to help
understanding the limitations of the process.

1.

If a file is being reloaded, a reload context is associated to the file administration. This context
includes a table keeping track of predicates and a table keeping track of the module(s) associated
with this source.

If a new predicate is found, an entry is added to the context predicate table. Three options are
considered:
(a) The predicate is new. It is handled the same as if the file was loaded for the first time.

(b) The predicate is foreign or thread local. These too are treated as if the file was loaded for
the first time.

(c) Normal predicates. Here we initialise a pointer to the current clause.
New clauses for ‘normal predicates’ are considered as follows:

(a) If the clause’s byte-code is the same as the predicates current clause, discard the clause
and advance the current clause pointer.

(b) If the clause’s byte-code is the same as some clause further into the clause list of the
predicate, discard the new clause, mark all intermediate clauses for future deletion, and
advance the current clause pointer to the first clause after the matched one.

(c) If the clause’s byte-code matches no clause, insert it for future activation before the current
clause and keep the current clause.

Properties such as dynamic or meta_predicate are in part applied immediately and
in part during the fixup process after the file completes loading. Currently, dynamic and
thread_local are applied immediately.

New modules are recorded in the reload context. Export declarations (the module’s public list
and export /1 calls) are both applied and recorded.

10As of version 7.3.12. Older versions wipe all clauses originating from the file before loading the new clauses. This
causes threads that executes the code to (typically) die with an undefined predicate exception.

SWI-Prolog 8.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 103

6. When the end-of-file is reached, the following fixup steps are taken

(a) For each predicate

i. The current clause and subsequent clauses are marked for future deletion.

ii. All clauses marked for future deletion or creation are (in)activated by changing their
‘erased’ or ‘created’ genmeration. Erased clauses are (eventually) reclaimed by the
clause garbage collector, see garbage_collect_clauses/0.

iii. Pending predicate property changes are applied.
(b) For each module

i. Exported predicates that are not encountered in the reload context are removed from
the export list.

The above generally ensures that changes to the content of source files can typically be activated
safely using make /0. Global changes such as operator changes, changes of module names, changes
to multi-file predicates, etc. sometimes require a restart. In almost all cases, the need for restart
is indicated by permission or syntax errors during the reload or existence errors while running the
program.

In some cases the content of a source file refers ‘to itself’. This is notably the case if local
rules for goal_expansion/2 or term expansion/2 are defined or goals are executed using
directives."!. Up to version 7.5.12 it was typically needed to reload the file twice, once for updating
the code that was used for compiling the remainder of the file and once to effectuate this. As of
version 7.5.13, conventional transaction semantics apply. This implies that for the thread performing
the reload the file’s content is first wiped and gradually rebuilt, while other threads see an atomic
update from the old file content to the new.'”

Compilation of mutually dependent code

Large programs are generally split into multiple files. If file A accesses predicates from file B which
accesses predicates from file A, we consider this a mutual or circular dependency. If traditional
load predicates (e.g., consult/1) are used to include file B from A and A from B, loading ei-
ther file results in a loop. This is because consult /1 is mapped to load_files/2 using the
option if (true)(.) Such programs are typically loaded using a load file that consults all required
(non-module) files. If modules are used, the dependencies are made explicit using use_module/1
statements. The use_module/1 predicate, however, maps to load_-files/2 with the option
if (not_loaded)(.) A usemodule/1 on an already loaded file merely makes the public predi-
cates of the used module available.

Summarizing, mutual dependency of source files is fully supported with no precautions when
using modules. Modules can use each other in an arbitrary dependency graph. When using
consult/1, predicate dependencies between loaded files can still be arbitrary, but the consult rela-
tions between files must be a proper tree.

Compilation with multiple threads

This section discusses compiling files for the first time. For reloading, see section 4.3.2.

"Note that initialization/1 directives are executed after loading the file. SWI-Prolog allows for directives that
are executed while loading the file using : - Goal. or initialization/2
"2 This feature was implemented by Keri Harris.

SWI-Prolog 8.0 Reference Manual

104 CHAPTER 4. BUILT-IN PREDICATES

In older versions, compilation was thread-safe due to a global lock in 1oad_files/2 and the
code dealing with autoloading (see section 2.13). Besides unnecessary stalling when multiple threads
trap unrelated undefined predicates, this easily leads to deadlocks, notably if threads are started from
an initialization/1 directive.'?

Starting with version 5.11.27, the autoloader is no longer locked and multiple threads can compile
files concurrently. This requires special precautions only if multiple threads wish to load the same
file at the same time. Therefore, 1oad_files/2 checks automatically whether some other thread is
already loading the file. If not, it starts loading the file. If another thread is already loading the file, the
thread blocks until the other thread finishes loading the file. After waiting, and if the file is a module
file, it will make the public predicates available.

Note that this schema does not prevent deadlocks under all situations. Consider two mutually
dependent (see section 4.3.2) module files A and B, where thread 1 starts loading A and thread 2
starts loading B at the same time. Both threads will deadlock when trying to load the used module.

The current implementation does not detect such cases and the involved threads will freeze. This
problem can be avoided if a mutually dependent collection of files is always loaded from the same
start file.

4.3.3 Quick load files

SWI-Prolog supports compilation of individual or multiple Prolog source files into ‘Quick Load Files’.
A ‘Quick Load File’ (. glf file) stores the contents of the file in a precompiled format.

These files load considerably faster than source files and are normally more compact. They are
machine-independent and may thus be loaded on any implementation of SWI-Prolog. Note, however,
that clauses are stored as virtual machine instructions. Changes to the compiler will generally make
old compiled files unusable.

Quick Load Files are created using gcompile/1. They are loaded using consult/1 or one
of the other file-loading predicates described in section 4.3. If consult /1 is given an explicit .pl
file, it will load the Prolog source. When given a . g1f file, it will load the file. When no extension is
specified, it will load the . g1 £ file when present and the . p1 file otherwise.

qcompile(. File)
Takes a file specification as consult/1, etc., and, in addition to the normal compilation,
creates a Quick Load File from File. The file extension of this file is . g1 £. The basename of
the Quick Load File is the same as the input file.

If the file contains ‘:— consult (+File)’, ‘:— [+File]’ or
‘:— load_files (+File, [gcompile (part), ...]) statements, the referred
files are compiled into the same . g1 f file. Other directives will be stored in the . g1 £ file and
executed in the same fashion as when loading the . p1 file.

For term_expansion/2, the same rules as described in section 2.10 apply.
Conditional execution or optimisation may test the predicate compiling/0.

Source references (source_file/2) in the Quick Load File refer to the Prolog source file
from which the compiled code originates.

13 Although such goals are started after loading the file in which they appear, the calling thread is still likely to hold the
‘load’ lock because it is compiling the file from which the file holding the directive is loaded.

SWI-Prolog 8.0 Reference Manual

4.4. EDITOR INTERFACE 105

qcompile(: File, + Options)
As gcompile/1, but processes additional options as defined by 1oad_files/2.'

4.4 Editor Interface

SWI-Prolog offers an extensible interface which allows the user to edit objects of the program: predi-
cates, modules, files, etc. The editor interface is implemented by edit /1 and consists of three parts:
locating, selecting and starting the editor. Any of these parts may be customized. See section 4.4.1.

The built-in edit specifications for edit /1 (see prolog._edit:locate/3) are described in
the table below:

Fully specified objects
(Module):(Name)/(Arity) | Refers to a predicate
module((Module)) Refers to a module
file((Path)) Refers to a file
source_file({Path)) Refers to a loaded source file
Ambiguous specifications
(Name)/{Arity) Refers to this predicate in any module
(Name) Refers to (1) the named predicate in any module with any
arity, (2) a (source) file, or (3) a module.

edit(+Specification)
First, exploit prolog_edit:locate/3 to translate Specification into a list of Locations.
If there is more than one ‘hit’, the user is asked to select from the locations found. Finally,
prolog_edit:edit_source/1 is used to invoke the user’s preferred editor. Typically,
edit/1 can be handed the name of a predicate, module, basename of a file, XPCE class,
XPCE method, etc.

edit
Edit the ‘default’ file using edit /1. The default file is the file loaded with the command line
option —s or, in Windows, the file loaded by double-clicking from the Windows shell.

4.4.1 Customizing the editor interface

The predicates described in this section are hooks that can be defined to disambiguate specifications
given to edit /1, find the related source, and open an editor at the given source location.

prolog_edit:locate(+Spec, -FullSpec, -Location)
Where Spec is the specification provided through edit /1. This multifile predicate is used to
enumerate locations where an object satisfying the given Spec can be found. FullSpec is unified
with the complete specification for the object. This distinction is used to allow for ambiguous
specifications. For example, if Spec is an atom, which appears as the basename of a loaded file
and as the name of a predicate, FullSpec will be bound to £ i 1e(Path) or NamelArity.

Location is a list of attributes of the location. Normally, this list will contain the term
file(File) and, if available, the term 1ine(Line).

“BUG: Option processing is currently incomplete.

SWI-Prolog 8.0 Reference Manual

106 CHAPTER 4. BUILT-IN PREDICATES

prolog_edit:locate(+Spec, -Location)
Same as prolog_edit:locate/ 3, but only deals with fully specified objects.

prolog_edit:edit_source(+Location)
Start editor on Location. See prolog_edit:locate/3 for the format of a location term.
This multifile predicate is normally not defined. If it succeeds, edit /1 assumes the editor is
started.

If it fails, edit /1 uses its internal defaults, which are defined by the Prolog flag editor
and/or the environment variable EDITOR. The following rules apply. If the Prolog flag
editor is of the format $ (name), the editor is determined by the environment variable (name).
Else, if this flag is pce_emacs or built_in and XPCE is loaded or can be loaded, the built-in
Emacs clone is used. Else, if the environment EDITOR is set, this editor is used. Finally, v1i is
used as default on Unix systems and notepad on Windows.

See the default user preferences file dot files/dotswiplrc for examples.

prolog_edit:edit_command(+ Editor, -Command)
Determines how Editor is to be invoked using shell/1. Editor is the determined editor
(see prolog_edit:edit_source/1), without the full path specification, and without a
possible (.exe) extension. Command is an atom describing the command. The following
%-sequences are replaced in Command before the result is handed to shel1/1:

%e | Replaced by the (OS) command name of the editor
%t | Replaced by the (OS) full path name of the file
%d | Replaced by the line number

If the editor can deal with starting at a specified line, two clauses should be provided. The first
pattern invokes the editor with a line number, while the second is used if the line number is
unknown.

The default contains definitions for vi, emacs, emacsclient, vim, notepad® and
wordpad®. Starred editors do not provide starting at a given line number.

Please contribute your specifications to bugs@swi-prolog.org.

prolog_edit:load
Normally an undefined multifile predicate. This predicate may be defined to provide loading
hooks for user extensions to the edit module. For example, XPCE provides the code below to
load swi_edit, containing definitions to locate classes and methods as well as to bind this
package to the PceEmacs built-in editor.

:— multifile prolog_edit:1load/0.

| |
| |
‘prolog_edit :load :- ‘
‘ ensure_loaded (library (swi_edit)) . ‘

SWI-Prolog 8.0 Reference Manual

4.5. LIST THE PROGRAM, PREDICATES OR CLAUSES 107

4.5 List the program, predicates or clauses

listing(: Pred)
List predicates specified by Pred. Pred may be a predicate name (atom), which lists all
predicates with this name, regardless of their arity. It can also be a predicate indica-
tor ((name)/(arity) or (name)//{arity)), possibly qualified with a module. For example:
?— listing(lists:member/2) ..

A listing is produced by enumerating the clauses of the predicate using clause/2 and printing
each clause using portray_clause/1. This implies that the variable names are generated
(A, B, ...) and the layout is defined by rules in portray_clause/1.

listing
List all predicates from the calling module using 1isting/1. For example, ?— listing.

lists clauses in the default user module and ?— lists:1isting. lists the clauses in the
module 1ists.

portray_clause(+Clause)

Pretty print a clause. A clause should be specified as a term ‘(Head) :- (Body)’. Facts are
represented as ‘(Head) :— true’ orsimply (Head). Variables in the clause are written as A,
B, Singleton variables are written as _. See also portray_clause/2.

portray_clause(+Stream, +Clause)
Pretty print a clause to Stream. See portray_clause/1 for details.

4.6 Verify Type of a Term

Type tests are semi-deterministic predicates that succeed if the argument satisfies the requested type.
Type-test predicates have no error condition and do not instantiate their argument. See also library
error.

var(@Term) [150]
True if Term currently is a free variable.

nonvar(@ Term) [150]
True if Term currently is not a free variable.

integer(@ Term) [1S0]
True if Term is bound to an integer.

float(@ Term) [150]
True if Term is bound to a floating point number.

rational(@ Term)
True if Term is bound to a rational number. Rational numbers include integers.

rational(@ Term, -Numerator, -Denominator)
True if Term is a rational number with given Numerator and Denominator. The Numerator and
Denominator are in canonical form, which means Denominator is a positive integer and there
are no common divisors between Numerator and Denominator.

SWI-Prolog 8.0 Reference Manual

108 CHAPTER 4. BUILT-IN PREDICATES

number(@ Term) [1S0]
True if Term is bound to an integer or floating point number.'”

atom(@ Term) [150]
True if Term is bound to an atom.

blob(@Term, ?Type)
True if Term is a blob of type Type. See section 12.4.8.

string(@ Term)
True if Term is bound to a string. Note that string here refers to the built-in atomic type string as
described in section 5.2. Starting with version 7, the syntax for a string object is text between
double quotes, such as "hello".'® See also the Prolog flag double_quotes.

atomic(@ Term) [150]
True if Term is bound (i.e., not a variable) and is not compound. Thus, atomic acts as if defined
by:

atomic (Term) :-—
nonvar (Term) ,
\+ compound (Term) .

SWI-Prolog defines the following atomic datatypes: atom (atom/1), string (string/1), in-
teger (integer/1), floating point number (f1oat /1) and blob (b1ob/2). In addition, the
symbol [] (empty list) is atomic, but not an atom. See section 5.1.

compound(@ Term) [150]
True if Term is bound to a compound term. See also functor/3 =./2,
compound_name_arity/3 and compound_name_arguments/3.

callable(@ Term) [1S0]
True if Term is bound to an atom or a compound term. This was intended as a type-test for
arguments to call/1 and call/2.. Note that callable only tests the surface term. Terms
such as (22,true) are considered callable, but cause call/1 to raise a type error. Module-
qualification of meta-argument (see meta_predicate/1) using :/2 causes callable to
succeed on any meta-argument.'” Consider the program and query below:

:— meta_predicate p(0).

p(G) :— callable(G), call(G).

?- p(22).
ERROR: Type error: ‘callable’ expected, found ‘227

15 As rational numbers are not atomic in the current implementation and we do not want to break the rule that number/1
implies atomic/1, number/1 fails on rational numbers. This will change if rational numbers become atomic.

1Tn traditional Prolog systems, double quoted text is often mapped to a list of character codes.

"We think that callable/1 should be deprecated and there should be two new predicates, one performing a test for
callable that is minimally module aware and possibly consistent with type-checking in call/1 and a second predicate that
tests for atom or compound.

SWI-Prolog 8.0 Reference Manual

4.7. COMPARISON AND UNIFICATION OF TERMS 109

'ERROR: In: |
'ERROR: [6] p(user:22) |

ground(@ Term) [1S0]
True if Term holds no free variables. See also nonground/2 and term_variables/2.

cyclic_term(@ Term)
True if Term contains cycles, i.e. is an infinite term. See also acyclic_term/1 and sec-
tion 2.17."®

acyclic_term(@ Term) [150]
True if 7erm does not contain cycles, i.e. can be processed recursively in finite time. See also
cyclic_term/1 and section 2.17.

4.7 Comparison and Unification of Terms

Although unification is mostly done implicitly while matching the head of a predicate, it is also pro-
vided by the predicate =/2.

?Terml = ?Term?2 [1SO]
Unify Terml with Term2. True if the unification succeeds. For behaviour on cyclic terms see
the Prolog flag occurs_check. It acts as if defined by the following fact:

‘= (Term, Term).

@Terml \= @Term2 [1SO]
Equivalent to \+Terml = Term?2.

This predicate is logically sound if its arguments are sufficiently instantiated. In other cases,
such as ?— X \= Y., the predicate fails although there are solutions. This is due to the
incomplete nature of \+/1.

To make your programs work correctly also in situations where the arguments are not yet suffi-
ciently instantiated, use dif /2 instead.
4.7.1 Standard Order of Terms

Comparison and unification of arbitrary terms. Terms are ordered in the so-called “standard order”.
This order is defined as follows:

1. Variables < Numbers < Strings < Atoms < Compound Terms
2. Variables are sorted by address.

3. Numbers are compared by value. Mixed integer/float are compared as floats. If the comparison
is equal, the float is considered the smaller value. If the Prolog flag i so is defined, all floating
point numbers precede all integers.

8The predicates cyclic_term/1 and acyclic_term/1 are compatible with SICStus Prolog. Some Prolog systems
supporting cyclic terms use is_cyclic/1.

SWI-Prolog 8.0 Reference Manual

110 CHAPTER 4. BUILT-IN PREDICATES

4. Strings are compared alphabetically.
5. Atoms are compared alphabetically.

6. Compound terms are first checked on their arity, then on their functor name (alphabetically) and
finally recursively on their arguments, leftmost argument first.

Although variables are ordered, there are some unexpected properties one should keep in mind
when relying on variable ordering. This applies to the predicates below as to predicate such as
sort/2 as well as libraries that reply on ordering such as library assoc and library ordsets.
Obviously, an established relation A @< B no longer holds if A is unified with e.g., a number. Also
unifying A with B invalidates the relation because they become equivalent (==/2) after unification.

As stated above, variables are sorted by address, which implies that they are sorted by ‘age’, where
‘older’ variables are ordered before ‘newer’ variables. If two variables are unified their ‘shared’ age is
the age of oldest variable. This implies we can examine a list of sorted variables with ‘newer’ (fresh)
variables without invalidating the order. Attaching an attribute, see section 8.1, turns an ‘old’ variable
into a ‘new’ one as illustrated below. Note that the first always succeeds as the first argument of a term
is always the oldest. This only applies for the first attribute, i.e., further manipulation of the attribute
list does not change the ‘age’.

- T = f(A,B), A @< B.
T = £(A, B).

?- T = f(A,B), put_attr (A, name, value), A @< B.
false.

The above implies you can use e.g., an assoc (from library assoc, implemented as an AVL tree)
to maintain information about a set of variables. You must be careful about what you do with the
attributes though. In many cases it is more robust to use attributes to register information about
variables.

@Terml == @Term2 [1S0]
True if Terml is equivalent to Term2. A variable is only identical to a sharing variable.

@Terml \== @Term2 [150]
Equivalent to \+Terml == Term2.

@Terml @< @Term?2 [1SO]

True if Terml is before Term?2 in the standard order of terms.

@Terml @=< @Term?2 [ISO]
True if both terms are equal (==/2) or Terml is before Term?2 in the standard order of terms.

@Terml @> @Term?2 [1S0]
True if Terml is after Term2 in the standard order of terms.

@Terml @>= @Term2 [1SO]
True if both terms are equal (==/2) or Terml is after Term2 in the standard order of terms.

compare(?Order, @Terml, @Term?2) [1SO]
Determine or test the Order between two terms in the standard order of terms. Order is one of
<, > or =, with the obvious meaning.

SWI-Prolog 8.0 Reference Manual

4.7. COMPARISON AND UNIFICATION OF TERMS 111

4.7.2 Special unification and comparison predicates

This section describes special purpose variations on Prolog unification. The predicate
unify with_occurs_check/2 provides sound unification and is part of the ISO standard. The
predicate subsumes_term/2 defines ‘one-sided unification’ and is part of the ISO proposal estab-
lished in Edinburgh (2010). Finally, unifiable/3 is a ‘what-if” version of unification that is often
used as a building block in constraint reasoners.

unify_with_occurs_check(+7ermli, +Term?2) [ISO]
As =/2, but using sound unification. That is, a variable only unifies to a term if this term does
not contain the variable itself. To illustrate this, consider the two queries below.

1 ?2- A = f(n).

A = f(A).

2 ?— unify_with_occurs_check (A, f(A)).
false.

The first statement creates a cyclic term, also called a rational tree. The second executes log-
ically sound unification and thus fails. Note that the behaviour of unification through =/2 as
well as implicit unification in the head can be changed using the Prolog flag occurs_check.

The SWI-Prolog implementation of unify with_occurs_check/2 is cycle-safe and only
guards against creating cycles, not against cycles that may already be present in one of the
arguments. This is illustrated in the following two queries:

?- X = f(X), Y = X, unify_with_occurs_check (X, Y).

X =Y, Y= f(Y).

?—- X = f£(X), Y = £(Y), unify_with_occurs_check (X, Y).
X =Y, Y = f(Y)

Some other Prolog systems interpret unify with_ occurs_check/2 as if defined by the
clause below, causing failure on the above two queries. Direct use of acyclic_term/1 is
portable and more appropriate for such applications.

unify _with_occurs_check (X,X) :- acyclic_term(X).

+Terml =@= +Term2
True if Terml is a variant of (or structurally equivalent to) Term2. Testing for a variant is
weaker than equivalence (==/2), but stronger than unification (=/2). Two terms A and B are
variants iff there exists a renaming of the variables in A that makes A equivalent (==) to B and
vice versa.'” Examples:

Row 7 and 8 of this table may come as a surprise, but row 8 is satisfied by (left-to-right) A — C, B — A and (right-
to-left) C — A, A — B. If the same variable appears in different locations in the left and right term, the variant relation
can be broken by consistent binding of both terms. E.g., after binding the first argument in row 8 to a value, both terms are
no longer variant.

SWI-Prolog 8.0 Reference Manual

112 CHAPTER 4. BUILT-IN PREDICATES

1 a =@= A false
2 A =@= B true
3 x(A,A) =Q@= x(B,C) false
4 x(A,A) =@= x(B,B) true
5 x(A,A) =Q@= x(A,B) false
6 x(A,B) =Q@= x(C,D) true
7 x(A,B) =@= x(B,A) true
8 x(A,B) =Q@= x(C,A) true

A term is always a variant of a copy of itself. Term copying takes place in, e.g., copy_term/2,
findall/3 or proving a clause added with asserta/1. In the pure Prolog world (i.e.,
without attributed variables), =@=/2 behaves as if defined below. With attributed variables,
variant of the attributes is tested rather than trying to satisfy the constraints.

copy_term (A, Ac),
copy_term(B, Bc)
numbervars (Ac, 0, N),
numbervars (Bc, 0, N),
Ac == Bc.

’

The SWI-Prolog implementation is cycle-safe and can deal with variables that are shared be-
tween the left and right argument. Its performance is comparable to ==/2, both on success and
(early) failure. *°

This predicate is known by the name variant/2 in some other Prolog systems. Be aware
of possible differences in semantics if the arguments contain attributed variables or share vari-
ables.”!

+Terml \=@= +Term2
Equivalentto *\+Terml =@= Term2’. See =@=/2 for details.

subsumes_term(@ Generic, @Specific) [1SO]
True if Generic can be made equivalent to Specific by only binding variables in Generic. The
current implementation performs the unification and ensures that the variable set of Specific is
not changed by the unification. On success, the bindings are undone.?” This predicate respects
constraints.

term_subsumer(+Speciall, +Special2, -General)
General is the most specific term that is a generalisation of Speciall and Special2. The imple-
mentation can handle cyclic terms.

unifiable(@X, @Y, -Unifier)
If X and Y can unify, unify Unifier with a list of Var = Value, representing the bindings required

2The current implementation is contributed by Kuniaki Mukai.

2'In many systems variant is implemented using two calls to subsumes_term/2.

22This predicate is often named subsumes_chk /2 in older Prolog dialects. The current name was established in the ISO
WG17 meeting in Edinburgh (2010). The chk postfix was considered to refer to determinism as in e.g., memberchk/2.

SWI-Prolog 8.0 Reference Manual

4.8. CONTROL PREDICATES 113

to make X and Y equivalent.”® This predicate can handle cyclic terms. Attributed variables are
handled as normal variables. Associated hooks are not executed.

?=(@Terml, @Term2)
Succeeds if the syntactic equality of TermlI and Term2 can be decided safely, i.e. if the result of
Terml == Term2 will not change due to further instantiation of either term. It behaves as if
defined by ?=(X,Y) :- \+ unifiable(X,Y,[_I_1).

4.8 Control Predicates

The predicates of this section implement control structures. Normally the constructs in this section,
except for repeat /0, are translated by the compiler. Please note that complex goals passed as ar-
guments to meta-predicates such as findall/3 below cause the goal to be compiled to a temporary
location before execution. It is faster to define a sub-predicate (i.e. one_character_atoms/1 in
the example below) and make a call to this simple predicate.

one_character_ atoms (As) :-—
findall (A, (current_atom(A), atom_length(A, 1)), As).

fail [1S0]
Always fail. The predicate £ail/0 is translated into a single virtual machine instruction.

false [1S0]
Same as fail, but the name has a more declarative connotation.

true [1S0]
Always succeed. The predicate t rue/0 is translated into a single virtual machine instruction.

repeat [1S0]
Always succeed, provide an infinite number of choice points.

' [150]

Cut. Discard all choice points created since entering the predicate in which the cut appears.
In other words, commit to the clause in which the cut appears and discard choice points that
have been created by goals to the left of the cut in the current clause. Meta calling is opaque to
the cut. This implies that cuts that appear in a term that is subject to meta-calling (call/1)
only affect choice points created by the meta-called term. The following control structures are
transparent to the cut: ; /2, —>/2 and «—>/2. Cuts appearing in the condition part of —>/2
and x~—>/2 are opaque to the cut. The table below explains the scope of the cut with examples.
Prunes here means “prunes X choice point created by X.

t0 :— (a, !, b). % prunes a/0 and t0/0
tl := (a, !, fail ; b). % prunes a/0 and t1/0
t2 :— (a —> Db, ! ; o). % prunes b/0 and t2/0
t3 :- call((a, !, fail ; b)). % prunesal0
t4 :— \+(a, !, fail). % prunes a/0

2This predicate was introduced for the implementation of di £ /2 and when /2 after discussion with Tom Schrijvers and
Bart Demoen. None of us is really happy with the name and therefore suggestions for a new name are welcome.

SWI-Prolog 8.0 Reference Manual

114 CHAPTER 4. BUILT-IN PREDICATES

:Goall , :Goal2 [1SO]
Conjunction. True if both ‘Goall’ and ‘Goal2’ can be proved. It is defined as follows (this
definition does not lead to a loop as the second comma is handled by the compiler):

‘Goall, Goal2 :— Goall, Goal2. ‘
:Goall ; :Goal2 [ISO]

The ‘or’ predicate is defined as:

Goall ; _Goal2 :- Goall.

_Goall ; Goal2 :—- Goal2.

:Goall | :Goal2
Equivalent to ; /2. Retained for compatibility only. New code should use ; /2.

:Condition => :Action [1SO]
If-then and If-Then-Else. The —>/2 construct commits to the choices made at its left-hand
side, destroying choice points created inside the clause (by ; /2), or by goals called by this
clause. Unlike ! /0, the choice point of the predicate as a whole (due to multiple clauses) is
not destroyed. The combination ; /2 and —> /2 acts as if defined as:

If -> Then; _Else :—- If, !, Then.
If -> _Then; Else :- !, Else.
If -> Then :- If, !, Then.

Please note that (If —> Then) acts as (If —> Then ; fail), making the construct fail if the condition
fails. This unusual semantics is part of the ISO and all de-facto Prolog standards.

Please note that (if—>then;else) is read as ((if—>then);else) and that the combined semantics
of this syntactic construct as defined above is different from the simple nesting of the two
individual constructs, i.e., the semantics of —>/2 changes when embedded in ; /2. See also
once/1.

:Condition x—=> :Action ; :Else
This construct implements the so-called ‘soft-cut’. The control is defined as follows: If Con-
dition succeeds at least once, the semantics is the same as (call(Condition), Action).”* If
Condition does not succeed, the semantics is that of (\+ Condition, Else). In other words, if
Condition succeeds at least once, simply behave as the conjunction of call(Condition) and
Action, otherwise execute Else. The construct is known under the name i£f/3 in some other
Prolog implementations.

The construct A x—> B, i.e., without an Else branch, the semantics is the same as (call(A), B).

This construct is rarely used. An example use case is the implementation of OPTIONAL in
SPARQL. The optional construct should preserve all solutions if the argument succeeds as least
once but still succeed otherwise. This is implemented as below.

*Note that the Condition is wrapped in call/1, limiting the scope of the cut (! /0

SWI-Prolog 8.0 Reference Manual

4.9. META-CALL PREDICATES 115

optional (Goal) :-—

(Goal
*—> true
; true

) .

Now calling e.g., optional (member (X, [a,b])) has the solutions X = q¢ and X = b,
while optional (member (X, [])) succeeds without binding X.

\+ :Goal [I1SO]
True if ‘Goal’ cannot be proven (mnemonic: + refers to provable and the backslash (\) is
normally used to indicate negation in Prolog).

4.9 Meta-Call Predicates

Meta-call predicates are used to call terms constructed at run time. The basic meta-call mechanism
offered by SWI-Prolog is to use variables as a subclause (which should of course be bound to a valid
goal at runtime). A meta-call is slower than a normal call as it involves actually searching the database
at runtime for the predicate, while for normal calls this search is done at compile time.

call(:Goal) [150]
Invoke Goal as a goal. Note that clauses may have variables as subclauses, which is identical
tocall/1l.

call(:Goal, +ExtraArgl, ...) [ISO]

Append ExtraArgl, ExtraArg2, ... to the argument list of Goal and call the result. For example,
call(plus(l), 2, X) willcallplus(1l, 2, X),binding X to 3.

The call/[2..] construct is handled by the compiler. The predicates call/[2-8] are defined
as real (meta-)predicates and are available to inspection through current _predicate/1,
predicate_property/2, etc.”” Higher arities are handled by the compiler and runtime
system, but the predicates are not accessible for inspection.”

apply(:Goal, +List)
Append the members of List to the arguments of Goal and call the resulting term. For example:
apply (plus (1), [2, X]) calls plus(1l, 2, X). New code should use call/[2..] if
the length of List is fixed.

not(:Goal)
True if Goal cannot be proven. Retained for compatibility only. New code should use \+/1.

once(-Goal) [150]
Make a possibly nondet goal semidet, i.e., succeed at most once. Defined as:

2 Arities 2..8 are demanded by ISO/IEC 13211-1:1995/Cor.2:2012.
*Future versions of the reflective predicate may fake the presence of call/9. .. Full logical behaviour, generating all
these pseudo predicates, is probably undesirable and will become impossible if max_arity is removed.

SWI-Prolog 8.0 Reference Manual

116 CHAPTER 4. BUILT-IN PREDICATES

once (Goal) :-
call (Goal), !.

once/1 can in many cases be replaced with —> /2. The only difference is how the cut behaves
(see !/0). The following two clauses below are identical. Be careful about the interaction
with ; /2. The apply_macros library defines an inline expansion of once/1, mapping it
to (Goal->true; fail). Using the full if-then-else constructs prevents its semantics from
being changed when embedded in a ; /2 disjunction.

a :— once((b, c)), d.
2) a :— b, c —> d.

ignore(:Goal)
Calls Goal as once/ 1, but succeeds, regardless of whether Goal succeeded or not. Defined as:

ignore (Goal) :-—
Goal, !.
ignore (_) .

call_with_depth _limit(:Goal, +Limit, -Result)

If Goal can be proven without recursion deeper than Limit levels,
callwith_depth_1limit/3 succeeds, binding Result to the deepest recursion level
used during the proof. Otherwise, Result is unified with depth_1imit_exceeded if the
limit was exceeded during the proof, or the entire predicate fails if Goal fails without exceeding
Limit.

The depth limit is guarded by the internal machinery. This may differ from the depth computed
based on a theoretical model. For example, t rue/0 is translated into an inline virtual machine
instruction. Also, repeat /0 is not implemented as below, but as a non-deterministic foreign
predicate.

repeat.
repeat :-—-
repeat.

As aresult, call with depth_1imit/3 may still loop infinitely on programs that should
theoretically finish in finite time. This problem can be cured by using Prolog equivalents to
such built-in predicates.

This predicate may be used for theorem provers to realise techniques like iterative deepen-
ing. See also call with_ inference_limit /3. It was implemented after discussion with
Steve Moyle smoyle@ermine.ox.ac.uk.

SWI-Prolog 8.0 Reference Manual

4.9. META-CALL PREDICATES

117

call_with_inference_limit(:Goal, +Limit, -Result)

Equivalent to call(Goal), but limits the number of inferences for each solution of Goal.”’.
Execution may terminate as follows:

o If Goal does not terminate before the inference limit is exceeded, Goal is aborted by inject-
ing the exception inference_limit_exceeded into its execution. After termination
of Goal, Result is unified with the atom inference_limit_exceeded. Otherwise,

e If Goal fails, call _ with_inference_limit /3 fails.
o If Goal succeeds without a choice point, Result is unified with !.
e If Goal succeeds with a choice point, Result is unified with t rue.

o If Goal throws an exception, call_with_inference_limit /3 re-throws the excep-
tion.

An inference is defined as a call or redo on a predicate. Please note that some primitive built-in
predicates are compiled to virtual machine instructions for which inferences are not counted.
The execution of predicates defined in other languages (e.g., C, C++) count as a single inference.
This includes potentially expensive built-in predicates such as sort /2.

Calls to this predicate may be nested. An inner call that sets the limit below the current is
honoured. An inner call that would terminate after the current limit does not change the effective
limit. See also call with_depth_limit/3 and call with time_limit/2.

setup_call_cleanup(:Setup, :Goal, :Cleanup)

Calls (once (Setup), Goal). If Setup succeeds, Cleanup will be called exactly once after
Goal is finished: either on failure, deterministic success, commit, or an exception. The exe-
cution of Setup is protected from asynchronous interrupts like call with time 1imit/2
(package clib) or thread_.signal/2. In most uses, Setup will perform temporary
side-effects required by Goal that are finally undone by Cleanup.

Success or failure of Cleanup is ignored, and choice points it created are destroyed (as
once/1). If Cleanup throws an exception, this is executed as normal while it was not trig-
gered as the result of an exception the exception is propagated as normal. If Cleanup was
triggered by an exception the rules are described in section 4.11.1

Typically, this predicate is used to cleanup permanent data storage required to execute Goal,
close file descriptors, etc. The example below provides a non-deterministic search for a term in
a file, closing the stream as needed.

term_in_file(Term, File) :-
setup_call_cleanup (open(File, read, In),
term_in_stream(Term, In),
close(In)).

term_in_stream(Term, In) :-—
repeat,
read(In, T),
(T == end_of_file

2"This predicate was realised after discussion with Ulrich Neumerkel and Markus Triska.

SWI-Prolog 8.0 Reference Manual

118 CHAPTER 4. BUILT-IN PREDICATES

> !, fail
; T = Term

Note that it is impossible to implement this predicate in Prolog. The closest approxima-
tion would be to read all terms into a list, close the file and call member/2. With-
out setup_call_cleanup/3 there is no way to gain control if the choice point left by
repeat/0 is removed by a cut or an exception.

setup-call_cleanup/ 3 canalso be used to test determinism of a goal, providing a portable
alternative to deterministic/1:

?—- setup_call_cleanup (true, (X=1;X=2), Det=yes).

X =2,
Det = yes ;

This predicate is under consideration for inclusion into the ISO standard. For compatibility with
other Prolog implementations see call_cleanup/2.

setup_call_catcher_cleanup(:Setup, :Goal, +Catcher, :Cleanup)
Similar to setup_call_cleanup(Setup, Goal, Cleanup) with additional information on the
reason for calling Cleanup. Prior to calling Cleanup, Catcher unifies with the termination code
(see below). If this unification fails, Cleanup is not called.

exit

Goal succeeded without leaving any choice points.
fail

Goal failed.

Goal succeeded with choice points and these are now discarded by the execution of a cut
(or other pruning of the search tree such as if-then-else).

exception(Exception)
Goal raised the given Exception.
external _exception(Exception)

Goal succeeded with choice points and these are now discarded due to an exception. For
example:

?— setup_call_catcher_cleanup (true, (X=1;X=2),
Catcher, writeln(Catcher)),
throw (ball) .
external_exception(ball)
ERROR: Unhandled exception: Unknown message: ball

SWI-Prolog 8.0 Reference Manual

4.10. DELIMITED CONTINUATIONS 119

call_cleanup(:Goal, :Cleanup)
Same as setup_call_cleanup(true, Goal, Cleanup). This is provided for compatibility
with a number of other Prolog implementations only. Do not use call_cleanup/2 if
you perform side-effects prior to calling that will be undone by Cleanup. Instead, use
setup_call_cleanup/3 with an appropriate first argument to perform those side-effects.

call_cleanup(:Goal, +Catcher, :Cleanup)
Same as setup_call_catcher_cleanup(true, Goal, Catcher, Cleanup). The same warn-
ing as for call_cleanup/2 applies.

4.10 Delimited continuations

The predicates reset /3 and shift/1 implement delimited continuations for Prolog. Delimited
continuation for Prolog is described in []. The mechanism allows for proper
coroutines, two or more routines whose execution is interleaved, while they exchange data. Note
that coroutines in this sense differ from coroutines realised using attributed variables as described
in chapter 8.

The suspension mechanism provided by delimited continuations is suitable for the implementation
of tabling [], see library tabling.

reset(:Goal, ?Ball, -Continuation)
Call Goal. If Goal calls shift /1 and the argument of shift /1 can be unified with Ball,”®
shift/1 causes reset/3 to return, unifying Continuation with a goal that represents
the continuation after shift/1. In other words, meta-calling Continuation completes the
execution where shift left it. If Goal does not call shift /1, Continuation are unified with the
integer 0 (zero).”’

shift(+Ball)
Abandon the execution of the current goal, returning control to just after the matching
reset /3 call. This is similar to throw/1 except that (1) nothing is ‘undone’ and (2) the
3th argument of reset/3 is unified with the continuation, which allows the code calling
reset /3 to resume the current goal.

4.11 Exception handling
The predicates catch/3 and throw/1 provide ISO compliant raising and catching of exceptions.

catch(:Goal, +Catcher, :Recover) [1S0]
Behaves as call/1 if no exception is raised when executing Goal. If an exception is raised
using throw/1 while Goal executes, and the Goal is the innermost goal for which Catcher
unifies with the argument of throw/ 1, all choice points generated by Goal are cut, the system
backtracks to the start of catch/3 while preserving the thrown exception term, and Recover
iscalledasin call/1.

2The argument order described in [] is reset(Goal,Continuation,Ball). We swapped the argu-
ment order for compatibility with catch/3

PNote that older versions also unify Ball with 0. Testing whether or not shift happened on Ball however is always
ambiguous.

SWI-Prolog 8.0 Reference Manual

120

CHAPTER 4. BUILT-IN PREDICATES

The overhead of calling a goal through catch/3 is comparable to call/1. Recovery from
an exception is much slower, especially if the exception term is large due to the copying
thereof or is decorated with a stack trace using, e.g., the library prolog_stack based on
the prolog_exception_hook/4 hook predicate to rewrite exceptions.

throw(+Exception) [150]

Raise an exception. The system looks for the innermost catch/3 ancestor for which Excep-
tion unifies with the Catcher argument of the catch/ 3 call. See catch/3 for details.

ISO demands that throw/1 make a copy of Exception, walk up the stack to a catch/3 call,
backtrack and try to unify the copy of Exception with Catcher. SWI-Prolog delays backtrack-
ing until it actually finds a matching catch/3 goal. The advantage is that we can start the
debugger at the first possible location while preserving the entire exception context if there is
no matching catch/ 3 goal. This approach can lead to different behaviour if Goal and Catcher
of catch/ 3 call shared variables. We assume this to be highly unlikely and could not think of
a scenario where this is useful.*’

In addition to explicit calls to throw/1, many built-in predicates throw exceptions directly
from C. If the Exception term cannot be copied due to lack of stack space, the following actions
are tried in order:

1. If the exception is of the form error(Formal, ImplementationDefined), try to raise the
exception without the ImplementationDefined part.

2. Try toraise error(resource_error(stack), global).

3. Abort (see abort/0).

If an exception is raised in a call-back from C (see chapter 12) and not caught in the same
call-back, PL_next_solution () fails and the exception context can be retrieved using
PL_exception ().

catch_with_backtrace(:Goal, +Catcher, :Recover)

As catch/3, but if library prolog_stack is loaded and an exception of the shape
error(Format, Context) is raised Context is extended with a backtrace. To catch an error and
print its message including a backtrace, use the following template:

:— use_module (library (prolog_stack)) .

L4
catch_with_backtrace (Goal, Error,
print_message (error, Error)),

This is good practice for a catch-all wrapper around an application. See also main/0 from
library main.

397°d like to acknowledge Bart Demoen for his clarifications on these matters.

SWI-Prolog 8.0 Reference Manual

4.11. EXCEPTION HANDLING 121

4.11.1 Urgency of exceptions

Under some conditions an exception may be raised as a result of handling another exception. Below
are some of the scenarios:

e The predicate setup-call_cleanup/3 calls the cleanup handler as a result of an exception
and the cleanup handler raises an exception itself. In this case the most urgent exception is
propagated into the environment.

e Raising an exception fails due to lack of resources, e.g., lack of stack space to store the excep-
tion. In this case a resource exception is raised. If that too fails the system tries to raise a re-
source exception without (stack) context. If that fails it will raise the exception ’ $aborted’,
also raised by abort /0. As no stack space is required for processing this atomic exception,
this should always succeed.

o Certain callback operations raise an exception while processing another exception or a previous
callback already raised an exception before there was an opportunity to process the excep-
tion. The most notable callback subject to this issue are prolog_event_hook/1 (supporting
e.g., the graphical debugger), prolog_exception_hook/4 (rewriting exceptions, e.g., by
adding context) and print message/2 when called from the core facilities such as the in-
ternal debugger. As with setup_call_cleanup/ 3, the most urgent exception is preserved.

If the most urgent exceptions needs to be preserved, the following exception ordering is respected,
preserving the topmost matching error.

1. " $Saborted’ (abort/0)

2. time_limit_exceeded (call_with_time_limit/2)
3. error(resource_error(Resource), Context)

4. error(Formal, Context)

5. All other exceptions

Note The above resolution is not described in the ISO standard. This is not needed either because
ISO does not specify setup_call_cleanup/3 and does not deal with environment management
issues such as (debugger) callbacks. Neither does it define abort /0 or timeout handling. Notably
abort /0 and timeout are non-logical control structures. They are implemented on top of exceptions
as they need to unwind the stack, destroy choice points and call cleanup handlers in the same way.
However, the pending exception should not be replaced by another one before the intended handler is
reached. The abort exception cannot be caught, something which is achieved by wrapping the cleanup
handler of catch/3 into call_cleanup(Handler, abort).

4.11.2 Debugging and exceptions

Before the introduction of exceptions in SWI-Prolog a runtime error was handled by printing an error
message, after which the predicate failed. If the Prolog flag debug_on_error was in effect (default),
the tracer was switched on. The combination of the error message and trace information is generally
sufficient to locate the error.

SWI-Prolog 8.0 Reference Manual

122 CHAPTER 4. BUILT-IN PREDICATES

With exception handling, things are different. A programmer may wish to trap an exception using
catch/3 to avoid it reaching the user. If the exception is not handled by user code, the interactive
top level will trap it to prevent termination.

If we do not take special precautions, the context information associated with an unexpected
exception (i.e., a programming error) is lost. Therefore, if an exception is raised which is not caught
using catch/ 3 and the top level is running, the error will be printed, and the system will enter trace
mode.

If the system is in a non-interactive call-back from foreign code and there is no catch/ 3 active
in the current context, it cannot determine whether or not the exception will be caught by the external
routine calling Prolog. It will then base its behaviour on the Prolog flag debug_on_error:

o current_prolog flag(debug_on _error, false)
The exception does not trap the debugger and is returned to the foreign routine calling Prolog,
where it can be accessed using PL_exception (). This is the default.

o current_prolog flag(debug_on_error, true)
If the exception is not caught by Prolog in the current context, it will trap the tracer to help
analyse the context of the error.

While looking for the context in which an exception takes place, it is advised to switch on debug
mode using the predicate debug/0. The hook prolog_exception_hook/4 can be used to add
more debugging facilities to exceptions. An example is the library http/http_error, generating
a full stack trace on errors in the HTTP server library.

4.11.3 The exception term

Built-in predicates generate exceptions using a term error(Formal, Context). The first argument
is the ‘formal’ description of the error, specifying the class and generic defined context information.
When applicable, the ISO error term definition is used. The second part describes some additional
context to help the programmer while debugging. In its most generic form this is a term of the form
context(Name/Arity, Message), where Name/Arity describes the built-in predicate that raised the
error, and Message provides an additional description of the error. Any part of this structure may be a
variable if no information was present.

4.11.4 Printing messages

The predicate print_message/2 is used to print a message term in a human-readable format.
The other predicates from this section allow the user to refine and extend the message system. A
common usage of print_message/2 is to print error messages from exceptions. The code below
prints errors encountered during the execution of Goal, without further propagating the exception and
without starting the debugger.

ey
catch (Goal, E,
(print_message (error, E),
fail
)),

SWI-Prolog 8.0 Reference Manual

4.11. EXCEPTION HANDLING 123

Another common use is to define message_hook/ 3 for printing messages that are normally silent,
suppressing messages, redirecting messages or make something happen in addition to printing the
message.

print_message(+Kind, +Term)

The predicate print message/2 is used by the system and libraries to print messages.
Kind describes the nature of the message, while Term is a Prolog term that describes the
content. Printing messages through this indirection instead of using format/3 to the
stream user_error allows displaying the message appropriate to the application (termi-
nal, logfile, graphics), acting on messages based on their content instead of a string (see
message_hook/3) and creating language specific versions of the messages. See also
section 4.11.4. The following message kinds are known:

banner
The system banner message. Banner messages can be suppressed by setting the Prolog
flag verbose to silent.

debug(Topic)
Message from library(debug). See debug/ 3.

error
The message indicates an erroneous situation. This kind is used to print uncaught excep-
tions of type error(Formal, Context). See section introduction (section 4.11.4).

help
User requested help message, for example after entering ‘h’ or *?” to a prompt.

information
Information that is requested by the user. An example is statistics/0.

informational
Typically messages of events are progres that are considered useful to a developer. Such
messages can be suppressed by setting the Prolog flag verbose to silent.

silent
Message that is normally not printed. Applications may define message_hook/3 to act
upon such messages.

trace
Messages from the (command line) tracer.

warning
The message indicates something dubious that is not considered fatal. For example,
discontiguous predicates (see discontiguous/1).

The predicate print _message/ 2 first translates the Term into a list of ‘message lines’ (see
print_message_lines/3 for details). Next, it calls the hook message_hook/ 3 to allow
the user to intercept the message. If message_hook/ 3 fails it prints the message unless Kind
is silent.

The print message/2 predicate and its rules are in the file
(plhome) /boot /messages.pl, which may be inspected for more information on the
error messages and related error terms. If you need to write messages from your own
predicates, it is recommended to reuse the existing message terms if applicable. If no existing

SWI-Prolog 8.0 Reference Manual

124 CHAPTER 4. BUILT-IN PREDICATES

message term is applicable, invent a fairly unique term that represents the event and define a
rule for the multifile predicate prolog:message//1. See section 4.11.4 for a deeper discussion
and examples.

See also message_to_string/2.

print_message lines(+Stream, + Prefix, +Lines)
Print a message (see print_message/2) that has been translated to a list of message ele-
ments. The elements of this list are:

(Format)-(Args)
Where Format is an atom and Args is a list of format arguments. Handed to format /3.
flush
If this appears as the last element, Stream is flushed (see f1lush_output/1) and no
final newline is generated. This is combined with a subsequent message that starts with
at_same_line to complete the line.

at_same line
If this appears as first element, no prefix is printed for the first line and the line position is
not forced to 0 (see format /1, “N).

ansi(+Attributes, +Format, +Args)
This message may be intercepted by means of the hook
prolog:message_line_element/2. The library ansi_term implements
this hook to achieve coloured output. If it is not intercepted it invokes format(Stream,
Format, Args).

nl
A new line is started. If the message is not complete, Prefix is printed before the remainder
of the message.

begin(Kind, Var)

end(Var)
The entire message is headed by begin(Kind, Var) and ended by end(Var). This feature
is used by, e.g., library ansi_term to colour entire messages.

(Format)
Handed to format/3 as format(Stream, Format, []). Deprecated because it is am-
biguous if Format collides with one of the atomic commands.

See also print_message/2 and message_hook/3.

message_hook(+7erm, +Kind, +Lines)
Hook predicate that may be defined in the module user to intercept messages from
print _message/2. Term and Kind are the same as passed to print message/2. Lines
is a list of format statements as described with print_message_lines/3. See also
message_to_string/2.

This predicate must be defined dynamic and multifile to allow other modules defining clauses
for it too.

thread_message_hook(+7erm, +Kind, +Lines)
As message_hook/3, but this predicate is local to the calling thread (see

SWI-Prolog 8.0 Reference Manual

4.11. EXCEPTION HANDLING 125

thread_local/1l). This hook is called before message_hook/3. The ‘pre-hook’ is
indented to catch messages they may be produced by calling some goal without affecting other
threads.

message_property(+Kind, ?Property)
This hook can be used to define additional message kinds and the way they are displayed. The
following properties are defined:

color(-Attributes)
Print message using ANSI terminal attributes. See ansi_format /3 for details. Here is
an example, printing help messages in blue:

:— multifile user:message_property/2.

user:message_property (help, color([fg(blue)])).

prefix(-Prefix)
Prefix printed before each line. This argument is handed to format /3. The default is
" "N’ . For example, messages of kind warninguse ' "NWarning: ’.

location_prefix(+Location, -FirstPrefix, -ContinuePrefix)
Used for printing messages that are related to a source location. Currently, Location is a
term File:Line. FirstPrefix is the prefix for the first line and -ContinuePrefix is the prefix
for continuation lines. For example, the default for errors is

location_prefix (File:Line,
""NERROR: "w: d:’-[File,Line], ’"N\t’)).

stream(-Stream)
Stream to which to print the message. Default is user_error.

wait(-Seconds)
Amount of time to wait after printing the message. Default is not to wait.

prolog:message_line_element(+Stream, +Term)
This hook is called to print the individual elements of a message from
print message_lines/3. This hook is used by e.g., library ansi_term to colour
messages on ANSI-capable terminals.

prolog:message_prefix_hook(+ContextTerm, -Prefix)
This hook is called to add context to the message prefix. ContextTerm is a member of the list
provided by the message_context. Prefix must be unified with an atomic value that is
added to the message prefix.

message_to_string(+7erm, -String)
Translates a message term into a string object (see section 5.2).

version
Write the SWI-Prolog banner message as well as additional messages registered using
version/1. This is the default initialization goal which can be modified using —g.

SWI-Prolog 8.0 Reference Manual

126 CHAPTER 4. BUILT-IN PREDICATES

version(+Message)
Register additional messages to be printed by version/0. Each registered message is handed
to the message translation DCG and can thus be defined using the hook prolog:message//1. If
not defined, it is simply printed.

Printing from libraries

Libraries should not use format /3 or other output predicates directly. Libraries that print informa-
tional output directly to the console are hard to use from code that depend on your textual output,
such as a CGI script. The predicates in section 4.11.4 define the API for dealing with messages. The
idea behind this is that a library that wants to provide information about its status, progress, events
or problems calls print_message/2. The first argument is the level. The supported levels are de-
scribed with print message/2. Libraries typically use informational and warning, while
libraries should use exceptions for errors (see throw/1, type_error/2, etc.).

The second argument is an arbitrary Prolog term that carries the information of the message, but
not the precise text. The text is defined by the grammar rule prolog:message//1. This distinction is
made to allow for translations and to allow hooks processing the information in a different way (e.g.,
to translate progress messages into a progress bar).

For example, suppose we have a library that must download data from the Internet (e.g., based on
http_open/3). The library wants to print the progress after each downloaded file. The code below
is a good skeleton:

download_urls (List) :-
length (List, Total),
forall (nthl (I, List, URL),
(download_url (URL),
print_message (informational,
download_url (URL, I, Total)))).

The programmer can now specify the default textual output using the rule below. Note that this
rule may be in the same file or anywhere else. Notably, the application may come with several rule
sets for different languages. This, and the user-hook example below are the reason to represent the
message as a compound term rather than a string. This is similar to using message numbers in non-
symbolic languages. The documentation of print _message_lines/3 describes the elements that
may appear in the output list.

:— multifile
prolog:message//1.

prolog:message (download_url (URL, I, Total)) --—>
{ Perc is round(I+x100/Total) 1},
["Downloaded "w; "D from "D (d%)’-[URL, I, Total, Perc] 1.

A user of the library may define rules for message_hook/3. The rule below acts on the message
content. Other applications can act on the message level and, for example, popup a message box for
warnings and errors.

SWI-Prolog 8.0 Reference Manual

4.12. HANDLING SIGNALS 127

:— multifile user:message_hook/3.

message_hook (download_url (URL, I, Total), _Kind, _Lines) :-
<send this information to a GUI component>

In addition, using the command line option —q, the user can disable all informational messages.

4.12 Handling signals

As of version 3.1.0, SWI-Prolog is able to handle software interrupts (signals) in Prolog as well as in
foreign (C) code (see section 12.4.14).

Signals are used to handle internal errors (execution of a non-existing CPU instruction, arith-
metic domain errors, illegal memory access, resource overflow, etc.), as well as for dealing with
asynchronous interprocess communication.

Signals are defined by the POSIX standard and part of all Unix machines. The MS-Windows
Win32 provides a subset of the signal handling routines, lacking the vital functionality to raise a signal
in another thread for achieving asynchronous interprocess (or interthread) communication (Unix kill()
function).

on_signal(+Signal, -Old, :New)
Determines the reaction on Signal. Old is unified with the old behaviour, while the behaviour is
switched to New. As with similar environment control predicates, the current value is retrieved
using on_signal (Signal, Current, Current).

The action description is an atom denoting the name of the predicate that will be called if
Signal arrives. on_signal/3 is a meta-predicate, which implies that (Module):(Name) refers
to (Name)/1 in module (Module). The handler is called with a single argument: the name of
the signal as an atom. The Prolog names for signals are explained below.

Two predicate names have special meaning. throw implies Prolog will map the signal onto
a Prolog exception as described in section 4.11. default resets the handler to the settings
active before SWI-Prolog manipulated the handler.

Signals bound to a foreign function through PL_signal () are reported using the term
Sforeign_function(Address).

After receiving a signal mapped to throw, the exception raised has the following structure:
error (signal ((SigName), (SigNum)), (Context))

The signal names are defined by the POSIX standard as symbols of the form SIG(SIGNAME).
The Prolog name for a signal is the lowercase version of (SIGNAME). The predicate
current_signal/3 may be used to map between names and signals.

Initially, some signals are mapped to throw, while all other signals are default. The fol-
lowing signals throw an exception: fpe, alrm, xcpu, xfsz and vtalrm.

current_signal(’Name, ?Id, ?Handler)
Enumerate the currently defined signal handling. Name is the signal name, Id is the numerical
identifier and Handler is the currently defined handler (see on_signal/3).

SWI-Prolog 8.0 Reference Manual

128 CHAPTER 4. BUILT-IN PREDICATES

prolog_alert_signal(?0ld, +New)
Query or set the signal used to unblock blocking system calls on Unix systems and process
pending Prolog signals. The default is STGUSR2. See also ——sigalert.

4.12.1 Notes on signal handling

Before deciding to deal with signals in your application, please consider the following:

e Portability
On MS-Windows, the signal interface is severely limited. Different Unix brands support differ-
ent sets of signals, and the relation between signal name and number may vary. Currently, the
system only supports signals numbered 1 to 32°!. Installing a signal outside the limited set of
supported signals in MS-Windows crashes the application.

o Safety
Immediately delivered signals (see below) are unsafe. This implies that foreign functions called
from a handler cannot safely use the SWI-Prolog API and cannot use C longjmp(). Handlers
defined as throw are unsafe. Handlers defined to call a predicate are safe. Note that the
predicate can call throw/1, but the delivery is delayed until Prolog is in a safe state.

The C-interface described in section 12.4.14 provides the option PL._SIGSYNC to select either
safe synchronous or unsafe asynchronous delivery.

o Time of delivery
Using throw or a foreign handler, signals are delivered immediately (as defined by the OS).
When using a Prolog predicate, delivery is delayed to a safe moment. Blocking system
calls or foreign loops may cause long delays. Foreign code can improve on that by calling
PL_handle_signals().

Signals are blocked when the garbage collector is active.

4.13 DCG Grammar rules

Grammar rules form a comfortable interface to difference lists. They are designed both to support
writing parsers that build a parse tree from a list of characters or tokens and for generating a flat list
from a term.

Grammar rules look like ordinary clauses using ——> /2 for separating the head and body rather
than :-/2. Expanding grammar rules is done by expand_term/2, which adds two additional
arguments to each term for representing the difference list.

The body of a grammar rule can contain three types of terms. A callable term is interpreted as a
reference to a grammar rule. Code between {...} is interpreted as plain Prolog code, and finally, a
list is interpreted as a sequence of literals. The Prolog control-constructs (\+/1,->/2,;//2,,/2
and ! /0) can be used in grammar rules.

We illustrate the behaviour by defining a rule set for parsing an integer.

‘ integer (I) --> ‘
\ digit (DO), \

3I'TBD: the system should support the Unix realtime signals

SWI-Prolog 8.0 Reference Manual

4.13. DCG GRAMMAR RULES 129

digits (D),
{ number_codes (I, [DO|D])
}.

digits ([D|T]) -—>
digit (D), !,
digits (T) .

digits([]) -—>

(1.

digit (D) —-——>
[D],
{ code_type (D, digit)
}.

Grammar rule sets are called using the built-in predicates phrase/2 and phrase/3:

phrase(:DCGBody, ?List)
Equivalent to phrase (DCGBody, InputList, []).

phrase(:DCGBody, ?List, ?Rest)
True when DCGBody applies to the difference List/Rest. Although DCGBody is typically a
callable term that denotes a grammar rule, it can be any term that is valid as the body of a DCG
rule.

The example below calls the rule set integer//1 defined in section 4.13 and available from
library (dcg/basics), binding Rest to the remainder of the input after matching the in-
teger.

?- [library (dcg/basics)].

?—- atom_codes (42 times’, Codes),
phrase (integer (X), Codes, Rest).

X = 42

Rest = [32, 116, 105, 109, 101, 115]

The next example exploits a complete body. Given the following definition of
digit_weight//1, we can pose the query below.

digit_weight (W) —-->
[D],
{ code_type (D, digit(w)) }.

?— atom_codes ('Version 3.4’, Codes),
phrase (("Version ",
digit_weight (Major),".",digit_weight (Minor)),
Codes) .

SWI-Prolog 8.0 Reference Manual

130 CHAPTER 4. BUILT-IN PREDICATES

Major = 3,
Minor

Il
N

The SWI-Prolog implementation of phrase/3 verifies that the List and Rest arguments are
unbound, bound to the empty list or a list cons cell. Other values raise a type error.’” The
predicate call_dcg/ 3 is provided to use grammar rules with terms that are not lists.

Note that the syntax for lists of codes changed in SWI-Prolog version 7 (see section 5.2). If a
DCG body is translated, both "text" and ‘text " is a valid code-list literal in version 7. A
version 7 string ("text") is not acceptable for the second and third arguments of phrase/ 3.
This is typically not a problem for applications as the input of a DCG rarely appears in the
source code. For testing in the toplevel, one must use double quoted text in versions prior to 7
and back quoted text in version 7 or later.

See alsoportray_text /1, which can be used to print lists of character codes as a string to the
top level and debugger to facilitate debugging DCGs that process character codes. The library
apply-macros compiles phrase/ 3 if the argument is sufficiently instantiated, eliminating
the runtime overhead of translating DCGBody and meta-calling.

call_dcg(:DCGBody, ?State0, ?State)
As phrase/ 3, but without type checking State0 and State. This allows for using DCG rules
for threading an arbitrary state variable. This predicate was introduced after type checking was
added to phrase/3.%

A portable solution for threading state through a DCG can be implemented by wrapping the
state in a list and use the DCG semicontext facility. Subsequently, the following predicates may
be used to access and modify the state:**

state(S), [S] -—> [S].
state (S0, S), [S] —-—-> [SO].

As stated above, grammar rules are a general interface to difference lists. To illustrate, we show a
DCG-based implementation of reverse/2:

reverse (List, Reversed) :-—
phrase (reverse (List), Reversed).

reverse ([]) -—> [].
reverse ([H|T]) —-—> reverse(T), [H].

32The ISO standard allows for both raising a type error and accepting any term as input and output. Note the tail of the
list is not checked for performance reasons.

33 After discussion with Samer Abdallah.

3#This solution was proposed by Markus Triska.

SWI-Prolog 8.0 Reference Manual

4.14. DATABASE 131

4.14 Database

SWI-Prolog offers several ways to store data in globally accessible memory, i.e., outside the Prolog
stacks. Data stored this way notably does not change on backtracking. Typically it is a bad idea to use
any of the predicates in this section for realising global variables that can be assigned to. Typically,
first consider representing data processed by your program as terms passed around as predicate argu-
ments. If you need to reason over multiple solutions to a goal, consider findall/3, aggregate/3
and related predicates.

Nevertheless, there are scenarios where storing data outside the Prolog stacks is a good option.
Below are the main options for storing data:

Using dynamic predicates Dynamic predicates are predicates for which the list of clauses is mod-
ified at runtime using asserta/l, assertz/1, retract/1 or retractall/1l. Fol-
lowing the ISO standard, predicates that are modified this way need to be declared using
the dynamic/1 directive. These facilities are defined by the ISO standard and widely sup-
ported. The mechanism is often considered slow in the literature. Performance depends
on the Prolog implementation. In SWI-Prolog, querying dynamic predicates has the same
performance as static ones. The manipulation predicates are fast. Using retract/1 or
retractall/1 on a predicate registers the predicate as ‘dirty’. Dirty predicates are cleaned
by garbage_collect_clauses/0, which is normally automatically invoked. Some work-
loads may result in significant performance reduction due to skipping retracted clauses and/or
clause garbage collection.

Dynamic predicates can be wrapped using library persistency to maintain a backup of the
data on disk. Dynamic predicates come in two flavours, shared between threads and local to
each thread. The latter version is created using the directive thread_local/ 1.

The recorded database The ‘recorded database’ registers a list of terms with a key, an atom or com-
pound term. The list is managed using recorda/3, recordz/3 and erase/1. Itis queried
using recorded/3. The recorded database is not part of the ISO standard but fairly widely
supported, notably in implementations building on the ‘Edinburgh tradition’. There are few
reasons to use this database in SWI-Prolog due to the good performance of dynamic predicates.
Advantages are (1) the handle provides a direct reference to a term, (2) cyclic terms can be
stored and (3) attributes (section 8.1) are preserved. Disadvantages are (1) the terms in a list
associated with a key are not indexed, (2) the poorly specified immediate update semantics (see
section 4.14.5 applies to the recorded database and (3) reduced portability.

The f1ag/3 predicate The predicate £1ag/3 associates one simple value (number or atom) with
a key (atom, integer or compound). It is an old SWI-Prolog specific predicate that should be
considered deprecated, although there is no plan to remove it.

Using global variables The predicates b_setval/2 and nb_setval/2 associate a term living
on the Prolog stack with a name, either backtrackable or non-backtrackable. Backtrack-
able and non-backtrackable assignment without using a global name can be realised with
setarg/3 and nb_setarg/3. Notably the latter are used to realise aggregation as e.g.,
aggregate_all/3 performs.

Tries As of version 7.3.21, SWI-Prolog provides tries (prefix trees) to associate a term variant with
a value. Tries have been introduced to support tabling and are described in section 4.14.4.

SWI-Prolog 8.0 Reference Manual

132 CHAPTER 4. BUILT-IN PREDICATES

4.14.1 Managing (dynamic) predicates

abolish(:Predicatelndicator) [1SO]
Removes all clauses of a predicate with functor Functor and arity Arity from the database. All
predicate attributes (dynamic, multifile, index, etc.) are reset to their defaults. Abolishing an
imported predicate only removes the import link; the predicate will keep its old definition in its
definition module.

According to the ISO standard, abolish/1 can only be applied to dynamic procedures.
This is odd, as for dealing with dynamic procedures there is already retract/1 and
retractall/1l. The abolish/1 predicate was introduced in DEC-10 Prolog precisely
for dealing with static procedures. In SWI-Prolog, abolish/1 works on static procedures,
unless the Prolog flag i so is set to t rue.

It is advised to use retractall/1 for erasing all clauses of a dynamic predicate.

abolish(+Name, +Arity)
Same as abolish(Name/Arity). The predicate abolish/2 conforms to the Edinburgh
standard, while abolish/1 is ISO compliant.

copy_predicate_clauses(: From, :10)
Copy all clauses of predicate From to To. The predicate 7o must be dynamic or undefined. If
To is undefined, it is created as a dynamic predicate holding a copy of the clauses of From. If
To is a dynamic predicate, the clauses of From are added (as in assertz/1) to the clauses of
To. To and From must have the same arity. Acts as if defined by the program below, but at a
much better performance by avoiding decompilation and compilation.

copy_predicate_clauses (From, To) :-—
head (From, MF:FromHead),
head (To, MT:ToHead),
FromHead =.. [_|Args],
ToHead =.. [_|Args],
forall (clause (MF:FromHead, Body),
assertz (MT:ToHead, Body)).

head (From, M:Head) :-
strip_module (From, M, Name/Arity),
functor (Head, Name, Arity).

redefine_system_predicate(+Head)
This directive may be used both in module user and in normal modules to redefine any
system predicate. If the system definition is redefined in module user, the new definition is
the default definition for all sub-modules. Otherwise the redefinition is local to the module.
The system definition remains in the module system.

Redefining system predicate facilitates the definition of compatibility packages. Use in other

contexts is discouraged.

retract(+7erm) [1SO,nondet]
When Term is an atom or a term it is unified with the first unifying fact or clause in the database.

SWI-Prolog 8.0 Reference Manual

4.14. DATABASE 133

The fact or clause is removed from the database. The retract/1 predicate respects the
logical update view. This implies that retract /1 succeeds for all clauses that match Term
when the predicate was called. The example below illustrates that the first call to retract/1
succeeds on bee on backtracking despite the fact that bee is already retracted.™.

:— dynamic insect/1.
insect (ant) .
insect (bee) .

2= (retract (insect (1)),
writeln(I),
retract (insect (bee)),
fail
; true
).
ant ;
bee.

If multiple threads start a retract on the same predicate at the same time their notion of the entry
generation is adjusted such that they do not retract the same first clause. This implies that, if
multiple threads use once (retract (Term)), no two threads will retract the same clause.
Note that on backtracking over ret ract /1, multiple threads may retract the same clause as
both threads respect the logical update view.

retractall(+Head) [1S0,det]
All facts or clauses in the database for which the head unifies with Head are removed. If Head
refers to a predicate that is not defined, it is implicitly created as a dynamic predicate. See also
dynamic/1.%°

asserta(+7Term) [1S0]
assertz(+7Term) [1S0]
assert(+7Term) [deprecated]

Assert a clause (fact or rule) into the database. The predicate asserta/1 asserts the clause as
first clause of the predicate while assertz/1 assert the clause as last clause. The deprecated
assert/1 is equivalent to assertz/1. If the program space for the target module is
limited (see set _module/1), asserta/l canraise a resource_error(program_space)
exception. The example below adds two facts and a rule. Note the double parentheses around
the rule.

?— assertz (parent ('Bob’, ’"Jane’)).

?— assertz (female (" Jane’)).

?— assertz ((mother (Child, Mother) :-
parent (Child, Mother),
female (Mother))).

35Example by Jan Burse
3The ISO standard only allows using dynamic/1 as a directive.

SWI-Prolog 8.0 Reference Manual

134 CHAPTER 4. BUILT-IN PREDICATES

asserta(+7erm, -Reference)

assertz(+Term, -Reference)

assert(+7Term, -Reference) [deprecated]
Equivalent to asserta/1, assertz/1, assert/1, but in addition unifies Reference with
a handle to the asserted clauses. The handle can be used to access this clause with clause/3
and erase/1.

4.14.2 The recorded database

recorda(+Key, +Term, -Reference)
Assert Term in the recorded database under key Key. Key is a small integer (range
min_tagged_integer ...max_tagged_integer, atom or compound term. If the key is
a compound term, only the name and arity define the key. Reference is unified with an opaque
handle to the record (see erase/1).

recorda(+Key, +Term)
Equivalent to recorda (Key, Term, _).

recordz(+Key, +Term, -Reference)
Equivalent to recorda/ 3, but puts the Term at the tail of the terms recorded under Key.

recordz(+Key, +7Term)
Equivalent to recordz (Key, Term, _).

recorded(?Key, ?Value, ?Reference)
True if Value is recorded under Key and has the given database Reference. If Reference is given,
this predicate is semi-deterministic. Otherwise, it must be considered non-deterministic. If
neither Reference nor Key is given, the triples are generated as in the code snippet below.?’ See
also current _key/1.

current_key (Key),
recorded (Key, Value, Reference)

recorded(+Key, -Value)
Equivalent to recorded (Key, Value, _).

erase(+Reference)
Erase a record or clause from the database. Reference is a db-reference returned by
recorda/3, recordz/3 or recorded/3, clause/3, assert/2, asserta/2 or
assertz/2. Fail silently if the referenced object no longer exists. Notably, if multiple
threads attempt to erase the same clause one will succeed and the others will fail.

instance(+Reference, -Term)
Unify Term with the referenced clause or database record. Unit clauses are represented as Head
- true.

3"Note that, without a given Key, some implementations return triples in the order defined by recorda/2 and
recordz/2.

SWI-Prolog 8.0 Reference Manual

4.14. DATABASE 135

4.14.3 Flags

The predicate £1ag/ 3 is the oldest way to store global non-backtrackable data in SWI-Prolog. Flags
are global and shared by all threads. Their value is limited to atoms, small (64-bit) integers and floating
point numbers. Flags are thread-safe. The flags described in this section must not be confused with
Prolog flags described in section 2.11.

get_flag(+Key, -Value)
True when Value is the value currently associated with Key. If Key does not exist, a new flag
with value ‘0’ (zero) is created.

set_flag(+Key, Value)
Set flag Key to Value. Value must be an atom, small (64-bit) integer or float.

flag(+Key, -Old, +New)
True when Old is the current value of the flag Key and the flag has been set to New. New can be
an arithmetic expression. The update is atomic. This predicate can be used to create a shared
global counter as illustrated in the example below.

| flag(my_id, Id, Id+1).

‘next_id(ld) = ‘
|

4.14.4 Tries

Tries (also called digital tree, radix tree or prefix tree maintain a mapping between a variant of a
term (see =@=/2) and a value. They have been introduced in SWI-Prolog 7.3.21 as part of the
implementation of tabling. The current implementation is rather immature. In particular, the following
limitations currently apply:

e Tries are not thread-safe.

o Tries should not be modified while non-deterministic predicates such as t rie_gen/ 3 are run-
ning on the trie.

e Terms cannot have attributed variables.

e Terms cannot be cyclic. Possibly this will not change because cyclic terms can only be sup-
ported after creating a canonical form of the term.

We give the definition of these predicates for reference and debugging tabled predicates.
Future versions are likely to get a more stable and safer implementation. The API to tries
should not be considered stable.

trie_new(-Trie)
Create a new trie and unify Trie with a handle to the trie. The trie handle is a blob. Tries are
subject to atom garbage collection.

trie_destroy(+7Trie)
Destroy Trie. This removes all nodes from the trie and causes further access to 7rie to raise an
existence_error exception. The handle itself is reclaimed by atom garbage collection.

SWI-Prolog 8.0 Reference Manual

136 CHAPTER 4. BUILT-IN PREDICATES

is_trie(@Trie) [semidet]
True when Trie is a trie object. See also current _trie/1.

current_trie(-7rie) [nondet]
True if Trie is a currently existing trie. As this enumerates and then filters all known atoms this
predicate is slow and should only be used for debugging purposes. See also is_trie/1.

trie_insert(+7rie, +Key, +Value)
Insert the term Key into Trie and associate it with Value. Value can be any term. If Key-Value
is already part of Trie, the predicates fails silently. If Key is in Trie associated with a different
value, a permission_error is raised.

trie_update(+Trie, +Key, +Value)
Astrie_insert/3, butif Key is in Trie, its associated value is updated.

trie_insert(+Trie, +Term, +Value, -Handle)
As trie_insert/3, returning a handle to the trie node. This predicate is currently unsafe as
Handle is an integer used to encode a pointer. It was used to implement a pure Prolog version
of the tabling library.

trie_delete(+Trie, +Key, ?Value)
Delete Key from Trie if the value associated with Key unifies with Value.

trie_lookup(+Trie, +Key, -Value)
True if the term Key is in Trie and associated with Value.

trie_term(+Handle, -Term)
True when Term is a copy of the term associated with Handle. The result is undefined (including
crashes) if Handle is not a handle returned by trie_insert_new/3 or the node has been
removed afterwards.

trie_gen(+Trie, ?Key, -Value) [nondet]
True when Key is associated with Value in Trie. Backtracking retrieves all pairs. Currently
scans the entire trie, even if Key is partly known. Currently unsafe if 7rie is modified while the
values are being enumerated.

trie_property(?Trie, ?Property) [nondet]
True if Trie exists with Property. Intended for debugging and statistical purposes. Retrieving
some of these properties visit all nodes of the trie. Defined properties are

value_count(-Count)
Number of key-value pairs in the trie.

node_count(-Count)

Number of nodes in the trie.
size(-Bytes)

Required storage space of the trie.

hashed(-Count)
Number of nodes that use a hashed index to its children.

SWI-Prolog 8.0 Reference Manual

4.14. DATABASE 137

4.14.5 Update view

Traditionally, Prolog systems used the immediate update view: new clauses became visible to predi-
cates backtracking over dynamic predicates immediately, and retracted clauses became invisible im-
mediately.

Starting with SWI-Prolog 3.3.0 we adhere to the logical update view, where backtrackable pred-
icates that enter the definition of a predicate will not see any changes (either caused by assert/1
or retract/1) to the predicate. This view is the ISO standard, the most commonly used and the
most ‘safe’.’® Logical updates are realised by keeping reference counts on predicates and generation
information on clauses. Each change to the database causes an increment of the generation of the
database. Each goal is tagged with the generation in which it was started. Each clause is flagged with
the generation it was created in as well as the generation it was erased from. Only clauses with a
‘created’ ... ‘erased’ interval that encloses the generation of the current goal are considered visible.

4.14.6 Indexing databases

The indexing capabilities of SWI-Prolog are described in section 2.18. Summarizing, SWI-Prolog
creates indexes for any applicable argument, pairs of arguments and indexes on the arguments of
compound terms when applicable. Extended JIT indexing is not widely supported amoung Pro-
log implementations. Programs that aim at portability should consider using term_hash/2 and
term_hash/4 to design their database such that indexing on constant or functor (name/arity ref-
erence) on the first argument is sufficient. In some cases, using the predicates below to add one or
more additional columns (arguments) to a database predicate may improve performance. The overall
design of code using these predicates is given below. Note that as term_hash/2 leaves the hash
unbound if Term is not ground. This causes the lookup to be fast if Term is ground and correct (but
slow) otherwise.

:— dynamic
x/2.

assert_x(Term) :-
term_hash (Term, Hash)
assertz (x (Hash, Term)

~ 0~
.

x (Term) :-—
term_hash (Term, Hash),
x (Hash, Term).

term_hash(+Term, -HashKey) [det]
If Term is a ground term (see ground/ 1), HashKey is unified with a positive integer value that
may be used as a hash key to the value. If Term is not ground, the predicate leaves HashKey an
unbound variable. Hash keys are in the range 0...16, 777,215, the maximal integer that can
be stored efficiently on both 32 and 64 bit platforms.

This predicate may be used to build hash tables as well as to exploit argument indexing to find
complex terms more quickly.

38For example, using the immediate update view, no call to a dynamic predicate is deterministic.

SWI-Prolog 8.0 Reference Manual

138 CHAPTER 4. BUILT-IN PREDICATES

The hash key does not rely on temporary information like addresses of atoms and may be as-
sumed constant over different invocations and versions of SWI-Prolog.*® Hashes differ between
big and little endian machines. The term_hash/2 predicate is cycle-safe.*’

term_hash(+Term, +Depth, +Range, -HashKey) [det]
As term_hash/2, but only considers Term to the specified Depth. The top-level term has
depth 1, its arguments have depth 2, etc. That is, Depth = 0 hashes nothing; Depth = 1 hashes
atomic values or the functor and arity of a compound term, not its arguments; Depth = 2 also
indexes the immediate arguments, etc.

HashKey is in the range [0 . .. Range — 1]. Range must be in the range [1...2147483647]

variant_shal(+7erm, -SHAI) [det]
Compute a SHA1-hash from Term. The hash is represented as a 40-byte hexadecimal atom.
Unlike term_hash/2 and friends, this predicate produces a hash key for non-ground terms.
The hash is invariant over variable-renaming (see =@=/2) and constants over different
invocations of Prolog.*!

This predicate raises an exception when trying to compute the hash on a cyclic term or at-
tributed term. Attributed terms are not handled because subsumes_chk/2 is not considered
well defined for attributed terms. Cyclic terms are not supported because this would require es-
tablishing a canonical cycle. That is, given A=[a—A] and B=[a,a—B], A and B should produce
the same hash. This is not (yet) implemented.

This hash was developed for lookup of solutions to a goal stored in a table. By using a cryp-
tographic hash, heuristic algorithms can often ignore the possibility of hash collisions and thus
avoid storing the goal term itself as well as testing using =@=/2.

variant_hash(+7erm, -HashKey) [det]
Similar to variant_shal/2, but using a non-cryptographic hash and produces an integer
result like term_hash/2. This version does deal with attributed variables, processing them
as normal variables. This hash is primarily intended to speedup finding variant terms in a set of
terms. +

4.15 Declaring predicate properties

This section describes directives which manipulate attributes of predicate definitions. The functors
dynamic/1l,multifile/1,discontiguous/1 and public/1 are operators of priority 1150
(see op/ 3), which implies that the list of predicates they involve can just be a comma-separated list:

- dynamic ‘
foo/0, ‘
baz/2. ‘

I
‘ .
L

In SWI-Prolog all these directives are just predicates. This implies they can also be called by a pro-
gram. Do not rely on this feature if you want to maintain portability to other Prolog implementations.

%Last change: version 5.10.4

“BUG: All arguments that (indirectly) lead to a cycle have the same hash key.

“BUG: The hash depends on word order (big/little-endian) and the wordsize (32/64 bits).
“BUG: As variant_shal/2, cyclic terms result in an exception.

SWI-Prolog 8.0 Reference Manual

4.16. EXAMINING THE PROGRAM 139

dynamic :Predicatelndicator, . .. [ISO]
Informs the interpreter that the definition of the predicate(s) may change during execution
(using assert/1 and/or retract/1). In the multithreaded version, the clauses of dynamic
predicates are shared between the threads. The directive thread local/1 provides an
alternative where each thread has its own clause list for the predicate. Dynamic predicates can
be turned into static ones using compile predicates/ 1.

compile_predicates(:ListOfPredicatelndicators)
Compile a list of specified dynamic predicates (see dynamic/1 and assert /1) into normal
static predicates. This call tells the Prolog environment the definition will not change anymore
and further calls to assert/1 or retract/1 on the named predicates raise a permission
error. This predicate is designed to deal with parts of the program that are generated at runtime
but do not change during the remainder of the program execution.*’

multifile : Predicatelndicator, . .. [1S0]
Informs the system that the specified predicate(s) may be defined over more than one file. This
stops consult /1 from redefining a predicate when a new definition is found.

discontiguous : Predicatelndicator, . .. [1S0]
Informs the system that the clauses of the specified predicate(s) might not be together in the
source file. See also style_check/1.

public :Predicatelndicator, . ..
Instructs the cross-referencer that the predicate can be called. It has no semantics.** The public
declaration can be queried using predicate_property/2. The public/1 directive does
not export the predicate (see module/1 and export/1). The public directive is used for
(1) direct calls into the module from, e.g., foreign code, (2) direct calls into the module from
other modules, or (3) flag a predicate as being called if the call is generated by meta-calling
constructs that are not analysed by the cross-referencer.

non_terminal :Predicatelndicator; . ..
Sets the non_terminal attribute on the predicate. This indicates that the predicate imple-
ments a grammar rule. Currently, predicates that are exported using Name//Arity syntax are
flagged as non-terminals. Ideally we should add this flag to any predicate created from the
expansion of a ——> rule, but that is difficult without breaking compatibility for programs that
reason about expand_term/2,4.

4.16 Examining the program

current_atom(-Azrom)
Successively unifies Afom with all atoms known to the system. Note that current_atom/1
always succeeds if Afom is instantiated to an atom.

The specification of this predicate is from Richard O’Keefe. The implementation is allowed to optimise the predicate.
This is not yet implemented. In multithreaded Prolog, however, static code runs faster as it does not require synchronisation.
This is particularly true on SMP hardware.

“This declaration is compatible with SICStus. In YAP, public/1 instructs the compiler to keep the source. As the
source is always available in SWI-Prolog, our current interpretation also enhances the compatibility with YAP.

SWI-Prolog 8.0 Reference Manual

140 CHAPTER 4. BUILT-IN PREDICATES

current_blob(?Blob, ?Type)
Examine the type or enumerate blobs of the given Type. Typed blobs are supported through
the foreign language interface for storing arbitrary BLOBs (Binary Large Object) or handles to
external entities. See section 12.4.8 for details.

current_functor(’Name, ?Arity)
True when Name/Arity is a known functor. This means that at some point in time a term
with name Name and Arity arguments was created. Functor objects are currently not subject
to garbage collection. Due to timing, t/2 below with instantiated Name and Arity can
theoretically fail, i.e., a functor may be visible in instantiated mode while it is not yet visible in
unbound mode. Considering that the only practical value of current_functor/2 we are
aware of is to analyse resource usage we accept this impure behaviour.

t (Name, Arity) :-
(current_functor (Name, Arity)
-> current_functor (N, A), N == Name, A == Arity
; true

) .

current_flag(-FlagKey)
Successively unifies FlagKey with all keys used for flags (see £1ag/ 3).

current_Kkey(-Key)
Successively unifies Key with all keys used for records (see recorda/ 3, etc.).

current_predicate(: Predicatelndicator) [150]
True if Predicatelndicator is a currently defined predicate. A predicate is considered defined
if it exists in the specified module, is imported into the module or is defined in one of the
modules from which the predicate will be imported if it is called (see section 6.9). Note that
current _predicate/1 does not succeed for predicates that can be autoloaded. See also
current _predicate/2 and predicate_property/2.

If Predicatelndicator is not fully specified, the predicate only generates values that are defined
in or already imported into the target module. Generating all callable predicates therefore re-
quires enumerating modules using current _module/1. Generating predicates callable in
a given module requires enumerating the import modules using import_module/2 and the
autoloadable predicates using the predicate property/2 autoload.

current_predicate(?Name, :Head)
Classical pre-ISO implementation of current _predicate/1, where the predicate is repre-
sented by the head term. The advantage is that this can be used for checking the existence of a
predicate before calling it without the need for functor/3:

call if exists(G) :-—
current_predicate(_, G),
call (G) .

SWI-Prolog 8.0 Reference Manual

4.16. EXAMINING THE PROGRAM 141

Because of this intended usage, current predicate/2 also succeeds if the predicate can
be autoloaded. Unfortunately, checking the autoloader makes this predicate relatively slow, in
particular because a failed lookup of the autoloader will cause the autoloader to verify that its
index is up-to-date.

predicate_property(:Head, ?Property)

True when Head refers to a predicate that has property Property. With sufficiently instan-
tiated Head, predicate property/2 tries to resolve the predicate the same way
as calling it would do: if the predicate is not defined it scans the default modules (see
default_module/2) and finally tries the autoloader. Unlike calling, failure to find the
target predicate causes predicate_property/2 to fail silently. If Head is not sufficiently
bound, only currently locally defined and already imported predicates are enumerated.
See current_predicate/1 for enumerating all predicates. A common issue concerns
generating all built-in predicates. This can be achieved using the code below:

generate_built_in (Name/Arity) :-
predicate_property (system:Head, built_in),
functor (Head, Name, Arity),

o

\+ sub_atom (Name, 0, _, _, $). % discard reserved names

Property is one of:

autoload(File)
True if the predicate can be autoloaded from the file File. Like unde fined, this property
is not generated.

built_in
True if the predicate is locked as a built-in predicate. This implies it cannot be redefined
in its definition module and it can normally not be seen in the tracer.

defined
True if the predicate is defined. This property is aware of sources being reloaded, in
which case it claims the predicate defined only if it is defined in another source or it has
seen a definition in the current source. See compile_aux_clauses/1.

dynamic
True if assert/1 and retract /1 may be used to modify the predicate. This property
is set using dynamic/1.

exported
True if the predicate is in the public list of the context module.

imported_from(Module)
Is true if the predicate is imported into the context module from module Module.

file(FileName)
Unify FileName with the name of the source file in which the predicate is defined. See
also source_file/2 and the property line_count. Note that this reports the
file of the first clause of a predicate. A more robust interface can be achieved using
nth_clause/3 and clause property/2.

foreign
True if the predicate is defined in the C language.

SWI-Prolog 8.0 Reference Manual

142 CHAPTER 4. BUILT-IN PREDICATES

implementation_module(-Module)
True when Module is the module in which Head is or will be defined. Resolving this
property goes through the same search mechanism as when the an undefined predicate is
encountered, but does not perform any loading. It searches (1) the module inheritence
hierarchy (see default_module/2) and (2) the autoload index if the unknown flag is
not set to fail in the target module.

indexed(/ndexes)
Indexes™ is a list of additional (hash) indexes on the predicate. Each element of the list is
a term ArgSpec-Index. ArgSpec denotes the indexed argument(s) and is one of

single(Argument)
Hash on a single argument. Argument is the 1-based argument number.
multi(ArgumentList)
Hash on a combination of arguments.
deep(Position)
Index on a sub-argument. Position is a list holding first the argument of the predicate
then the argument into the compound and recursively into deeper compound terms.

Index is a term hash(Buckets, Speedup, Size, IsList). Here Buckets is the number of
buckets in the hash and Speedup is the expected speedup relative to trying all clauses
linearly, Size is the size of the index in memory in bytes and finally, IsList indicates that a
list is created for all clauses with the same key. This is used to create deep indexes for the
arguments of compound terms.

interpreted
True if the predicate is defined in Prolog. We return true on this because, although the
code is actually compiled, it is completely transparent, just like interpreted code.
iso
True if the predicate is covered by the ISO standard (ISO/IEC 13211-1).
line_count(LineNumber)
Unify LineNumber with the line number of the first clause of the predicate. Fails if the
predicate is not associated with a file. See also source_file/2. See also the file
property above, notably the reference to clause _property/2.

multifile
True if there may be multiple (or no) files providing clauses for the predicate. This
property is setusingmultifile/1.

meta_predicate(Head)
If the predicate is declared as a meta-predicate using meta_predicate/1, unify Head
with the head-pattern. The head-pattern is a compound term with the same name and
arity as the predicate where each argument of the term is a meta-predicate specifier. See
meta_predicate/1 for details.

nodebug
Details of the predicate are not shown by the debugger. This is the default for built-
in predicates. User predicates can be compiled this way using the Prolog flag
generate_debug_info.

“>This predicate property should be used for analysis and statistics only. The exact representation of Indexes may change
between versions.

SWI-Prolog 8.0 Reference Manual

4.16. EXAMINING THE PROGRAM 143

non_terminal(7)
rue if the predicate implements a grammar rule. See non_terminal/1.

notrace
Do not show ports of this predicate in the debugger.

number _of_clauses(ClauseCount)
Unify ClauseCount to the number of clauses associated with the predicate. Fails for
foreign predicates.

number_of_rules(RuleCount)
Unify RuleCount to the number of clauses associated with the predicate. A rule is defined
as a clauses that has a body that is not just true (i.e., a fact). Fails for foreign
predicates. This property is used to avoid analysing predicates with only facts in
prolog._codewalk.

last_modified_generation(Generation)
Database generation at which the predicate was modified for the last time. Intended to
quickly assesses the validity of caches.

public
Predicate is declared public using public/1. Note that without further definition,
public predicates are considered undefined and this property is not reported.

quasi_quotation_syntax
The predicate (with arity 4) is declared to provide quasi quotation syntax with
quasi_quotation_syntax/1.

static
The definition can not be modified using assertz/1 and friends. This property is the
opposite from dynamic, i.e., for each defined predicate, either static or dynamic is
true but never both.

thread_local

If true (only possible on the multithreaded version) each thread has its own clauses for
the predicate. This property is set using thread_local/1.

transparent
True if the predicate is declared transparent using the module_transparent/1
or meta_predicate/1 declaration. In the Ilatter case the property

meta_predicate(Head) is also provided. See chapter 6 for details.

undefined
True if a procedure definition block for the predicate exists, but there are no clauses for
it and it is not declared dynamic or multifile. This is true if the predicate occurs in the
body of a loaded predicate, an attempt to call it has been made via one of the meta-call
predicates, the predicate has been declared as e.g., a meta-predicate or the predicate had
a definition in the past. Originally used to find missing predicate definitions. The current
implementation of 1ist_undefined/0 used cross-referencing. Deprecated.

visible
True when predicate can be called without raising a predicate existence error. This means
that the predicate is (1) defined, (2) can be inherited from one of the default modules (see
default_module/2) or (3) can be autoloaded. The behaviour is logically consistent
iff the property visible is provided explicitly. If the property is left unbound, only
defined predicates are enumerated.

SWI-Prolog 8.0 Reference Manual

144 CHAPTER 4. BUILT-IN PREDICATES

volatile
If true, the clauses are not saved into a saved state by gsave_program/ [1,2]. This
property is set using volatile/1.

dwim_predicate(+Term, -Dwim)
‘Do What I Mean’ (‘dwim’) support predicate. Term is a term, whose name and arity are used
as a predicate specification. Dwim is instantiated with the most general term built from Name
and the arity of a defined predicate that matches the predicate specified by Term in the ‘Do
What I Mean’ sense. See dwim match/2 for ‘Do What I Mean’ string matching. Internal
system predicates are not generated, unless the access level is system (see access_level).
Backtracking provides all alternative matches.

clause(:Head, ?Body) [1SO]
True if Head can be unified with a clause head and Body with the corresponding clause body.
Gives alternative clauses on backtracking. For facts, Body is unified with the atom true.

clause(:Head, ?Body, ?Reference)
Equivalent to clause/ 2, but unifies Reference with a unique reference to the clause (see also
assert/2, erase/1). If Reference is instantiated to a reference the clause’s head and body
will be unified with Head and Body.

nth_clause(?Pred, ?Index, ?Reference)

Provides access to the clauses of a predicate using their index number. Counting starts at 1.
If Reference is specified it unifies Pred with the most general term with the same name/arity
as the predicate and Index with the index number of the clause. Otherwise the name and arity
of Pred are used to determine the predicate. If Index is provided, Reference will be unified
with the clause reference. If Index is unbound, backtracking will yield both the indexes and
the references of all clauses of the predicate. The following example finds the 2nd clause of
append/ 3:

?— use_module (library(lists)).

?— nth_clause (append(_,_,_), 2, Ref), clause(Head, Body, Ref).
Ref = <clause>(0x994290),

Head = lists:append([_G23|_G24], _G21, [_G23|_G271),

Body append (_G24, _G21, _G27).

clause_property(+ClauseRef, -Property)
Queries properties of a clause. ClauseRef is a reference to a clause as produced by clause/ 3,
nth_clause/3 or prolog_frame_attribute/3. Unlike most other predicates that
access clause references, clause_property/2 may be used to get information about erased
clauses that have not yet been reclaimed. Property is one of the following:

file(FileName)
Unify FileName with the name of the file from which the clause is loaded. Fails if the
clause was not created by loading a file (e.g., clauses added using assertz/1). See
also source.

SWI-Prolog 8.0 Reference Manual

4.17. INPUT AND OUTPUT 145

line_count(LineNumber)
Unify LineNumber with the line number of the clause. Fails if the clause is not associated
to a file.

size(SizelnBytes)
True when SizelnBytes is the size that the clause uses in memory in bytes. The size
required by a predicate also includes the predicate data record, a linked list of clauses,
clause selection instructions and optionally one or more clause indexes.

source(FileName)
Unify FileName with the name of the source file that created the clause. This is the same
as the £ile property, unless the file is loaded from a file that is textually included into
source using include/1. In this scenario, £1i1e is the included file, while the source
property refers to the main file.

fact
True if the clause has no body.

erased
True if the clause has been erased, but not yet reclaimed because it is referenced.

predicate(Predicatelndicator)
Predicatelndicator denotes the predicate to which this clause belongs. This is needed to
obtain information on erased clauses because the usual way to obtain this information
using clause/ 3 fails for erased clauses.

module(Module)
Module is the context module used to execute the body of the clause. For normal clauses,
this is the same as the module in which the predicate is defined. However, if a clause
is compiled with a module qualified head, the clause belongs to the predicate with the
qualified head, while the body is executed in the context of the module in which the
clause was defined.

4.17 Input and output

SWI-Prolog provides two different packages for input and output. The native I/O system is based
on the ISO standard predicates open/3, close/1 and friends.* Being more widely portable and
equipped with a clearer and more robust specification, new code is encouraged to use these predicates
for manipulation of I/O streams.

Section 4.17.3 describes tell/1, see/1 and friends, providing I/O in the spirit of the traditional
Edinburgh standard. These predicates are layered on top of the ISO predicates. Both packages are
fully integrated; the user may switch freely between them.

4.17.1 Predefined stream aliases

Each thread has five stream aliases: user_input, user_output, user_error,
current_input, and current_output. Newly created threads inherit these stream aliases
from their parent. The user_input, user_output and user_error aliases of the main
thread are initially bound to the standard operating system I/O streams (stdin, stdout and stderr,

46 Actually based on Quintus Prolog, providing this interface before the ISO standard existed.

SWI-Prolog 8.0 Reference Manual

146 CHAPTER 4. BUILT-IN PREDICATES

normally bound to the POSIX file handles 0, 1 and 2). These aliases may be re-bound, for ex-
ample if standard I/O refers to a window such as in the swipl-win.exe GUI executable for
Windows. They can be re-bound by the user using set_prolog_.I0/3 and set_stream/2 by
setting the alias of a stream (e.g, set_stream (S, alias (user_output))). An example of
rebinding can be found in library prolog_server, providing a telnet service. The aliases
current_input and current_output define the source and destination for predicates that do
not take a stream argument (e.g., read/1, write/1, get_code/1,...). Initially, these are bound
to the same stream as user_input and user_error. They are re-bound by see/1, tell/1,
set_input/1 and set_output/1. The current_output stream is also temporary re-bound
by with_output_to/2 or format/3 using e.g., format (atom(A), Note that code
which explicitly writes to the streams user_output and user_error will not be redirected by
with_output_to/2.

Compatibility Note that the ISO standard only defines the user_* streams. The ‘current’ streams
can be accessed using current_input/1 and current_output /1. For example, an ISO com-
patible implementation of write/1 is

‘write(Term) :— current_output (Out), write_term(Out, Term). ‘

while SWI-Prolog additionally allows for

‘write(Term) :— write (current_output, Term). ‘

4.17.2 1SO Input and Output Streams

The predicates described in this section provide ISO compliant I/O, where streams are explicitly cre-
ated using the predicate open/ 3. The resulting stream identifier is then passed as a parameter to the
reading and writing predicates to specify the source or destination of the data.

This schema is not vulnerable to filename and stream ambiguities as well as changes to the work-
ing directory. On the other hand, using the notion of current-I/O simplifies reusability of code without
the need to pass arguments around. E.g., see with_output_to/2.

SWI-Prolog streams are, compatible with the ISO standard, either input or output streams. To
accommodate portability to other systems, a pair of streams can be packed into a stream-pair. See
stream_pair/3 for details.

SWI-Prolog stream handles are unique symbols that have no syntactical representation. They are
written as <stream> (hex—number), which is not valid input for read/1. They are realised
using a blob of type st ream (see blob/2 and section 12.4.8).

open(+SrcDest, +Mode, —Stream, +Options) [ISO]
True when SrcDest can be opened in Mode and Stream is an 1/O stream to/from the object.
SrcDest is normally the name of a file, represented as an atom or string. Mode is one of read,
write, append or update. Mode append opens the file for writing, positioning the file
pointer at the end. Mode update opens the file for writing, positioning the file pointer at the
beginning of the file without truncating the file. Stream is either a variable, in which case it

SWI-Prolog 8.0 Reference Manual

4.17. INPUT AND OUTPUT 147

is bound to an integer identifying the stream, or an atom, in which case this atom will be the
stream identifier.*’

SWI-Prolog also allows SrcDest to be a term pipe(Command). In this form, Command is
started as a child process and if Mode is write, output written to Stream is sent to the standard
input of Command. Viso versa, if Mode is read, data written by Command to the standard out-
put may be read from Stream. On Unix systems, Command is handed to popen() which hands it
to the Unix shell. On Windows, Command is executed directly. See also process_create/3
from process.

If SrcDest is an IRI, i.e., starts with (scheme)://, where (scheme) is a non-empty sequence
of lowercase ASCII letters open/ 3,4 calls hooks registered by register_iri_scheme/3.
Currently the only predefined IRI scheme is res, providing access to the resource database.
See section 13.4.

The following Options are recognised by open/4:

alias(Arom)
Gives the stream a name. Below is an example. Be careful with this option as stream
names are global. See also set_stream/2.

?— open(data, read, Fd, [alias(input)]).

eI

read (input, Term),

bom(Bool)
Check for a BOM (Byte Order Marker) or write one. If omitted, the default is true
for mode read and false for mode write. See also stream_property/2 and
especially section 2.19.1 for a discussion of this feature.

buffer(Buffering)
Defines output buffering. The atom full (default) defines full buffering, 1 ine buffering
by line, and false implies the stream is fully unbuffered. Smaller buffering is useful
if another process or the user is waiting for the output as it is being produced. See also
flush_output/ [0, 1]. This option is not an ISO option.

close_on_abort(Bool)
If t rue (default), the stream is closed on an abort (see abort /0). If false, the stream
is not closed. If it is an output stream, however, it will be flushed. Useful for logfiles and
if the stream is associated to a process (using the pipe/1 construct).

create(+List)
Specifies how a new file is created when opening in write, append or update mode.
Currently, List is a list of atoms that describe the permissions of the created file.*® Defined
values are below. Not recognised values are silently ignored, allowing for adding platform
specific extensions to this set.

read
Allow read access to the file.

*TNew code should use the alias(Alias) option for compatibility with the ISO standard.
8 Added after feedback from Joachim Shimpf and Per Mildner.

SWI-Prolog 8.0 Reference Manual

148

CHAPTER 4. BUILT-IN PREDICATES

write
Allow write access to the file.

execute
Allow execution access to the file.

default
Allow read and write access to the file.

all
Allow any access provided by the OS.

Note that if List is empty, the created file has no associated access permissions. The create
options map to the POSIX mode option of open(), where read map to 0444, write to
0222 and execute to 0111. On POSIX systems, the final permission is defined as (mode
& ~umask).

encoding(Encoding)
Define the encoding used for reading and writing text to this stream. The default encoding
for type text is derived from the Prolog flag encoding. For binary streams the
default encoding is octet. For details on encoding issues, see section 2.19.1.

eof_action(Action)
Defines what happens if the end of the input stream is reached. The default value for
Action is eof_code, which makes get0/1 and friends return -1, and read/1 and
friends return the atom end_of_file. Repetitive reading keeps yielding the same result.
Action error is like eof_code, but repetitive reading will raise an error. With action
reset, Prolog will examine the file again and return more data if the file has grown.

locale(+Locale)
Set the locale that is used by notably format /2 for output on this stream. See sec-
tion 4.23.

lock(LockingMode)
Try to obtain a lock on the open file. Default is none, which does not lock the file. The
value read or shared means other processes may read the file, but not write it. The
value write or exclusive means no other process may read or write the file.

Locks are acquired through the POSIX function fcntl() using the command F_SETLKW,
which makes a blocked call wait for the lock to be released. Please note that fcntl() locks
are advisory and therefore only other applications using the same advisory locks honour
your lock. As there are many issues around locking in Unix, especially related to NFS
(network file system), please study the fcntl() manual page before trusting your locks!

The 1ock option is a SWI-Prolog extension.

type(Type)
Using type text (default), Prolog will write a text file in an operating system compatible
way. Using type binary the bytes will be read or written without any translation. See
also the option encoding.

wait(Bool)
This option can be combined with the 1ock option. If false (default t rue), the open
call returns immediately with an exception if the file is locked. The exception has the
format permission_error(lock, source_sink, SrcDest).

SWI-Prolog 8.0 Reference Manual

4.17. INPUT AND OUTPUT 149

The option reposition is not supported in SWI-Prolog. All streams connected to a file may
be repositioned.

open(+SrcDest, +Mode, —Stream) [150]
Equivalent to open/4 with an empty option list.

open_null_stream(-Stream)
Open an output stream that produces no output. All counting functions are enabled on such
a stream. It can be used to discard output (like Unix /dev/null) or exploit the counting
properties. The initial encoding of Stream is ut £8, enabling arbitrary Unicode output. The
encoding can be changed to determine byte counts of the output in a particular encoding or
validate if output is possible in a particular encoding. For example, the code below determines
the number of characters emitted when writing Term.

write_length (Term, Len) :-—
open_null_stream(Out),
write (Out, Term),
character_count (Out, LenO),
close (Out),
Len = LenO.

close(+Stream) [150]
Close the specified stream. If Stream is not open, an existence error is raised. See
stream_pair/3 for the implications of closing a stream pair.

If the closed stream is the current input, output or error stream, the stream alias is bound to the
initial standard I/O streams of the process. Calling c1lose/ 1 on the initial standard I/O streams
of the process is a no-op for an input stream and flushes an output stream without closing it.*’

close(+Stream, +Options) [150]
Provides close(Stream, [force(true)]) as the only option. Called this way, any resource errors
(such as write errors while flushing the output buffer) are ignored.

stream_property(?Stream, ?StreamProperty) [1S0]
True when StreamProperty is a property of Stream. If enumeration of streams or properties
is demanded because either Stream or StreamProperty are unbound, the implementation
enumerates all candidate streams and properties while locking the stream database. Properties
are fetched without locking the stream and may be outdated before this predicate returns due to
asynchronous activity.

alias(Atom)
If Atom is bound, test if the stream has the specified alias. Otherwise unify Atom with the
first alias of the stream.”’

buffer(Buffering)
SWI-Prolog extension to query the buffering mode of this stream. Buffering is one of
full, line or false. See also open/4.

“This behaviour was defined with purely interactive usage of Prolog in mind. Applications should not count on this
behaviour. Future versions may allow for closing the initial standard I/O streams.
SBUG: Backtracking does not give other aliases.

SWI-Prolog 8.0 Reference Manual

150

CHAPTER 4. BUILT-IN PREDICATES

buffer _size(Integer)
SWI-Prolog extension to query the size of the I/O buffer associated to a stream in bytes.
Fails if the stream is not buffered.

bom(Bool)
If present and t rue, a BOM (Byte Order Mark) was detected while opening the file for
reading, or a BOM was written while opening the stream. See section 2.19.1 for details.

close_on_abort(Bool)
Determine whether or not abort /0 closes the stream. By default streams are closed.

close_on_exec(Bool)
Determine whether or not the stream is closed when executing a new process (exec() in
Unix, CreateProcess() in Windows). Default is to close streams. This maps to fcntl()
F_SETFD using the flag FD_CLOEXEC on Unix and (negated) HANDLE_FLAG_INHERIT
on Windows.

encoding(Encoding)
Query the encoding used for text. See section 2.19.1 for an overview of wide character
and encoding issues in SWI-Prolog.

end_of_stream(E)
If Stream is an input stream, unify E with one of the atoms not, at or past. See also
at_end_of_stream/[0,1].

eof_action(A)
Unify A with one of eof_code, reset or error. See open/ 4 for details.

file_name(Arom)
If Stream is associated to a file, unify Afom to the name of this file.

file_no(Integer)
If the stream is associated with a POSIX file descriptor, unify Integer with the descriptor
number. SWI-Prolog extension used primarily for integration with foreign code. See also
Sfileno() from SWI-Stream.h.

input
True if Stream has mode read.

locale(Locale)
True when Locale is the current locale associated with the stream. See section 4.23.

mode(/OMode)
Unify /IOMode to the mode given to open/ 4 for opening the stream. Values are: read,
write, append and the SWI-Prolog extension update.

newline(NewlineMode)
One of posix or dos. If dos, text streams will emit \r\n for \n and discard \ r from
input streams. Default depends on the operating system.

nlink(-Counr)
Number of hard links to the file. This expresses the number of ‘names’ the file has. Not
supported on all operating systems and the value might be bogus. See the documentation
of fstat() for your OS and the value st _nlink.

output
True if Stream has mode write, append or update.

SWI-Prolog 8.0 Reference Manual

4.17. INPUT AND OUTPUT 151

position(Pos)
Unify Pos with the current stream position. A stream position is an opaque
term whose fields can be extracted using stream position_data/3. See also
set_stream_position/2.

reposition(Bool)
Unify Bool with true if the position of the stream can be set (see seek/4). It is assumed

the position can be set if the stream has a seek-function and is not based on a POSIX file
descriptor that is not associated to a regular file.

representation_errors(Mode)
Determines behaviour of character output if the stream cannot represent a character. For
example, an ISO Latin-1 stream cannot represent Cyrillic characters. The behaviour is
one of error (throw an I/O error exception), prolog (write \ ...\ escape code) or
xml (write &#...; XML character entity). The initial mode is prolog for the user
streams and error for all other streams. See also section 2.19.1 and set _stream/2.

timeout(-7ime)
Time is the timeout currently associated with the stream. See set_stream/2 with the
same option. If no timeout is specified, Time is unified to the atom infinite.
type(Type)
Unify Type with text or binary.
tty(Bool)

This property is reported with Bool equal to true if the stream is associated with a
terminal. See also set_stream/2.

write_errors(Atom)
Atom is one of error (default) or ignore. The latter is intended to deal with service
processes for which the standard output handles are not connected to valid streams. In
these cases write errors may be ignored on user_error.

current_stream(?Object, ?Mode, ?Stream)
The predicate current_stream/3 is used to access the status of a stream as well as to
generate all open streams. Object is the name of the file opened if the stream refers to an open
file, an integer file descriptor if the stream encapsulates an operating system stream, or the
atom [] if the stream refers to some other object. Mode is one of read or write.

is_stream(+7erm)
True if Term is a stream name or valid stream handle. This predicate realises a safe test for the
existence of a stream alias or handle.

stream_pair(’StreamPair, ?Read, ?Write)
This predicate can be used in mode (-,+,+) to create a stream-pair from an input stream and an
output stream. Mode (+,-,-) can be used to get access to the underlying streams. If a stream has
already been closed, the corresponding argument is left unbound. If mode (+,-,-) is used on a
single stream, either Read or Write is unified with the stream while the other argument is left
unbound. This behaviour simplifies writing code that must operate both on streams and stream
pairs.

Stream-pairs can be used by all I/O operations on streams, where the operation selects the
appropriate member of the pair. The predicate close/1 closes the still open streams of the

SWI-Prolog 8.0 Reference Manual

152 CHAPTER 4. BUILT-IN PREDICATES

pair.’! The output stream is closed before the input stream. If closing the output stream results
in an error, the input stream is still closed. Success is only returned if both streams were closed
successfully.

set_stream_position(+Stream, +Pos) [150]
Set the current position of Stream to Pos. Pos is a term as returned by st ream_property/2
using the position(Pos) property. See also seek/4.

stream_position_data(’Field, +Pos, -Data)
Extracts information from the opaque stream position term as returned by
stream_property/2 requesting the position(Pos) property. Field is one
of line_count, line position, char_count or byte_count. See also
line_count/2, line_position/2, character_count/2 and byte_count/2.%?

seek(+Stream, +Offset, + Method, -NewLocation)
Reposition the current point of the given Stream. Method is one of bof, current or eof,
indicating positioning relative to the start, current point or end of the underlying object.
NewLocation is unified with the new offset, relative to the start of the stream.

Positions are counted in ‘units’. A unit is 1 byte, except for text files using 2-byte Uni-
code encoding (2 bytes) or wchar encoding (sizeof(wchar_t)). The latter guarantees com-
fortable interaction with wide-character text objects. Otherwise, the use of seek/4 on
non-binary files (see open/4) is of limited use, especially when using multi-byte text
encodings (e.g. UTF-8) or multi-byte newline files (e.g. DOS/Windows). On text files,
SWI-Prolog offers reliable backup to an old position using stream property/2 and
set_stream position/2. Skipping NN character codes is achieved calling get_code/2
N times or using copy-stream_data/3, directing the output to a null stream (see
open_null_stream/1). If the seek modifies the current location, the line number and char-
acter position in the line are set to 0.

If the stream cannot be repositioned, a permission_error is raised. If applying the offset
would result in a file position less than zero, a domain_error is raised. Behaviour when
seeking to positions beyond the size of the underlying object depend on the object and possi-
bly the operating system. The predicate seek/4 is compatible with Quintus Prolog, though
the error conditions and signalling is ISO compliant. See also stream property/2 and
set_stream_position/2.

set_stream(+Stream, +Attribute)
Modify an attribute of an existing stream. Attribute specifies the stream property to set. If
stream is a pair (see st ream_pair/3) both streams are modified, unless the property is only
meaningful on one of the streams or setting both is not meaningful. In particular, eof_action
only applies to the read stream, representation_errors only applies to the write stream
and trying to set alias or 1line_position on a pair results in a permission_error
exception. See also stream_property/2 and open/4.

alias(AliasName)
Set the alias of an already created stream. If AliasName is the name of one of the standard

31 As of version 7.1.19, it is allowed to close one of the members of the stream directly and close the pair later.
ntroduced in version 5.6.4 after extending the position term with a byte count. Compatible with SICStus Prolog.

SWI-Prolog 8.0 Reference Manual

4.17. INPUT AND OUTPUT 153

streams, this stream is rebound. Thus, set_stream (S, current_input) is the
same as set_input/1, and by setting the alias of a stream to user_input, etc., all
user terminal input is read from this stream. See also interactor/0.

buffer(Buffering)
Set the buffering mode of an already created stream. Buffering is one of full, 1ine or
false.

buffer _size(+Size)
Set the size of the I/O buffer of the underlying stream to Size bytes.

close_on_abort(Bool)
Determine whether or not the stream is closed by abort /0. By default, streams are
closed.

close_on_exec(Bool)
Set the close_on_exec property. See stream_property/2.

encoding(Arom)
Defines the mapping between bytes and character codes used for the stream. See sec-
tion 2.19.1 for supported encodings. The value bom causes the stream to check whether
the current character is a Unicode BOM marker. If a BOM marker is found, the encoding
is set accordingly and the call succeeds. Otherwise the call fails.

eof_action(Action)
Set end-of-file handling to one of eof _code, reset or error.

file_name(FileName)
Set the filename associated to this stream. This call can be used to set the file for error
locations if Stream corresponds to FileName and is not obtained by opening the file
directly but, for example, through a network service.

line_position(LinePos)
Set the line position attribute of the stream. This feature is intended to correct position
management of the stream after sending a terminal escape sequence (e.g., setting ANSI
character attributes). Setting this attribute raises a permission error if the stream does
not record positions. See line position/2 and stream property/2 (property
position).

locale(+Locale)
Change the locale of the stream. See section 4.23.

newline(NewlineMode)
Set input or output translation for newlines. See corresponding st ream_property/2
for details. In addition to the detected modes, an input stream can be set in mode
detect. It will be set to dos if a \ r character was removed.

timeout(Seconds)
This option can be used to make streams generate an exception if it takes longer than
Seconds before any new data arrives at the stream. The value infinite (default) makes the
stream block indefinitely. Like wait_for_input/3, this call only applies to streams
that support the select() system call. For further information about timeout handling, see
wait_for_input/3. The exception is of the form

error(timeout_error(read, Stream), _)

SWI-Prolog 8.0 Reference Manual

154 CHAPTER 4. BUILT-IN PREDICATES

type(Type)
Set the type of the stream to one of text or binary. See also open/4 and the
encoding property of streams. Switching to binary sets the encoding to octet.
Switching to text sets the encoding to the default text encoding.

record_position(Bool)
Do/do not record the line count and line position (see line_count/2 and
line_position/2). Calling set_stream(S, record.position(true))
resets the position the start of line 1.

representation_errors(Mode)
Change the behaviour when writing characters to the stream that cannot be represented
by the encoding. See also st ream_property/2 and section 2.19.1.

tty(Bool)
Modify whether Prolog thinks there is a terminal (i.e. human interaction) connected
to this stream. On Unix systems the initial value comes from isatty(). On Win-
dows, the initial user streams are supposed to be associated to a terminal. See also
stream_property/2.

set_prolog _10(+1n, +Out, +Error)

Prepare the given streams for interactive behaviour normally associated to the terminal. In
becomes the user_input and current_input of the calling thread. Out becomes
user_output and current_output. If Error equals Out an unbuffered stream is
associated to the same destination and linked to user_error. Otherwise Error is used
for user_error. Output buffering for Out is set to 1ine and buffering on Error is
disabled. See also prolog/0 and set_stream/2. The clib package provides the library
prolog_server, creating a TCP/IP server for creating an interactive session to Prolog.

4.17.3 Edinburgh-style I/0

The package for implicit input and output destinations is (almost) compatible with Edinburgh DEC-10
and C-Prolog. The reading and writing predicates refer to, resp., the current input and output streams.
Initially these streams are connected to the terminal. The current output stream is changed using
tell/1 or append/1. The current input stream is changed using see/1. The stream’s current
value can be obtained using telling/1 for output and seeing/1 for input.

Source and destination are either a file, user, or a term ‘pipe(Command)’. The reserved
stream name user refers to the terminal.’> In the predicate descriptions below we will call the
source/destination argument ‘SrcDest’. Below are some examples of source/destination specifica-
tions.

?- see(data) . % Start reading from file ‘data’.
?- tell (user). % Start writing to the terminal.
?- tell (pipe (lpr)). % Start writing to the printer.

Another example of using the pipe/1 construct is shown below.”* Note that the pipe/1 con-
struct is not part of Prolog’s standard 1/O repertoire.

3The ISO I/O layer uses user_input, user_output and user_error.
3 As of version 5.3.15, the pipe construct is supported in the MS-Windows version, both for swipl.exe and
swipl-win.exe. The implementation uses code from the LUA programming language (http://www.lua.org).

SWI-Prolog 8.0 Reference Manual

http://www.lua.org

4.17. INPUT AND OUTPUT 155

getwd (Wd) :-
seeing (01ld), see(pipe(pwd)),
collect_wd(String),
seen, see(0ld),
atom_codes (Wd, String).

collect_wd([C|R]) :-
get0(C), C \== -1, !,
collect_wd(R) .
collect _wd([]) .

The effect of tell/1 is not undone on backtracking, and since the stream handle is not specified
explicitly in further I/O operations when using Edinburgh-style I/O, you may write to unintended
streams more easily than when using ISO compliant I/O. For example, the following query writes
both ”a” and ’b” into the file ‘out’ :

?— (tell(out), write(a), false ; write(b)), told.

Compatibility notes

Unlike Edinburgh Prolog systems, telling/1 and seeing/1 do not return the filename of the
current input/output but rather the stream identifier, to ensure the design pattern below works under
all circumstances:>

telling(01d), tell (x),

4

told, tell(0ld),

4

The predicates tell/1 and see/1 first check for user, the pipe(command) and a stream handle.
Otherwise, if the argument is an atom it is first compared to open streams associated to a file with
exactly the same name. If such a stream exists, created using tell/1 or see/1, output (input) is
switched to the open stream. Otherwise a file with the specified name is opened.

The behaviour is compatible with Edinburgh Prolog. This is not without problems. Changing
directory, non-file streams, and multiple names referring to the same file easily lead to unexpected
behaviour. New code, especially when managing multiple I/O channels, should consider using the
ISO I/O predicates defined in section 4.17.2.

see(+SrcDest)
Open SrcDest for reading and make it the current input (see set_input/1). If SrcDest is a
stream handle, just make this stream the current input. See the introduction of section 4.17.3
for details.

Filenames can be ambiguous and SWI-Prolog streams can refer to much more than just files.

SWI-Prolog 8.0 Reference Manual

156 CHAPTER 4. BUILT-IN PREDICATES

tell(+SrcDest)
Open SrcDest for writing and make it the current output (see set _output/1). If SrcDest is a
stream handle, just make this stream the current output. See the introduction of section 4.17.3
for details.

append(+File)
Similar to tell/1, but positions the file pointer at the end of File rather than truncating an
existing file. The pipe construct is not accepted by this predicate.

seeing(?”SrcDest)
Same as current_input/1, except that user is returned if the current input is the stream
user_input to improve compatibility with traditional Edinburgh I/O. See the introduction of
section 4.17.3 for details.

telling(?SrcDest)
Same as current _output/1, except that user is returned if the current output is the stream
user_output to improve compatibility with traditional Edinburgh I/O. See the introduction
of section 4.17.3 for details.

seen
Close the current input stream. The new input stream becomes user_input.

told
Close the current output stream. The new output stream becomes user_output.

4.17.4 Switching between Edinburgh and ISO 1/0

The predicates below can be used for switching between the implicit and the explicit stream-based
1/0O predicates.

set_input(+Stream) [150]
Set the current input stream to become Stream. Thus,
open (file, read, Stream), set_input (Stream) isequivalentto see (file).

set_output(+Stream) [1S0]
Set the current output stream to become Stream. See also with_output_to/2.

current_input(-Stream) [150]
Get the current input stream. Useful for getting access to the status predicates associated with
streams.

current_output(-Stream) [150]

Get the current output stream.

4.17.5 Adding IRI schemas

The file handling predicates may be hooked to deal with IRIs. An IRI starts with (scheme) : / /, where
(scheme) is a non-empty sequence of lowercase ASCII letters. After detecting the scheme the file
manipulation predicates call a hook that is registered using register_iri_scheme/3.

SWI-Prolog 8.0 Reference Manual

4.17. INPUT AND OUTPUT 157

Hooking the file operations using extensible IRI schemas allows us to place any resource
that is accessed through Prolog I/O predicates on arbitrary devices such as web servers or the
ZIP archive used to store program resources (see section 13.2). This is typically combined with
file_search_path/2 declarations to switch between accessing a set of resources from local files,
from the program resource database, from a web-server, etc.

register_iri_scheme(+Scheme, :Hook, +Options)
Register Hook to be called by all file handling predicates if a name that starts with Scheme://
is encountered. The Hook is called by call/4 using the operation, the IRI and a term that
receives the result of the operation. The following operations are defined:

open(Mode, Options)
Called by open/ 3,4. The result argument must be unified with a stream.

access(Mode)
Called by access_file/2, exists_file/l (Mode is file) and
exists.directory/1l (Mode is directory). The result argument must be
unified with a boolean.

time
Called by t ime_file/2. The result must be unified with a time stamp.

size
Called by size_file/2. The result must be unified with an integer representing the
size in bytes.

4.17.6 Write onto atoms, code-lists, etc.

with_output_to(+Output, :Goal)
Run Goal as once/1, while characters written to the current output are sent to Output. The
predicate is SWI-Prolog-specific, inspired by various posts to the mailinglist. It provides a
flexible replacement for predicates such as sformat/3, swritef/3, term_to_atom/2,
atom_number/2 converting numbers to atoms, etc. The predicate format /3 accepts the
same terms as output argument.

Applications should generally avoid creating atoms by breaking and concatenating other atoms,
as the creation of large numbers of intermediate atoms generally leads to poor performance,
even more so in multithreaded applications. This predicate supports creating difference lists
from character data efficiently. The example below defines the DCG rule term//1 to insert a
term in the output:

term(Term, In, Tail) :-
with_output_to(codes (In, Tail), write(Term)).

?— phrase(term(hello), X).

X = [104, 101, 108, 108, 111]

A Stream handle or alias
Temporarily switch current output to the given stream. Redirection using

SWI-Prolog 8.0 Reference Manual

158 CHAPTER 4. BUILT-IN PREDICATES

with_output_to/2 guarantees the original output is restored, also if Goal fails
or raises an exception. See also call_cleanup/2.

atom(-Atom)
Create an atom from the emitted characters. Please note the remark above.

string(-String)
Create a string object as defined in section 5.2.

codes(-Codes)
Create a list of character codes from the emitted characters, similar to atom_codes/2.

codes(-Codes, -Tail)
Create a list of character codes as a difference list.

chars(-Chars)
Create a list of one-character atoms from the emitted characters, similar to
atom_chars/2.

chars(-Chars, -Tail)
Create a list of one-character atoms as a difference list.

4.17.7 Fast binary term I/O

The predicates in this section provide fast binary I/O of arbitrary Prolog terms, including cyclic terms
and terms holding attributed variables. Library fastrw is a SICSTus/Ciao compatible library that
extends the core primitives described below.

The binary representation the same as used by PL_record_external (). The use of these
primitives instead of using write_canonical/2 has advantages and disadvantages. Below are the
main considerations:

e Using write_canonical/2 allows or exchange of terms with other Prolog systems. The
format is stable and, as it is text based, it can be inspected and corrected.

e Using the binary format improves the performance roughly 3 times.
e The size of both representations is comparable.

e The binary format can deal with cycles, sharing and attributes. Special precautions are
needed to transfer such terms using write_canonical/2. See term_factorized/3
and copy_term/ 3.

o In the current version, reading the binary format has only incomplete consistency checks. This
implies a user must be able to trust the source as crafted messages may compromise the reading
Prolog system.

fast_term_serialized(?Term, ?String)
(De-)serialize Term to/from String.

fast_write(+Output, +Term)
Write Term using the fast serialization format to the Output stream. QOutput must be a binary
stream.

SWI-Prolog 8.0 Reference Manual

4.18. STATUS OF STREAMS 159

fast_read(+Input, -Term)
Read 7erm using the fast serialization format from the Input stream. Input must be a binary
stream.”®

4.18 Status of streams

wait_for_input(+ListOfStreams, -ReadyList, +TimeOut) [det]
Wait for input on one of the streams in ListOfStreams and return a list of streams on which
input is available in ReadyList. Each element of ListOfStreams is either a stream or an integer.
Integers are consider waitable OS handles. This can be used to wait (also) wait for handles that
are not associated with Prolog streams such as UDP sockets. See tcp_sockopt /2.

This predicate waits for at most TimeOut seconds. TimeOut may be specified as a floating point
number to specify fractions of a second. If 7TimeOut equals infinite,wait_for_input/3
waits indefinitely. If Timeout is 0 or 0.0 this predicate returns without waiting.>’

This predicate can be used to implement timeout while reading and to handle input from multi-
ple sources and is typically used to wait for multiple (network) sockets. On Unix systems it may
be used on any stream that is associated with a system file descriptor. On Windows it can only
be used on sockets. If ListOfStreams contains a stream that is not associated with a supported
device, a domain_error(waitable_stream, Stream) is raised.

The example below waits for input from the user and an explicitly opened secondary terminal
stream. On return, /nputs may hold user_input or P4 or both.

?— open(’/dev/ttyp4’, read, P4),
wait_for_input ([user_input, P4], Inputs, 0).

When available, the implementation is based on the poll() system call. The poll() puts no ad-
ditional restriction on the number of open files the process may have. It does limit the time
to 231 — 1 milliseconds (a bit less than 25 days). Specifying a too large timeout raises a
representation_error(timeout) exception. If poll() is not supported by the OS, select()
is used. The select() call can only handle file descriptors up to FD_SETSIZE. If the set contains
a descriptor that exceeds this limit a representation_error(CFD_SETSIZE’) is raised.

Note that wait_for_input/3 returns streams that have data waiting. This does not mean
you can, for example, call read/2 on the stream without blocking as the stream might hold an
incomplete term. The predicate set_stream/2 using the option t imeout(Seconds) can be
used to make the stream generate an exception if no new data arrives within the timeout period.
Suppose two processes communicate by exchanging Prolog terms. The following code makes
the server immune for clients that write an incomplete term:

..y
tcp_accept (Server, Socket, _Peer),
tcp_open (Socket, In, Out),
set_stream(In, timeout (10)),

*BUG: The predicate fast _read/2 may crash on arbitrary input.
SPrior to 7.3.23, the integer value ‘0’ was the same as infinite.

SWI-Prolog 8.0 Reference Manual

160 CHAPTER 4. BUILT-IN PREDICATES

‘ catch(read(In, Term), _, (close(Out), close(In), fail)), ‘

L, |

byte_count(+Stream, -Count)
Byte position in Stream. For binary streams this is the same as character_count/2.
For text files the number may be different due to multi-byte encodings or additional record
separators (such as Control-M in Windows).

character_count(+Stream, -Count)
Unify Count with the current character index. For input streams this is the number of characters
read since the open; for output streams this is the number of characters written. Counting starts
at 0.

line_count(+Stream, -Count)
Unify Count with the number of lines read or written. Counting starts at 1.

line_position(+Stream, -Count)
Unify Count with the position on the current line. Note that this assumes the position is O after
the open. Tabs are assumed to be defined on each 8-th character, and backspaces are assumed
to reduce the count by one, provided it is positive.

4.19 Primitive character I/O

See section 4.2 for an overview of supported character representations.

nl [1SO]
Write a newline character to the current output stream. On Unix systems n1 /0 is equivalent to
put (10).

nl(+Stream) [1S0]

Write a newline to Stream.

put(+Char)
Write Char to the current output stream. Char is either an integer expression evaluating to a
character code or an atom of one character. Deprecated. New code should use put_char/1
or put_code/1.

put(+Stream, +Char)
Write Char to Stream. See put /1 for details.

put_byte(+Byte) [ISO]
Write a single byte to the output. Byfe must be an integer between 0 and 255.

put_byte(+Stream, +Byte) [1SO]
Write a single byte to Stream. Byte must be an integer between 0 and 255.

put_char(+Char) [150]
Write a character to the current output, obeying the encoding defined for the current output
stream. Note that this may raise an exception if the encoding of the output stream cannot
represent Char.

SWI-Prolog 8.0 Reference Manual

4.19. PRIMITIVE CHARACTER I/O 161

put_char(+Stream, +Char) [1S0]
Write a character to Stream, obeying the encoding defined for Stream. Note that this may raise
an exception if the encoding of Stream cannot represent Char.

put_code(+Code) [150]
Similar to put_char/1, but using a character code. Code is a non-negative integer. Note that
this may raise an exception if the encoding of the output stream cannot represent Code.

put_code(+Stream, +Code) [150]
Same as put_code/1 but directing Code to Stream.

tab(+Amount)
Write Amount spaces on the current output stream. Amount should be an expression that evalu-
ates to a positive integer (see section 4.27).

tab(+Stream, +Amount)
Write Amount spaces to Stream.

flush_output [ISO]
Flush pending output on current output stream. £ lush_output/0 is automatically generated
by read/1 and derivatives if the current input stream is user and the cursor is not at the left
margin.

flush_output(+Stream) [150]
Flush output on the specified stream. The stream must be open for writing.

ttyflush
Flush pending output on stream user. See also flush_output/[0,1].

get_byte(-Byte) [ISO]
Read the current input stream and unify the next byte with Byte (an integer between 0 and 255).
Byte is unified with -1 on end of file.

get_byte(+Stream, -Byte) [ISO]
Read the next byte from Stream and unify Byte with an integer between 0 and 255.

get_code(-Code) [1S0]
Read the current input stream and unify Code with the character code of the next character.
Code is unified with -1 on end of file. See also get_char/1.

get_code(+Stream, -Code) [150]
Read the next character code from Stream.

get_char(-Char) [1S0]
Read the current input stream and unify Char with the next character as a one-character atom.
See also atom_chars/2. On end-of-file, Char is unified to the atom end_of_file.

get_char(+Stream, -Char) [1SO]
Unify Char with the next character from Stream as a one-character atom. See also
get_char/2,get_byte/2 and get_code/2.

SWI-Prolog 8.0 Reference Manual

162 CHAPTER 4. BUILT-IN PREDICATES

get0(-Char) [deprecated]
Edinburgh version of the ISO get_code/1 predicate. Note that Edinburgh Prolog didn’t
support wide characters and therefore technically speaking get 0/ 1 should have been mapped
to get _byte/1. The intention of get 0/ 1, however, is to read character codes.

get0(+Stream, -Char) [deprecated]
Edinburgh version of the ISO get _code/ 2 predicate. See also get0/1.

get(- Char) [deprecated]
Read the current input stream and unify the next non-blank character with Char. Char is
unified with -1 on end of file. The predicate get /1 operates on character codes. See also

get0/1.
get(+Stream, -Char) [deprecated]

Read the next non-blank character from Stream. See also get /1, get0/1 and get0/2.
peek_byte(-Byte) [ISO]
peek_byte(+Stream, -Byte) [1SO]
peek_code(-Code) [1S0]
peek_code(+Stream, -Code) [1SO]
peek_char(-Char) [1S0]
peek_char(+Stream, -Char) [1S0]

Read the next byte/code/char from the input without removing it. These predicates do not
modify the stream’s position or end-of-file status. These predicates require a buffered stream
(see set_stream/2) and raise a permission error if the stream is unbuffered or the buffer is
too small to hold the longest multi-byte sequence that might need to be buffered.

peek_string(+Stream, +Len, -String)
Read the next Len characters (if the stream is a text stream) or bytes (if the stream is binary)
from Stream without removing the data. If Len is larger that the stream buffer size, the buffer
size is increased to Len. String can be shorter than Len if the stream contains less data. This
predicate is intended to guess the content type of data read from non-repositionable streams.

skip(+Code)
Read the input until Code or the end of the file is encountered. A subsequent call to
get_code/1 will read the first character after Code.

skip(+Stream, +Code)
Skip input (as skip/1) on Stream.

get_single_char(-Code)
Get a single character from input stream ‘user’ (regardless of the current input stream). Unlike
get_code/1, this predicate does not wait for a return. The character is not echoed to the
user’s terminal. This predicate is meant for keyboard menu selection, etc. If SWI-Prolog was
started with the ——no-tty option this predicate reads an entire line of input and returns the
first non-blank character on this line, or the character code of the newline (10) if the entire line
consisted of blank characters.

at_end _of stream [ISO]
Succeeds after the last character of the current input stream has been read. Also succeeds if
there is no valid current input stream.

SWI-Prolog 8.0 Reference Manual

4.19. PRIMITIVE CHARACTER I/O 163

at_end_of _stream(+Stream) [1S0]
Succeeds after the last character of the named stream is read, or Stream is not a valid input
stream. The end-of-stream test is only available on buffered input streams (unbuffered input
streams are rarely used; see open/4).

set_end_of_stream(+Stream)
Set the size of the file opened as Stream to the current file position. This is typically used in
combination with the open-mode update.

copy_stream_data(+StreamlIn, +StreamQOut, +Len)
Copy Len codes from Streamin to StreamQOut. Note that the copy is done using the semantics
of get_code/2 and put_code/ 2, taking care of possibly recoding that needs to take place
between two text files. See section 2.19.1.

copy_-_stream_data(+Streamlin, +StreamQOut)
Copy all (remaining) data from Streamin to StreamQOut.

fill_buffer(+Stream) [det]
Fill the Stream’s input buffer. Subsequent calls try to read more input until the buffer is com-
pletely filled. This predicate is used together with read_pending_codes/ 3 to process input
with minimal buffering.

read_pending_codes(+Streamlin, -Codes, ?Tail)
Read input pending in the input buffer of Streamin and return it in the difference list Codes-Tail.
That is, the available characters codes are used to create the list Codes ending in the tail Tail.
On encountering end-of-file, both Codes and Tail are unified with the empty list ([]).

This predicate is intended for efficient unbuffered copying and filtering of input coming from
network connections or devices. It also enables the library pure_input, which processes
input from files and streams using a DCG.

The following code fragment realises efficient non-blocking copying of data from an input
to an output stream. The at_end_of_stream/1 call checks for end-of-stream and fills the
input buffer. Note that the use of a get_code/2 and put_code/2 based loop requires a
flush_output/1 call after each put_code/2. The copy_stream_data/2 does not al-
low for inspection of the copied data and suffers from the same buffering issues.

copy (In, Out) :-
repeat,
fill _buffer (In),
read_pending_codes (In, Chars, Tail),
\+ \+ (Tail = [],
format (Out, ’"“s’, [Chars]),
flush_output (Out)
),
(Tail == []
- |
; fail
) .

SWI-Prolog 8.0 Reference Manual

164

CHAPTER 4. BUILT-IN PREDICATES

read_pending_chars(+Streamlin, -Chars, ?Tail)

As read_pending_codes/ 3, but returns a difference list of one-character atoms.

4.20 Term reading and writing

This section describes the basic term reading and writing predicates. The predicates format/[1, 2]
and writef/2 provide formatted output. Writing to Prolog data structures such as atoms or code-
lists is supported by with_output_to/2 and format /3.

Reading is sensitive to the Prolog flag character_escapes, which controls the interpretation

of the \ character in quoted atoms and strings.

write_term(+7erm, +Options) [1S0]

The predicate write_term/2 is the generic form of all Prolog term-write predicates. Valid
options are:

attributes(Arom)
Define how attributed variables (see section 8.1) are written. The default is determined by
the Prolog flag write_attributes. Defined values are i gnore (ignore the attribute),
dots (write the attributes as { ... }), write (simply hand the attributes recursively to
write_term/2) and portray (hand the attributes to attr_portray_hook/2).

back_quotes(Arom)
Fulfills the same role as the back_quotes prolog flag. Notably, the value string
causes string objects to be printed between back quotes and symbol_char causes the
backquote to be printed unquoted. In all other cases the backquote is printed as a quoted
atom.

brace_terms(Bool)
If t rue (default), write {} (X) as {X}. See also dotlists and ignore_ops.

blobs(Arom)
Define how non-text blobs are handled. By default, this is left to the write handler spec-
ified with the blob type. Using portray, portray/1 is called for each blob
encountered. See section 12.4.8.

character_escapes(Bool)
If true and quoted(true) is active, special characters in quoted atoms and strings are
emitted as ISO escape sequences. Default is taken from the reference module (see below).

cycles(Bool)
If t rue (default), cyclic terms are written as Q(Zemplate, Substitutions), where Substi-
tutions is a list Var = Value. 1f cycles is false, max_depth is not given, and Term
is cyclic, write_term/2 raises a domain_error.’® See also the cycles option in
read_term/2.

dotlists(Bool)
If t rue (default false), write lists using the dotted term notation rather than the list no-
tation.”® Note that as of version 7, the list constructoris ’ [|]. Using dot 1ists(true),

3The cycles option and the cyclic term representation using the @-term are copied from SICStus Prolog. However, the
default in SICStus is set to false and SICStus writes an infinite term if not protected by, e.g., the depth_limit option.
¥Copied from ECLiPSe.

SWI-Prolog 8.0 Reference Manual

4.20. TERM READING AND WRITING 165

write_term/2 writes alist using ‘. as constructor. This is intended for communication
with programs such as other Prolog systems, that rely on this notation.

fullstop(Bool)
If true (default false), add a fullstop token to the output. The dot is preceeded by a
space if needed and followed by a space (default) or newline if the n1(frue) option is also
given.®”

ignore_ops(Bool)
If t rue, the generic term representation ((functor)({args) ...)) will be used for all terms.
Otherwise (default), operators will be used where appropriate.®'.

max_depth(Integer)
If the term is nested deeper than Integer, print the remainder as ellipses (...). A 0 (zero)
value (default) imposes no depth limit. This option also delimits the number of printed
items in a list. Example:

))), [a,b,c,d,e, £]),

?— write_term(a(s(s(s(s(0)
(3)1) .

[max_depth
a(s(s(...)), la, bl...])
true.

Used by the top level and debugger to limit screen output. See also the Prolog flags
answer_write_options and debugger_write_options.

module(Module)
Define the reference module (default user). This defines the default value for the
character_escapes option as well as the operator definitions to use. See also op/ 3.

nl(Bool)
Add a newline to the output. See also the fullstop option.

numbervars(Bool)
If t rue, terms of the format $VAR (N) , where N is a non-negative integer, will be written
as a variable name. If N is an atom it is written without quotes. This extension allows
for writing variables with user-provided names. The default is false. See also
numbervars/3 and the option variable_names.

partial(Bool)
If true (default false), do not reset the logic that inserts extra spaces that separate
tokens where needed. This is intended to solve the problems with the code below. Calling
write_value(.) writes . ., which cannot be read. By adding partial(true) to the
option list, it correctly emits . .. Similar problems appear when emitting operators
using multiple calls to write_term/3.

write_value (Value) :-—
write_term(Value, [partial(true)l]),
write(’.”), nl.

portray(Bool)
Same as portrayed(Bool). Deprecated.

0 Compatible with ECLiPSe
®n traditional systems this flag also stops the syntactic sugar notation for lists and brace terms. In SWI-Prolog, these
are controlled by the separate options dot1ists and brace_terms

SWI-Prolog 8.0 Reference Manual

http://eclipseclp.org/doc/bips/kernel/ioterm/write_term-3.html

166 CHAPTER 4. BUILT-IN PREDICATES

portray_goal(:Goal)
Implies portray(true), but calls Goal rather than the predefined hook portray/1.
Goal is called through call/3, where the first argument is Goal, the second is the term
to be printed and the 3rd argument is the current write option list. The write option list is
copied from the write_term call, but the list is guaranteed to hold an option priority
that reflects the current priority.

portrayed(Bool)
If true, the hook portray/1 is called before printing a term that is not a variable. If
portray/1 succeeds, the term is considered printed. See also print /1. The default
is false. This option is an extension to the ISO write_term options.

priority(/nteger)
An integer between 0 and 1200 representing the ‘context priority’. Default is 1200. Can
be used to write partial terms appearing as the argument to an operator. For example:

format (" "w = ', [VarName]),
write_term(Value, [quoted(true), priority(699)])

quoted(Bool)
If t rue, atoms and functors that need quotes will be quoted. The defaultis false.

spacing(+Spacing)
Determines whether and where extra white space is added to enhance readability. The
default is standard, adding only space where needed for proper tokenization by
read_-term/3. Currently, the only other value is next_argument, adding a space
after a comma used to separate arguments in a term or list.

variable_names(+List)
Assign names to variables in Term. List is a list of terms Name = Var, where Name is
an atom that represents a valid Prolog variable name. Terms where Var is bound or is
a variable that does not appear in Term are ignored. Raises an error if List is not a list,
one of the members is not a term Name = Var, Name is not an atom or Name does not
represent a valid Prolog variable name.

The implementation binds the variables from List to a term ’ $SVAR’ (Name). Like
write_canonical/1l, terms that where already bound to ' $VAR’(X) before
write_term/2 are printed normally, unless the option numbervars(true) is also pro-
vided. If the option numbervars(true) is used, the user is responsible for avoiding col-
lisions between assigned names and numbered names. See also the variable names
option of read_term/2.

Possible variable attributes (see section 8.1) are ignored. In most cases one should use
copy-term/3 to obtain a copy that is free of attributed variables and handle the associ-
ated constraints as appropriate for the use-case.

write_term(+Stream, +Term, +Options) [1S0]
Aswrite_term/2, but output is sent to Stream rather than the current output.

write_length(+Term, -Length, +Options) [semidet]
True when Length is the number of characters emitted for write_termTerm, Options. In addition
to valid options for write_term/2, it processes the option:

SWI-Prolog 8.0 Reference Manual

4.20. TERM READING AND WRITING 167

max_length(+MaxLength)
If provided, fail if Length would be larger than MaxLength. The implementation ensures
that the runtime is limited when computing the length of a huge term with a bounded
maximum.

write_canonical(+Term) [150]
Write Term on the current output stream using standard parenthesised prefix notation (i.e.,
ignoring operator declarations). Atoms that need quotes are quoted. Terms written with this
predicate can always be read back, regardless of current operator declarations. Equivalent
to write_term/2 using the options ignore_ops, quoted and numbervars after
numbervars/4 using the singletons option.

Note that due to the use of numbervars/4, non-ground terms must be written using a single
write_canonical/1 call. This used to be the case anyhow, as garbage collection between
multiple calls to one of the write predicates can change the _G(NNN) identity of the variables.

write_canonical(+Stream, +Term) [150]
Write Term in canonical form on Stream.

write(+7Term) [ISO]
Write Term to the current output, using brackets and operators where appropriate.

write(+Stream, +Term) [1SO]
Write Term to Stream.

writeq(+7erm) [1S0]
Write Term to the current output, using brackets and operators where appropriate. Atoms that
need quotes are quoted. Terms written with this predicate can be read back with read/1
provided the currently active operator declarations are identical.

writeq(+Stream, +Term) [1SO]
Write Term to Stream, inserting quotes.

writeln(+7erm)
Equivalent to write (Term), nl.. The output stream is locked, which implies no output
from other threads can appear between the term and newline.

writeln(+Stream, +Term)
Equivalent to write (Stream, Term), nl (Stream).. The output stream is locked,
which implies no output from other threads can appear between the term and newline.

print(+7erm)
Print a term for debugging purposes. The predicate print /1 acts as if defined as below.

print (Term) :-—
current_prolog_flag(print_write_options, Options), !,
write_term(Term, Options).
print (Term) :-—
write_term(Term, [portray(true),
numbervars (true),

SWI-Prolog 8.0 Reference Manual

168 CHAPTER 4. BUILT-IN PREDICATES

‘ quoted (true)
| 1) . |

The print /1 predicate is used primarily through the ~“p escape sequence of format/2,
which is commonly used in the recipies used by print _message/2 to emit messages.

The classical definition of this predicate is equivalent to the ISO predicate write_term/2
using the options portray(true) and numbervars(true). The portray(true) option al-
lows the user to implement application-specific printing of terms printed during debugging to
facilitate easy understanding of the output. See also portray/1 and portray_text. SWI-
Prolog adds quoted(true) to (1) facilitate the copying/pasting of terms that are not affected by
portray/1 and to (2) allow numbers, atoms and strings to be more easily distinguished, e.g.,
42,742" and "42".

print(+Stream, +Term)
Print Term to Stream.

portray(+7Term)
A dynamic predicate, which can be defined by the user to change the behaviour of print /1
on (sub)terms. For each subterm encountered that is not a variable print /1 first calls
portray/1 using the term as argument. For lists, only the list as a whole is given to
portray/1. If portray/1 succeeds print /1 assumes the term has been written.

read(-7erm) [150]
Read the next Prolog term from the current input stream and unify it with 7erm. On a syntax
error read/1 displays an error message, attempts to skip the erroneous term and fails. On
reaching end-of-file 7erm is unified with the atom end_of_file.

read(+Stream, -Term) [150]
Read Term from Stream.

read_clause(+Stream, -Term, +Options)
Equivalent to read_term/ 3, but sets options according to the current compilation context
and optionally processes comments. Defined options:

syntax_errors(+Atont)
See read_term/ 3, but the default is dec10 (report and restart).

term_position(-TermPos)
Same as for read_term/ 3.

subterm_positions(-7ermPos)
Same as for read_term/ 3.

variable names(-Bindings)
Same as for read_term/ 3.

process_comment(+Boolean)
If true (default), call prolog:comment _hook(Comments, TermPos, Term) if this
multifile hook is defined (see prolog:comment_hook/3). This is used to drive
PlDoc.

SWI-Prolog 8.0 Reference Manual

4.20. TERM READING AND WRITING 169

comments(-Comments)
If provided, unify Comments with the comments encountered while reading 7erm. This
option implies process_comment (false).

The singletons option of read_term/3 is initialised from the active style-checking
mode. The module option is initialised to the current compilation module (see
prolog_load_context/2).

read_term(-Term, +Options) [1S0]
Read a term from the current input stream and unify the term with 7erm. The reading is con-
trolled by options from the list of Options. If this list is empty, the behaviour is the same as
for read/1. The options are upward compatible with Quintus Prolog. The argument order
is according to the ISO standard. Syntax errors are always reported using exception-handling
(see catch/3). Options:

backquoted string(Bool)
If true, read ... " to a string object (see section 5.2). The default depends on the
Prolog flag back _quotes.

character_escapes(Bool)
Defines how to read \ escape sequences in quoted atoms. See the Prolog flag
character_escapes in current_prolog_flag/2. (SWI-Prolog).

comments(-Comments)
Unify Comments with a list of Position-Comment, where Position is a stream position
object (see stream position_data/3) indicating the start of a comment and
Comment is a string object containing the text including delimiters of a comment. It
returns all comments from where the read_term/2 call started up to the end of the
term read.

cycles(Bool)
If true (default false), re-instantiate templates as produced by the corresponding
write_term/2 option. Note that the default is false to avoid misinterpretation
of @(Template, Substutions), while the default of write_term/2 is true because
emitting cyclic terms without using the template construct produces an infinitely large
term (read: it will generate an error after producing a huge amount of output).

dotlists(Bool)
If true (default false), read . (a, []) as a list, even if lists are internally nor con-
structed using the dot as functor. This is primarily intended to read the output from
write_canonical/1 from other Prolog systems. See section 5.1.

double_quotes(Azrom)
Defines how to read ”...” strings. See the Prolog flag double_quotes. (SWI-Prolog).

module(Module)
Specify Module for operators, character_escapes flag and double _quotes flag.
The value of the latter two is overruled if the corresponding read_term/3 option is
provided. If no module is specified, the current ‘source module’ is used. (SWI-Prolog).

quasi_quotations(-Lisr)
If present, unify List with the quasi quotations (see section A.33) instead of evaluating

SWI-Prolog 8.0 Reference Manual

170 CHAPTER 4. BUILT-IN PREDICATES

quasi quotations. Each quasi quotation is a term quasi_quotation(+Syntax, +Quo-
tation, +VarDict, -Result), where Syntax is the term in { | Syntax| | .. |}, Quotation is
a list of character codes that represent the quotation, VarDict is a list of Name=Variable
and Result is a variable that shares with the place where the quotation must be inserted.
This option is intended to support tools that manipulate Prolog source text.

singletons(Vars)
As variable_names, but only reports the variables occurring only once in the Term
read (ISO). If Vars is the constant warning, singleton variables are reported using
print_message/2. The variables appear in the order they have been read. The latter
option provides backward compatibility and is used to read terms from source files. Not
all singleton variables are reported as a warning. See section 2.16.1 for the rules that
apply for warning about a singleton variable.%?

syntax_errors(Atom)
If error (default), throw an exception on a syntax error. Other values are fail, which
causes a message to be printed using print_message/2, after which the predicate
fails, quiet which causes the predicate to fail silently, and dec10 which causes syntax
errors to be printed, after which read_term/ [2, 3] continues reading the next term.
Using dec10, read_term/ [2, 3] never fails. (Quintus, SICStus).

subterm_positions(7ermPos)
Describes the detailed layout of the term. The formats for the various types of terms are
given below. All positions are character positions. If the input is related to a normal
stream, these positions are relative to the start of the input; when reading from the
terminal, they are relative to the start of the term.

From-To
Used for primitive types (atoms, numbers, variables).
string_position(From, To)
Used to indicate the position of a string enclosed in double quotes (").
brace_term _position(From, To, Arg)
Term of the form { . . . }, as used in DCG rules. Arg describes the argument.
list_position(From, To, Elms, Tail)
A list. Elms describes the positions of the elements. If the list specifies the tail as
| (TailTerm), Tail is unified with the term position of the tail, otherwise with the atom
none.

term_position(From, To, FFrom, FTo, SubPos)
Used for a compound term not matching one of the above. FFrom and FTo describe
the position of the functor. SubPos is a list, each element of which describes the term
position of the corresponding subterm.

dict_position(From, To, TagFrom, TagTo, KeyValuePosList)
Used for a dict (see section 5.4). The position of the key-value pairs is described
by KeyValuePosList, which is a list of key value position/7 terms. The
key_value_position/7 terms appear in the order of the input. Because maps to
not preserve ordering, the key is provided in the position description.

82 As of version 7.7.17, all variables starting with an underscore except for the the truely anonymous variable are returned
in Vars. Older versions only reported those that would have been reported if warning is used.

SWI-Prolog 8.0 Reference Manual

4.20. TERM READING AND WRITING 171

key_value_position(From, To, SepFrom, SepTo, Key, KeyPos, ValuePos)
Used for key-value pairs in a map (see section 5.4). It is similar to the
term_position/5 that would be created, except that the key and value po-
sitions do not need an intermediate list and the key is provided in Key to enable
synchronisation of the file position data with the data structure.

parentheses_term_position(From, To, ContentPos)
Used for terms between parentheses. This is an extension compared to the original
Quintus specification that was considered necessary for secure refactoring of terms.

quasi_quotation_position(From, To, SyntaxFrom, SyntaxTo, ContentPos)
Used for quasi quotations.

term_position(Pos)
Unifies Pos with the starting position of the term read. Pos is of the same format as used
by stream_property/2.

var_prefix(Bool)
If t rue, demand variables to start with an underscore. See section 2.16.1.

variables(Vars)
Unify Vars with a list of variables in the term. The variables appear in the order they have
been read. See also term_variables/2. (ISO).

variable_names(Vars)
Unify Vars with a list of ‘Name = Var’, where Name is an atom describing the variable
name and Var is a variable that shares with the corresponding variable in Term. (ISO).
The variables appear in the order they have been read.

read_term(+Stream, -Term, +Options) [150]
Read term with options from Stream. See read_term/2.

read_term_from_atom(+Atom, -Term, +Options)
Use read_term/ 3 to read the next term from Afom. Atom is either an atom or a string object
(see section 5.2). It is not required for Afom to end with a full-stop. This predicate supersedes
atom_to_term/3.

read_history(+Show, +Help, +Special, + Prompt, -Term, -Bindings)

Similar to read_term/2 using the option variable_names, but allows for history sub-
stitutions. read-history/6 is used by the top level to read the user’s actions. Show is
the command the user should type to show the saved events. Help is the command to get an
overview of the capabilities. Special is a list of commands that are not saved in the history.
Prompt is the first prompt given. Continuation prompts for more lines are determined by
prompt/2. A %$w in the prompt is substituted by the event number. See section 2.7 for
available substitutions.

SWI-Prolog calls read_history/6 as follows:

‘read_history(h, "th’, [trace], "%w ?- ', Goal, Bindings)

prompt(-Old, +New)
Set prompt associated with read/1 and its derivatives. OId is first unified with the current

SWI-Prolog 8.0 Reference Manual

172 CHAPTER 4. BUILT-IN PREDICATES
prompt. On success the prompt will be set to New if this is an atom. Otherwise an error
message is displayed. A prompt is printed if one of the read predicates is called and the cursor
is at the left margin. It is also printed whenever a newline is given and the term has not been
terminated. Prompts are only printed when the current input stream is user.

promptl(+Prompt)

Sets the prompt for the next line to be read. Continuation lines will be read using the prompt
defined by prompt /2.

4.21 Analysing and Constructing Terms

functor(?Term, ?Name, ?Arity) [1S0]

True when Term is a term with functor Name/Arity. If Term is a variable it is unified with a new
term whose arguments are all different variables (such a term is called a skeleton). If Term is
atomic, Arity will be unified with the integer 0, and Name will be unified with Term. Raises
instantiation_error if Term is unbound and Name/Arity is insufficiently instantiated.

SWI-Prolog also supports terms with arity 0, as in a () (see section 5. Such terms must be
processed using compound_name_arity/3. The predicate functor/3 and =. . /2 raise
a domain_error when faced with these terms. Without this precaution, the inconsistency
demonstrated below could happen silently.®

?— functor(a(), N, A).
N =a, A=0.

?— functor (T, a, 0).
T = a.

arg(?Arg, +1erm, ?Value) [ISO]

Term should be instantiated to a term, Arg to an integer between 1 and the arity of Term.
Value is unified with the Arg-th argument of Term. Arg may also be unbound. In this case
Value will be unified with the successive arguments of the term. On successful unifica-
tion, Arg is unified with the argument number. Backtracking yields alternative solutions.®*
The predicate arg/3 fails silently if Arg = 0 or Arg > arity and raises the exception
domain_error (not_less_than_zero, Arg) if Arg <O.

?Term=. . ?List [1S0]

List is a list whose head is the functor of Term and the remaining arguments are the arguments
of the term. Either side of the predicate may be a variable, but not both. This predicate is called
‘Univ’.

?— foo(hello, X) =.. List.
List = [foo, hello, X]

5Raising a domain error was suggested by Jeff Schultz.
%4The instantiation pattern (-, +, ?) is an extension to ‘standard’ Prolog. Some systems provide genarg/3 that covers
this pattern.

SWI-Prolog 8.0 Reference Manual

4.21. ANALYSING AND CONSTRUCTING TERMS 173

?— Term =.. [baz, foo(l)].
Term = baz (foo(l))

SWI-Prolog also supports terms with arity 0, as in a () (see section 5. Such terms must be
processed using compound_name_arguments/3. This predicate raises a domain error as
shown below. See also functor/3.

?— a() =.. L.
ERROR: Domain error: ‘compound_non_zero_arity’ expected, found

compound_name _arity(?Compound, ?Name, ?Arity)
Rationalized version of functor/3 that only works for compound terms and can
examine and create compound terms with zero arguments (e.g, name (). See also
compound_name_arguments/3.

compound_name_arguments(’Compound, ?Name, ?Arguments)
Rationalized version of =. . /2 that can compose and decompose compound terms with zero

arguments. See also compound_name_arity/3.

numbervars(+Term, +Start, -End)
Unify the free variables in Term with a term $VAR(N), where N is the number of the variable.
Counting starts at Start. End is unified with the number that should be given to the next
variable.”> The example below illustrates this. Note that the toplevel prints * SVAR’ (0) as A
due to the numbervars(true) option used to print answers.

?- Term = f£(X,Y,X),
numbervars (Term, 0, End),
write_canonical (Term), nl.
£ ("$VAR’ (0),’ SVAR’ (1),’ SVAR’ (0))
Term = £ (A, B, A),
X = A,
B,

End = 2.

See also the numbervars optionto write_term/3 and numbervars/4.

numbervars(+Term, +Start, -End, +Options)
As numbervars/ 3, providing the following options:

functor_name(+Atom)
Name of the functor to use instead of SVAR.

$BUG: Only ragged integers are supported (see the Prolog flag max_tagged_integer). This suffices to count all
variables that can appear in the largest term that can be represented, but does not support arbitrary large integer values for
Start. On overflow, a representation_error(tagged_integer) exception is raised.

SWI-Prolog 8.0 Reference Manual

174 CHAPTER 4. BUILT-IN PREDICATES

attvar(+Action)
What to do if an attributed variable is encountered. Options are skip, which causes
numbervars/3 to ignore the attributed variable, bind which causes it to treat it as a
normal variable and assign the next / $SVAR’ (N) term to it, or (default) error which
raises a t ype_error exception.®

singletons(+Bool)
If true (default false), numbervars/4 does singleton detection. Singleton variables
are unified with * SVAR’ (’_'), causing them to be printed as _ by write_ term/2
using the numbervars option. This option is exploited by portray_clause/2 and
write_canonical/2.%

var_number(@ Term, -VarNumber)
True if Term is numbered by numbervars/3 and VarNumber is the number given to this
variable. This predicate avoids the need for unification with ’ $VAR’ (X) and opens the path
for replacing this valid Prolog term by an internal representation that has no textual equivalent.

term_variables(+7erm, -List) [1S0]
Unify List with a list of variables, each sharing with a unique variable of Term.°® The variables
in List are ordered in order of appearance traversing Term depth-first and left-to-right. See also
termvariables/3 and nonground/2. For example:

?— term variables(a(X, b(Y, X), Z), L).
L = [X, Y, Z].

nonground(+7erm, -Var) [semidet]
True when Var is a variable in Term. Fails if Term is ground (see ground/1). This predicate is
intended for coroutining to trigger a wakeup if 7erm becomes ground, e.g., using when/2. The
current implemention always returns the first variable in depth-first left-right search. Ideally it
should return a random member of the set of variables (see term_variables/2) to realise
logarithmetic complexity for the ground trigger. Compatible with ECLiPSe and hProlog.

term_variables(+7erm, -List, ?Tail)
Difference list version of term_variables/2. That is, Tail is the tail of the variable list
List.

term _singletons(+7erm, -List)
Unify List with a list of variables, each sharing with a variable that appears only once in Term.°
Note that, if a variable appears in a shared subterm, it is not considered singleton. Thus, A is
not a singleton in the example below. See also the singleton option of numbervars/4.

9

%This behaviour was decided after a long discussion between David Reitter, Richard O’Keefe, Bart Demoen and Tom
Schrijvers.

S"BUG: Currently this option is ignored for cyclic terms.

88This predicate used to be called free_variables/2. The name term_variables/2 is more widely used. The
old predicate is still available from the library backcomp.

%BUG: In the current implementation Term must be acyclic. If not, a representation_error is raised.

SWI-Prolog 8.0 Reference Manual

4.21. ANALYSING AND CONSTRUCTING TERMS 175

?— S = a(A), term_singletons(t(S,S), L).

copy_term(+/n, -Out) [1S0]
Create a version of In with renamed (fresh) variables and unify it to Out. Attributed variables
(see section 8.1) have their attributes copied. The implementation of copy_term/2 can deal
with infinite trees (cyclic terms). As pure Prolog cannot distinguish a ground term from another
ground term with exactly the same structure, ground sub-terms are shared between In and Out.
Sharing ground terms does affect setarg/3. SWI-Prolog provides duplicate_term/2 to
create a true copy of a term.

4.21.1 Non-logical operations on terms

Prolog is not able to modify instantiated parts of a term. Lacking that capability makes the language
much safer, but unfortunately there are problems that suffer severely in terms of time and/or memory
usage. Always try hard to avoid the use of these primitives, but they can be a good alternative to using
dynamic predicates. See also section 4.33, discussing the use of global variables.

setarg(+Arg, +Term, +Value)
Extra-logical predicate. Assigns the Arg-th argument of the compound term Term with the
given Value. The assignment is undone if backtracking brings the state back into a position
before the setarg/3 call. See also nb_setarg/3.

This predicate may be used for destructive assignment to terms, using them as an extra-logical
storage bin. Always try hard to avoid the use of setarg/3 as it is not supported by many
Prolog systems and one has to be very careful about unexpected copying as well as unexpected
noncopying of terms. A good practice to improve somewhat on this situation is to make sure that
terms whose arguments are subject to setarg/3 have one unused and unshared variable in
addition to the used arguments. This variable avoids unwanted sharing in, e.g., copy_term/2,
and causes the term to be considered as non-ground. An alternative is to use put_attr/3 to
attach information to attributed variables (see section 8.1).

nb_setarg(+Arg, +Term, +Value)

Assigns the Arg-th argument of the compound term 7erm with the given Value as setarg/ 3,
but on backtracking the assignment is not reversed. If Value is not atomic, it is duplicated
using duplicate_term/2. This predicate uses the same technique as nb_setval/2.
We therefore refer to the description of nb_setval/2 for details on non-backtrackable
assignment of terms. This predicate is compatible with GNU-Prolog setarg(A,T, Vfalse),
removing the type restriction on Value. See also nb_linkarg/3. Below is an example for
counting the number of solutions of a goal. Note that this implementation is thread-safe,
reentrant and capable of handling exceptions. Realising these features with a traditional
implementation based on assert/retract or £1ag/3 is much more complicated.

:— meta_predicate
succeeds_n_times (0, -).

SWI-Prolog 8.0 Reference Manual

176 CHAPTER 4. BUILT-IN PREDICATES

succeeds_n_times (Goal, Times) :-—
Counter = counter(0),
(Goal,
arg(l, Counter, NO),
N is NO + 1,
nb_setarg(l, Counter, N),
fail
; arg(l, Counter, Times)

nb_linkarg(+Arg, +Term, +Value)
As nb_setarg/3, but like nb_l1inkval/2 it does not duplicate Value. Use with extreme
care and consult the documentation of nb_1inkval/2 before use.

duplicate_term(+/n, -Out)
Version of copy_term/2 that also copies ground terms and therefore ensures that destruc-
tive modification using setarg/3 does not affect the copy. See also nb_setval/2,
nb_linkval/2,nb_setarg/3 and nb_linkarg/3.

same_term(@7/, @T2) [semidet]
True if 71 and 72 are equivalent and will remain equivalent, even if setarg/3 is used on
either of them. This means 77 and 72 are the same variable, equivalent atomic data or a
compound term allocated at the same address.

4.22 Analysing and Constructing Atoms

These predicates convert between Prolog constants and lists of character codes. The predicates
atom_codes/2, number_codes/2 and name/2 behave the same when converting from a con-
stant to a list of character codes. When converting the other way around, atom_codes/2 will
generate an atom, number_codes/2 will generate a number or exception and name /2 will return
a number if possible and an atom otherwise.

The ISO standard defines atom_chars/2 to describe the ‘broken-up’ atom as a list of one-
character atoms instead of a list of codes. Up to version 3.2.x, SWI-Prolog’s atom_chars/2
behaved like atom_codes, compatible with Quintus and SICStus Prolog. As of 3.3.x, SWI-Prolog
atom_codes/2 and atom_chars/2 are compliant to the ISO standard.

To ease the pain of all variations in the Prolog community, all SWI-Prolog predicates behave as
flexible as possible. This implies the ‘list-side’ accepts either a code-list or a char-list and the ‘atom-
side’ accepts all atomic types (atom, number and string).

atom_codes(?Atom, ?String) [150]
Convert between an atom and a list of character codes. If Atom is instantiated, it will be trans-
lated into a list of character codes and the result is unified with String. If Atom is unbound and
String is a list of character codes, Afom will be unified with an atom constructed from this list.

atom_chars(?Atom, ?CharList) [150]
As atom_codes/ 2, but CharList is a list of one-character atoms rather than a list of character

SWI-Prolog 8.0 Reference Manual

4.22. ANALYSING AND CONSTRUCTING ATOMS 177

codes.””

?- atom_chars (hello, X).

X = [h, e, 1, 1, o]

char_code(?Afom, ?Code) [1S0]
Convert between character and character code for a single character.”!

number_chars(?Number, ?CharlList) [150]
Similar to atom_chars/2, but converts between a number and its representation as a list of
one-character atoms. If CharList is a proper list, i.e., not unbound or a partial list, CharList
is parsed according to the Prolog syntax for numbers and the resulting number is unified with
Number. Otherwise, if Number is a number, Number is serialized and the result is unified with
CharList.

If CharList is parsed, it is parsed using the Prolog syntax for numbers. Following the ISO
standard, it allows for leading white space (including newlines) and does not allow for trailing
white space.”” A syntax_error exception is raised if CharList does not represent a valid
Prolog number.

number_codes(?Number, ?CodelList) [1S0]
As number_chars/2, but converts to a list of character codes rather than one-character
atoms. In the mode (-,+), both predicates behave identically to improve handling of non-ISO
source.

atom_number(’Afom, ?Number)
Realises the popular combination of atom_codes/2 and number_codes/2 to convert
between atom and number (integer or float) in one predicate, avoiding the intermediate list.
Unlike the ISO number_codes/2 predicates, atom_number/2 fails silently in mode (+,-)
if Atom does not represent a number.”® See also atomic_list_concat /2 for assembling
an atom from atoms and numbers.

name(’Atomic, ?CodelList)

CodelList is a list of character codes representing the same text as Atomic. Each of the argu-
ments may be a variable, but not both. When CodeList describes an integer or floating point
number and Atomic is a variable, Atomic will be unified with the numeric value described by
Codelist (e.g., name (N, "300"), 400 is N + 100 succeeds). If CodeList is not a
representation of a number, Afomic will be unified with the atom with the name given by the
character code list. If Afomic is an atom or number, the unquoted print representation of it as a
character code list is unified with CodelList.

"Up to version 3.2.x, atom_chars/2 behaved as the current atom_codes/2. The current definition is compliant
with the ISO standard.

"IThis is also called at om_char /2 in older versions of SWI-Prolog as well as some other Prolog implementations. The
atom_char/2 predicate is available from the library backcomp.pl

IS0 also allows for Prolog comments in leading white space. We—and most other implementations—believe this is
incorrect. We also beleive it would have been better not to allow for white space, or to allow for both leading and trailing
white space. Prolog syntax-based conversion can also be achieved using format /3 and read_from_chars/2.

"Versions prior to 6.1.7 raised a syntax error, compliant to number_codes/2

SWI-Prolog 8.0 Reference Manual

178 CHAPTER 4. BUILT-IN PREDICATES

This predicate is part of the Edinburgh tradition. It should be considered deprecated although,
given its long tradition, it is unlikely to be removed from the system. It still has some value
for converting input to, depending on the syntax, a number or atom. New code should con-
sider the ISO predicates atom_codes/2, number_codes/2 or the SWI-Prolog predicate
atom_number/2.

term_to_atom(?Term, ?Atom)
True if Atom describes a term that unifies with Term. When Afom is instantiated, Afom is
parsed and the result unified with Term. If Atom has no valid syntax, a syntax_error
exception is raised. Otherwise Term is “written” on Atom using write_term/2 with the
option quoted(true). See also format/3, with output_to/2 and term string/2.

atom_to_term(+Atom, -Term, -Bindings) [deprecated]
Use Atom as input to read_term/2 using the option variable names and return the
read term in Term and the variable bindings in Bindings. Bindings is a list of Name = Var
couples, thus providing access to the actual variable names. See also read term/2. If
Atom has no valid syntax, a syntax_error exception is raised. New code should use
read_term_from_atom/3.

atom_concat(’Aroml, ?Atom2, ?Atom3) [150]
Atom3 forms the concatenation of Atoml and Arom2. At least two of the arguments must be
instantiated to atoms. This predicate also allows for the mode (-,-,4), non-deterministically
splitting the 3rd argument into two parts (as append/ 3 does for lists). SWI-Prolog allows for
atomic arguments. Portable code must use atomic_concat/3 if non-atom arguments are
involved.

atomic_concat(+Aromicl, +Atomic2, -Atom)
Atom represents the text after converting Aromicl and Atomic2 to text and concatenating the
result:

?— atomic_concat (name, 42, X).
X = named?2.

atomic_list_concat(+List, -Atom) [commons]
List is a list of strings, atoms, integers or floating point numbers. Succeeds if Atom can be
unified with the concatenated elements of List. Equivalent to atomic_list_concat(List, ”,
Atom).

atomic_list_concat(+List, +Separator, -Atom) [commons]
Creates an atom just like atomic_list_concat/2, butinserts Separator between each pair
of inputs. For example:

?— atomic_list_concat ([gnu, gnat], ', ', A).

A = ’'gnu, gnat’

The SWI-Prolog version of this predicate can also be used to split atoms by instantiating Sepa-
rator and Atom as shown below. We kept this functionality to simplify porting old SWI-Prolog

SWI-Prolog 8.0 Reference Manual

4.23. LOCALIZATION (LOCALE) SUPPORT 179

code where this predicate was called concat_atom/3. When used in mode (-,+,+), Separator
must be a non-empty atom. See also split_string/4.

?— atomic_list_concat (L, -, ’‘gnu-gnat’).

L = [gnu, gnat]

atom_length(+Arom, -Length) [1S0]
True if Afom is an atom of Length characters. The SWI-Prolog version accepts all atomic
types, as well as code-lists and character-lists. New code should avoid this feature and use
write_length/3 to get the number of characters that would be written if the argument was
handed to write_term/3.

atom_prefix(+Arom, +Prefix) [deprecated]
True if Atom starts with the characters from Prefix. Its behaviour is equivalent to
?- sub_atom (Atom, 0, _, _, Prefix). Deprecated.

sub_atom(+Arom, ?Before, ?Len, ?After, ?Sub) [1SO]
ISO predicate for breaking atoms. It maintains the following relation: Sub is a sub-atom of
Atom that starts at Before, has Len characters, and Atom contains After characters after the
match.

?- sub_atom(abc, 1, 1, A, S).

The implementation minimises non-determinism and creation of atoms. This is a flexible pred-
icate that can do search, prefix- and suffix-matching, etc.

sub_atom _icasechk(+Haystack, ?Start, + Needle) [semidet]
True when Needle is a sub atom of Haystack starting at Start. The match is ‘half case in-
sensitive’, i.e., uppercase letters in Needle only match themselves, while lowercase letters in
Needle match case insensitively. Start is the first 0-based offset inside Haystack where Needle
matches.”*

4.23 Localization (locale) support
SWI-Prolog provides (currently limited) support for localized applications.

e The predicates char_type/2 and code_type/2 query character classes depending on the
locale.

e The predicates collation key/2 and locale_sort/2 can be used for locale dependent
sorting of atoms.

"This predicate replaces $apropos_match/2, used by the help system, while extending it with locating the (first)
match and performing case insensitive prefix matching. We are still not happy with the name and interface.

SWI-Prolog 8.0 Reference Manual

180 CHAPTER 4. BUILT-IN PREDICATES

e The predicate format_time/3 can be used to format time and date representations, where
some of the specifiers are locale dependent.

e The predicate format /2 provides locale-specific formating of numbers. This functionality is
based on a more fine-grained localization model that is the subject of this section.

A locale is a (optionally named) read-only object that provides information to locale specific
functions.”> The system creates a default locale object named de fault from the system locale. This
locale is used as the initial locale for the three standard streams as well as the main thread. Locale
sensitive output predicates such as format /3 get their locale from the stream to which they deliver
their output. New streams get their locale from the thread that created the stream. Threads get their
locale from the thread that created them.

locale_create(-Locale, +Default, +Options)
Create a new locale object. Default is either an existing locale or a string that denotes the name
of a locale provided by the system, such as "en_EN.UTF-8". The values read from the
default locale can be modified using Options. Options provided are:

alias(+Atrom)
Give the locale a name.

decimal_point(+Atom)
Specify the decimal point to use.

thousands_sep(+Arom)
Specify the string that delimits digit groups. Only effective is grouping is also specified.

grouping(+List)
Specify the grouping of digits. Groups are created from the right (least significant) digits,
left of the decimal point. List is a list of integers, specifying the number of digits in each
group, counting from the right. If the last element is repeat(Count), the remaining
digits are grouped in groups of size Count. If the last element is a normal integer, digits
further to the left are not grouped.

For example, the English locale uses

‘ [decimal_point (’.”), thousands_sep(’,’), grouping([repeat (3)])‘

Named locales exists until they are destroyed using 1ocale_destroy/1 and they are no
longer referenced. Unnamed locales are subject to (atom) garbage collection.

locale_destroy(+Locale)
Destroy a locale. If the locale is named, this removes the name association from the locale,
after which the locale is left to be reclaimed by garbage collection.

locale_property(?Locale, ?Property)
True when Locale has Property. Properties are the same as the Options described with
locale_create/3.

>The locale interface described in this section and its effect on format /2 and reading integers from digit groups was
discussed on the SWI-Prolog mailinglist. Most input in this discussion is from Ulrich Neumerkel and Richard O’Keefe.
The predicates in this section were designed by Jan Wielemaker.

SWI-Prolog 8.0 Reference Manual

4.24. CHARACTER PROPERTIES 181

set_locale(+Locale)
Set the default locale for the current thread, as well as the locale for the standard streams
(user_input, user_output, user_error, current _output and current_input.
This locale is used for new streams, unless overruled using the 1ocale(Locale) option of
open/4 or set_stream/2.

current_locale(-Locale)
True when Locale is the locale of the calling thread.

4.24 Character properties

SWI-Prolog offers two comprehensive predicates for classifying characters and character codes.
These predicates are defined as built-in predicates to exploit the C-character classification’s handling
of locale (handling of local character sets). These predicates are fast, logical and deterministic if
applicable.

In addition, there is the library ct ypes providing compatibility with some other Prolog systems.
The predicates of this library are defined in terms of code_type/2.

char_type(?Char, ?Type)
Tests or generates alternative Types or Chars. The character types are inspired by the standard C
<ctype.h> primitives. Note that the mode (-,+) is only efficient if the Type has a parameter,
e.g., char_type(C, digit(8)). With an atomic Type the whole unicode range (0..0x1fftf) is
generated and tested against the C character classification function.

alnum
Char is a letter (upper- or lowercase) or digit.

alpha
Char is a letter (upper- or lowercase).

csym
Char is a letter (upper- or lowercase), digit or the underscore (_). These are valid C and
Prolog symbol characters.

csymf
Char is a letter (upper- or lowercase) or the underscore (_). These are valid first characters
for C and Prolog symbols.

ascii
Char is a 7-bit ASCII character (0..127).

white
Char is a space or tab, i.e. white space inside a line.

cntrl
Char is an ASCII control character (0..31), ASCII DEL character (127), or non-ASCII
character in the range 128..159 or 8232..8233.

digit
Char is a digit.

digit(Weight)
Char is a digit with value Weight. l.e. char_type (X, digit (6)) yieldsX="'6".
Useful for parsing numbers.

SWI-Prolog 8.0 Reference Manual

182

CHAPTER 4. BUILT-IN PREDICATES

xdigit(Weight)
Char is a hexadecimal digit with value Weight. l.e. char _type (a, xdigit (X))
yields X =710’ . Useful for parsing numbers.

graph
Char produces a visible mark on a page when printed. Note that the space is not included!

lower
Char is a lowercase letter.

lower(Upper)
Char is a lowercase version of Upper. Only true if Char is lowercase and Upper upper-
case.

to_lower(Upper)
Char is a lowercase version of Upper. For non-letters, or letter without case, Char and
Lower are the same. See also upcase_atom/2 and downcase_atom/2.

upper
Char is an uppercase letter.

upper(Lower)
Char is an uppercase version of Lower. Only true if Char is uppercase and Lower lower-
case.

to_upper(Lower)
Char is an uppercase version of Lower. For non-letters, or letter without case, Char and
Lower are the same. See also upcase_atom/2 and downcase_atom/2.

punct
Char is a punctuation character. This is a graph character that is not a letter or digit.

space
Char is some form of layout character (tab, vertical tab, newline, etc.).

end _of file
Char is -1.

end _of _line
Char ends a line (ASCII: 10..13).

newline
Char is a newline character (10).

period
Char counts as the end of a sentence (.,!,?).

quote
Char is a quote character (", 7, V).

paren(Close)
Char is an open parenthesis and Close is the corresponding close parenthesis.

prolog_var _start
Char can start a Prolog variable name.

prolog_atom start
Char can start a unquoted Prolog atom that is not a symbol.

SWI-Prolog 8.0 Reference Manual

4.24. CHARACTER PROPERTIES 183

prolog_identifier_continue
Char can continue a Prolog variable name or atom.

prolog_symbol
Char is a Prolog symbol character. Sequences of Prolog symbol characters glue together
to form an unquoted atom. Examples are =. ., \=, etc.

code_type(?Code, ?Type)
As char_type/2, but uses character codes rather than one-character atoms. Please note
that both predicates are as flexible as possible. They handle either representation if the
argument is instantiated and will instantiate only with an integer code or a one-character atom,
depending of the version used. See also the Prolog flag double_quotes, atom_chars/2
and atom_codes/2.

4.24.1 Case conversion

There is nothing in the Prolog standard for converting case in textual data. The SWI-Prolog predicates
code_type/2 and char_type/2 can be used to test and convert individual characters. We have
started some additional support:

downcase_atom(+AnyCase, -LowerCase)
Converts the characters of AnyCase into lowercase as char_type/2 does (i.e. based on
the defined locale if Prolog provides locale support on the hosting platform) and unifies the
lowercase atom with LowerCase.

upcase_atom(+AnyCase, -UpperCase)
Converts, similar to downcase_atom/2, an atom to uppercase.

4.24.2 White space normalization

normalize_space(-Out, +In)
Normalize white space in In. All leading and trailing white space is removed. All non-empty
sequences for Unicode white space characters are replaced by a single space (\u0020)
character. Out uses the same conventions as with_output_to/2 and format /3.

4.24.3 Language-specific comparison

This section deals with predicates for language-specific string comparison operations.

collation_key(+Atom, -Key)
Create a Key from Atom for locale-specific comparison. The key is defined such that if the
key of atom A precedes the key of atom B in the standard order of terms, A is alphabetically
smaller than B using the sort order of the current locale.

The predicate collation key/2 is used by locale_sort/2 from library(sort). Please
examine the implementation of 1ocale_sort/2 as an example of using this call.

The Key is an implementation-defined and generally unreadable string. On systems that do not
support locale handling, Key is simply unified with Afom.

SWI-Prolog 8.0 Reference Manual

184 CHAPTER 4. BUILT-IN PREDICATES

locale_sort(+List, -Sorted)
Sort a list of atoms using the current locale. List is a list of atoms or string objects (see sec-
tion 5.2). Sorted is unified with a list containing all atoms of List, sorted to the rules of the
current locale. See also collation_key/2 and setlocale/3.

4.25 Operators

Operators are defined to improve the readability of source code. For example, without operators, to
write 2 3+4+5 one would have to write + (% (2, 3) , x (4, 5)). In Prolog, a number of operators
have been predefined. All operators, except for the comma (,) can be redefined by the user.

Some care has to be taken before defining new operators. Defining too many operators might
make your source ‘natural’ looking, but at the same time using many operators can make it hard to
understand the limits of your syntax.

In SWI-Prolog, operators are local to the module in which they are defined. Operators can be
exported from modules using a term op(Precedence, Type, Name) in the export list as specified by
module/2. Many modern Prolog systems have module specific operators. Unfortunately, there is
no established interface for exporting and importing operators. SWI-Prolog’s convention has been
addopted by YAP.

The module table of the module user acts as default table for all modules and can be modified
explicitly from inside a module to achieve compatibility with other Prolog that do not have module-
local operators:

:— module (prove,
[prove/l
1) .

:— op (900, xfx, user: (=>)).

Although operators are module-specific and the predicates that define them (op/3) or rely on them
such as current_op/3, read/1 and write/1 are module sensitive, they are not proper meta-
predicates. If they were proper meta predicates read/1 and write/1 would use the module from
which they are called, breaking compatibility with other Prolog systems. The following rules apply:

1. If the module is explicitly specified by qualifying the third argument (op/ 3, current_op/3)
or specifying a module(Module) option (read_term/3, write_term/3), this module is
used.

2. While compiling, the module into which the compiled code is loaded applies.

3. Otherwise, the typein module applies. This is normally user and may be changed using
module/1.

In SWI-Prolog, a quoted atom never acts as an operator. Note that the portable way to stop an
atom acting as an operator is to enclose it in parentheses like this: (myop). See also section 5.3.1.

op(+Precedence, +Type, :Name) [1SO]
Declare Name to be an operator of type Type with precedence Precedence. Name can also be

SWI-Prolog 8.0 Reference Manual

4.26. CHARACTER CONVERSION 185

a list of names, in which case all elements of the list are declared to be identical operators.
Precedence is an integer between 0 and 1200. Precedence 0 removes the declaration. Type is
one of: xf, yf, xfx, xfy, yfx, fy or £x. The ‘£’ indicates the position of the functor, while
x and y indicate the position of the arguments. ‘y’ should be interpreted as “on this position a
term with precedence lower or equal to the precedence of the functor should occur”. For ‘x’
the precedence of the argument must be strictly lower. The precedence of a term is 0, unless its
principal functor is an operator, in which case the precedence is the precedence of this operator.
A term enclosed in parentheses (. ..) has precedence 0.

The predefined operators are shown in table 4.2. Operators can be redefined, unless prohibited
by one of the limitations below. Applications must be careful with (re-)defining operators be-
cause changing operators may cause (other) files to be interpreted differently. Often this will
lead to a syntax error. In other cases, text is read silently into a different term which may lead
to subtle and difficult to track errors.

e It is not allowed to redefine the comma (’ , ").
e The bar (|) can only be (re-)defined as infix operator with priority not less than 1001.
o It is not allowed to define the empty list ([]) or the curly-bracket pair ({ }) as operators.

In SWI-Prolog, operators are /ocal to a module (see also section 6.8). Keeping operators in
modules and using controlled import/export of operators as described with the module/2 di-
rective keep the issues manageable. The module system provides the operators from table 4.2
and these operators cannot be modified. Files that are loaded from the SWI-Prolog directories
resolve operators and predicates from this system module rather than user, which makes
the semantics of the library and development system modules independent of operator changes
to the user module. See section 4.25 for details about the relation between operators and
modules.

current_op(?Precedence, ?Type, ?:Name) [ISO]
True if Name is currently defined as an operator of type Type with precedence Precedence.
See also op/3. Note that an unqualified Name does not resolve to the calling context but,
when compiling, to the compiler’s target module and otherwise to the typein module. See
section 4.25 for details.

4.26 Character Conversion

Although I wouldn’t really know why you would like to use these features, they are provided for ISO
compliance.

char_conversion(+Charln, + CharOut) [150]
Define that term input (see read_term/3) maps each character read as Charln to the charac-
ter CharOut. Character conversion is only executed if the Prolog flag char_conversion is
set to t rue and not inside quoted atoms or strings. The initial table maps each character onto
itself. See also current_char_conversion/?2.

current_char_conversion(?Charln, ?CharOut) [150]
Queries the current character conversion table. See char_conversion/2 for details.

SWI-Prolog 8.0 Reference Manual

186

CHAPTER 4. BUILT-IN PREDICATES

1200
1200
1150

1100
1050
1000
990
900
700

600
500
500
400
200
200
200
100

rfx
fx
fz

zfy
zfy
zfy
rfx

rfx

zfy
yfx
fx
yfx
xfx
zfy
Ty
yfx
fx

.- o

dynamic, discontiguous, initialization,
meta_predicate, module_transparent, multifile,
public, thread_local, thread.initialization,
volatile

s

—>, *x=>

I

\+

<’ T T e e :@:’ \:@:$ =15, :<’ ==, :\:’ >, >:, @<, @:<, @>7
@>=,\=,\==,as,1s,>:<, :<

x,/,//,div, rdiv, <<, >>, mod, rem

* %
+’ _9\

$

Table 4.2: System operators

SWI-Prolog 8.0 Reference Manual

4.27. ARITHMETIC 187

4.27 Arithmetic

Arithmetic can be divided into some special purpose integer predicates and a series of general pred-
icates for integer, floating point and rational arithmetic as appropriate. The general arithmetic predi-
cates all handle expressions. An expression is either a simple number or a function. The arguments of
a function are expressions. The functions are described in section 4.27.2.

4.27.1 Special purpose integer arithmetic

The predicates in this section provide more logical operations between integers. They are not covered
by the ISO standard, although they are ‘part of the community’ and found as either library or built-in
in many other Prolog systems.

between(+Low, +High, ?Value)
Low and High are integers, High > Low. If Value is an integer, Low < Value < High. When
Value is a variable it is successively bound to all integers between Low and High. If High
is inf or infinite’® between/3 is true iff Value > Low, a feature that is particularly
interesting for generating integers from a certain value.

succ(?Intl, ?Int2)
True if Int2 = Intl + 1 and Intl > 0. At least one of the arguments must be instantiated to a
natural number. This predicate raises the domain error not _less_than_zero if called with
a negative integer. E.g. succ(X, 0) fails silently and succ(X, -1) raises a domain error.’’

plus(?Intl, ?Int2, ?Int3)
True if Int3 = Intl + Int2. At least two of the three arguments must be instantiated to integers.

divmod(+Dividend, +Divisor, -Quotient, -Remainder)
This predicate is a shorthand for computing both the Quotient and Remainder of two integers
in a single operation. This allows for exploiting the fact that the low level implementation
for computing the quotient also produces the remainder. Timing confirms that this predicate
is almost twice as fast as performing the steps independently. Semantically, divmod/4 is
defined as below.

divmod (Dividend, Divisor, Quotient, Remainder) :-—
Quotient is Dividend div Divisor,
Remainder is Dividend mod Divisor.

Note that this predicate is only available if SWI-Prolog is compiled with unbounded integer
support. This is the case for all packaged versions.

nth_integer_root_and_remainder(+N, +1, -Root, -Remainder)
True when Root” 4 Remainder = I. N and I must be integers.”® N must be one or more. If 1
is negative and N is odd, Root and Remainder are negative, i.e., the following holds for I < 0:

"SWe prefer infinite, but some other Prolog systems already use inf for infinity; we accept both for the time being.

""The behaviour to deal with natural numbers only was defined by Richard O’Keefe to support the common count-down-
to-zero in a natural way. Up to 5.1.8, succ/2 also accepted negative integers.

8This predicate was suggested by Markus Triska. The final name and argument order is by Richard O’Keefe. The
decision to include the remainder is by Jan Wielemaker. Including the remainder makes this predicate about twice as slow
if Root is not exact.

SWI-Prolog 8.0 Reference Manual

188 CHAPTER 4. BUILT-IN PREDICATES

I <0,
N mod 2 =\= 0,
nth_integer_root_and_remainder (

N, I, Root, Remainder),
IPos is -I,
nth_integer_root_and_remainder (

N, IPos, RootPos, RemainderPos),
Root =:= —-RootPos,
Remainder =:= —-RemainderPos.

o° o

4.27.2 General purpose arithmetic

The general arithmetic predicates are optionally compiled (see set _prolog_flag/2 and the -0
command line option). Compiled arithmetic reduces global stack requirements and improves perfor-
mance. Unfortunately compiled arithmetic cannot be traced, which is why it is optional.

+Exprl > +Expr2 [1SO]
True if expression Exprl evaluates to a larger number than Expr2.

+Exprl < +Expr2 [1SO]
True if expression Exprl evaluates to a smaller number than Expr2.

+Exprl =< +Expr2 [1SO]
True if expression Exprl evaluates to a smaller or equal number to Expr2.

+Exprl >= +Expr2 [1SO]
True if expression Exprl evaluates to a larger or equal number to Expr2.

+Exprl =\= +Expr2 [1SO]
True if expression Exprl evaluates to a number non-equal to Expr2.

+Exprl =:= +Expr2 [1SO]
True if expression Exprl evaluates to a number equal to Expr2.

-Number is +Expr [ISO]
True when Number is the value to which Expr evaluates. Typically, 1s/2 should be used with
unbound left operand. If equality is to be tested, =:=/2 should be used. For example:

?- 1 is sin(pi/2). Fails! sin(pi/2) evaluates to the float 1.0,
which does not unify with the integer 1.
?- 1 =:= sin(pi/2). Succeeds as expected.
Arithmetic types

SWI-Prolog defines the following numeric types:

SWI-Prolog 8.0 Reference Manual

4.27. ARITHMETIC 189

e integer
If SWI-Prolog is built using the GNU multiple precision arithmetic library (GMP), integer
arithmetic is unbounded, which means that the size of integers is limited by available memory
only. Without GMP, SWI-Prolog integers are 64-bits, regardless of the native integer size of
the platform. The type of integer support can be detected using the Prolog flags bounded,
min_integer and max_integer. As the use of GMP is default, most of the following
descriptions assume unbounded integer arithmetic.

Internally, SWI-Prolog has three integer representations. Small integers (defined by the Prolog
flag max_tagged_integer) are encoded directly. Larger integers are represented as 64-bit
values on the global stack. Integers that do not fit in 64 bits are represented as serialised GNU
MPZ structures on the global stack.

e rational number

Rational numbers (()) are quotients of two integers. Rational arithmetic is only provided if GMP
is used (see above). Rational numbers are currently not supported by a Prolog type. They are
represented by the compound term rdiv(N,M). Rational numbers that are returned from is/2
are canonical, which means M is positive and N and M have no common divisors. Rational
numbers are introduced in the computation using the rational/1l, rationalize/1 or
the rdiv/2 (rational division) function. Using the same functor for rational division and for
representing rational numbers allows for passing rational numbers between computations as
well as for using format /3 for printing.

In the long term, it is likely that rational numbers will become atomic as well as a subtype of
number. User code that creates or inspects the rdiv(M,N) terms will not be portable to future
versions. Rationals are created using one of the functions mentioned above and inspected using
rational/3.

o float
Floating point numbers are represented using the C type double. On most of today’s platforms
these are 64-bit IEEE floating point numbers.

Arithmetic functions that require integer arguments accept, in addition to integers, rational num-
bers with (canonical) denominator ‘1°. If the required argument is a float the argument is converted to
float. Note that conversion of integers to floating point numbers may raise an overflow exception. In
all other cases, arguments are converted to the same type using the order below.

integer — rational number — floating point number

Rational number examples

The use of rational numbers with unbounded integers allows for exact integer or fixed point arithmetic
under addition, subtraction, multiplication and division. To exploit rational arithmetic rdiv/2 should
be used instead of ‘/’ and floating point numbers must be converted to rational using rational/1.
Omitting the rational/1 on floats will convert a rational operand to float and continue the arith-
metic using floating point numbers. Here are some examples.

Ais 2 rdiv 6 A=1rdiv3
Aisdrdiv3i+1 A =7rdiv 3
Ais4rdivi+1.5 A =2.83333

A is 4 rdiv 3 + rational(1.5) A =17 rdiv 6

SWI-Prolog 8.0 Reference Manual

190 CHAPTER 4. BUILT-IN PREDICATES

Note that floats cannot represent all decimal numbers exactly. The function rational/1 creates
an exact equivalent of the float, while rationalize/1 creates a rational number that is within the
float rounding error from the original float. Please check the documentation of these functions for
details and examples.

Rational numbers can be printed as decimal numbers with arbitrary precision using the
format /3 floating point conversion:

?— A is 4 rdiv 3 + rational(1l.5),
format (" "50f™n’, [A]).
2.8333

A =17 rdiv 6

Arithmetic Functions

Arithmetic functions are terms which are evaluated by the arithmetic predicates described in sec-
tion 4.27.2. There are four types of arguments to functions:

Expr Arbitrary expression, returning either a floating point value or an
integer.
IntExpr Arbitrary expression that must evaluate to an integer.

RatExpr Arbitrary expression that must evaluate to a rational number.
FloatExpr Arbitrary expression that must evaluate to a floating point.

For systems using bounded integer arithmetic (default is unbounded, see section 4.27.2 for de-
tails), integer operations that would cause overflow automatically convert to floating point arithmetic.

SWI-Prolog provides many extensions to the set of floating point functions defined by the ISO
standard. The current policy is to provide such functions on ‘as-needed’ basis if the function is widely
supported elsewhere and notably if it is part of the C99 mathematical library. In addition, we try to
maintain compatibility with YAP.

- +Expr [150]
Result = —Expr

+ +Expr [1SO]
Result = Expr. Note that if + is followed by a number, the parser discards the +. ILe.
?— integer (+1) succeeds.

+Exprl + +Expr2 [1SO]
Result = Exprl + Expr2

+Exprl = +Expr2 [1SO]
Result = Exprl — Expr2

+Exprl * +Expr2 [1SO]
Result = Exprl x Expr2

SWI-Prolog 8.0 Reference Manual

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.dcc.fc.up.pt/~vsc/Yap/

4.27. ARITHMETIC 191

+Exprl / +Expr2 [1SO]

Result = gjp g If the flag iso is t rue, both arguments are converted to float and the return

value is a float. Otherwise (default), if both arguments are integers the operation returns an
integer if the division is exact. If at least one of the arguments is rational and the other argument
is integer, the operation returns a rational number. In all other cases the return value is a float.
Seealso ///2 and rdiv/2.

+IntExprl mod +IntExpr2 [1S0]
Modulo, defined as Result = IntExprl - (IntExprl div IntExpr2) x IntExpr2, where div is
floored division.

+IntExprl rem +IntExpr2 [1SO]
Remainder of integer division. Behaves as if defined by
Result is IntExprl - (IntExprl I/ IntExpr2) X IntExpr2

+IntExprl // +IntExpr2 [1SO]
Integer division, defined as Resultis rnd;(Exprl/Expr2). The function rnd; is the
default rounding used by the C compiler and available through the Prolog flag
integer_rounding_function. In the C99 standard, C-rounding is defined as
towards_zero.”’

div(+IntExprl, +IntExpr2) [ISO]
Integer division, defined as Result is (IntExprl - IntExprl mod IntExpr2) I/ IntExpr2. In other
words, this is integer division that rounds towards -infinity. This function guarantees behaviour
that is consistent with mod/2, i.e., the following holds for every pair of integers X,Y where
Y =\= 0.

Q is div (X, Y),
M is mod (X, Y),
X =:= Y*xQ+M.

+RatExpr rdiv +RatExpr
Rational number division. This function is only available if SWI-Prolog has been compiled
with rational number support. See section 4.27.2 for details.

+IntExprl ged +IntExpr2
Result is the greatest common divisor of IntExprl, IntExpr2.

abs(+Expr) [150]
Evaluate Expr and return the absolute value of it.

sign(+Expr) [ISO]
Evaluate to -1 if Expr < 0, 1 if Expr > 0 and 0 if Expr = 0. If Expr evaluates to a float, the
return value is a float (e.g., -1.0, 0.0 or 1.0). In particular, note that sign(-0.0) evaluates to 0.0.
See also copysign/2

"Future versions might guarantee rounding towards zero.

SWI-Prolog 8.0 Reference Manual

192 CHAPTER 4. BUILT-IN PREDICATES

copysign(+Exprl, +Expr2) [ISO]

Evaluate to X, where the absolute value of X equals the absolute value of Expr/ and the sign of
X matches the sign of Expr2. This function is based on copysign() from C99, which works on
double precision floats and deals with handling the sign of special floating point values such as
-0.0. Our implementation follows C99 if both arguments are floats. Otherwise, copysign/2
evaluates to Exprl if the sign of both expressions matches or -Exprl if the signs do not match.
Here, we use the extended notion of signs for floating point numbers, where the sign of -0.0
and other special floats is negative.

max(+Expri, +Expr2) [1SO]
Evaluate to the larger of Exprl and Expr2. Both arguments are compared after converting to
the same type, but the return value is in the original type. For example, max(2.5, 3) compares
the two values after converting to float, but returns the integer 3.

min(+Expri, +Expr2) [1SO]
Evaluate to the smaller of Exprl and Expr2. See max /2 for a description of type handling.
(+Int, [])

A list of one element evaluates to the element. This implies "a" evaluates to the character code
of the letter ‘a’ (97) using the traditional mapping of double quoted string to a list of character
codes. Arithmetic evaluation also translates a string object (see section 5.2) of one character
length into the character code for that character. This implies that expression "a" also works
of the Prolog flag double_quotes is set to st ring. The recommended way to specify the
character code of the letter ‘a’ is 0" a.

random(+/IntExpr)

Evaluate to a random integer i for which 0 < ¢ < IntExpr. The system has two implemen-
tations. If it is compiled with support for unbounded arithmetic (default) it uses the GMP
library random functions. In this case, each thread keeps its own random state. The default
algorithm is the Mersenne Twister algorithm. The seed is set when the first random number in
a thread is generated. If available, it is set from /dev/random.®’ Otherwise it is set from the
system clock. If unbounded arithmetic is not supported, random numbers are shared between
threads and the seed is initialised from the clock when SWI-Prolog was started. The predicate
set_random/1 can be used to control the random number generator.

Warning! Although properly seeded (if supported on the OS), the Mersenne Twister algorithm
does not produce cryptographically secure random numbers. To generate cryptographically
secure random numbers, use crypto_n_random bytes/2 from library crypto provided
by the ss1 package.

random_float
Evaluate to a random float I for which 0.0 < ¢z < 1.0. This function shares the random state with
random/1. All remarks with the function random/1 also apply for random_float/O0.
Note that both sides of the domain are open. This avoids evaluation errors on, e.g., 1og/1 or
/ /2 while no practical application can expect 0.0.%!

890n Windows the state is initialised from CryptGenRandom().

81Richard O’Keefe said: “If you are generating IEEE doubles with the claimed uniformity, then 0 has a 1 in
1in9, 007, 199, 254, 740, 992 chance of turning up. No program that expects [0.0,1.0) is going to be surprised when 0.0
fails to turn up in a few millions of millions of trials, now is it? But a program that expects (0.0,1.0) could be devastated if
0.0 did turn up.”

253

SWI-Prolog 8.0 Reference Manual

4.27. ARITHMETIC 193

round(+Expr) [1S0]
Evaluate Expr and round the result to the nearest integer. According to ISO, round/1 is
defined as floor(Expr+1/2), i.e., rounding down. This is an unconventional choice under

which the relation round (Expr) == -round(-Expr) does not hold. SWI-Prolog
rounds outward, e.g., round (1.5) =:= 2and round(-1.5) =:= -2.
integer(+Expr)

Same as round/1 (backward compatibility).

float(+Expr) [ISO]
Translate the result to a floating point number. Normally, Prolog will use integers whenever
possible. When used around the 2nd argument of is/ 2, the result will be returned as a floating
point number. In other contexts, the operation has no effect.

rational(+Expr)
Convert the Expr to a rational number or integer. The function returns the input on integers
and rational numbers. For floating point numbers, the returned rational number exactly
represents the float. As floats cannot exactly represent all decimal numbers the results may be
surprising. In the examples below, doubles can represent 0.25 and the result is as expected, in
contrast to the result of rational(0.1). The function rationalize/1 remedies this. See
section 4.27.2 for more information on rational number support.

?— A is rational (0.25).

A is 1 rdiv 4
?— A is rational(0.1).
A = 3602879701896397 rdiv 36028797018963968

rationalize(+Expr)
Convert the Expr to a rational number or integer. The function is similar to rational/1,
but the result is only accurate within the rounding error of floating point numbers, generally
producing a much smaller denominator.®’

?— A is rationalize (0.25).

A =1 rdiv 4
?— A is rationalize(0.1).

A =1 rdiv 10

float_fractional _part(+Expr) [ISO]
Fractional part of a floating point number. Negative if Expr is negative, rational
if Expr is rational and O if Expr is integer. The following relation is always true:
Xis float gractionalyart(X) + float;ntegerpart(X).

82The names rational/1 and rationalize/1 as well as their semantics are inspired by Common Lisp.

SWI-Prolog 8.0 Reference Manual

194 CHAPTER 4. BUILT-IN PREDICATES

float_integer_part(+Expr) [ISO]
Integer part of floating point number. Negative if Expr is negative, Expr if Expr is integer.

truncate(+Expr) [1SO]
Truncate Expr to an integer. If Expr > 0 this is the same as £ 1oor(Expr). For Expr < 0 this is
the same as ceil(Expr). Thatis, truncate/1 rounds towards zero.

floor(+Expr) [1S0]
Evaluate Expr and return the largest integer smaller or equal to the result of the evaluation.

ceiling(+Expr) [ISO]
Evaluate Expr and return the smallest integer larger or equal to the result of the evaluation.

ceil(+Expr)
Same as ceiling/1 (backward compatibility).

+IntExprl >> +IntExpr2 [1SO]
Bitwise shift IntExprl by IntExpr2 bits to the right. The operation performs arithmetic shift,
which implies that the inserted most significant bits are copies of the original most significant
bits.

+IntExprl << +IntExpr2 [1SO]
Bitwise shift IntExprl by IntExpr2 bits to the left.

+IntExprl \/ +IntExpr2 [1SO]
Bitwise ‘or’ IntExprl and IntExpr2.

+IntExprl /\ +IntExpr2 [1SO]
Bitwise ‘and’ IntExprl and IntExpr2.

+IntExprl xor +IntExpr2 [1SO]
Bitwise ‘exclusive or’ IntExprl and IntExpr2.

\ +IntExpr [1SO]
Bitwise negation. The returned value is the one’s complement of IntExpr.

sqrt(+Expr) [1SO]
Result = \/Expr

sin(+Expr) [ISO]

Result = sin Expr. Expr is the angle in radians.

cos(+Expr) [150]
Result = cos Expr. Expr is the angle in radians.

tan(+Expr) [1S0]
Result = tan Expr. Expr is the angle in radians.

asin(+Expr) [150]
Result = arcsin Expr. Result is the angle in radians.

acos(+Expr) [150]
Result = arccos Expr. Result is the angle in radians.

SWI-Prolog 8.0 Reference Manual

4.27. ARITHMETIC 195

atan(+Expr) [1S0]
Result = arctan Expr. Result is the angle in radians.

atan2(+YExpr, +XExpr) [I1SO]

Result = arctan)I?Iéiz : Result is the angle in radians. The return value is in the range

[—7...7]. Used to convert between rectangular and polar coordinate system.

Note that the ISO Prolog standard demands atan2(0.0,0.0) to raise an evaluation error,
whereas the C99 and POSIX standards demand this to evaluate to 0.0. SWI-Prolog follows
C99 and POSIX.

atan(+YExpr, +XExpr)
Same as atan?2/2 (backward compatibility).

sinh(+Expr)
b'e —
Result = sinh Expr. The hyperbolic sine of X is defined as “—
cosh(+Expr) .
Result = cosh Expr. The hyperbolic cosine of X is defined as “——.
tanh(+Expr)
B . : inh X
Result = tanh Expr. The hyperbolic tangent of X is defined as 5 7=-.
asinh(+Expr)
Result = arcsinh(Expr) (inverse hyperbolic sine).
acosh(+Expr)
Result = arccosh(Expr) (inverse hyperbolic cosine).
atanh(+Expr)
Result = arctanh(Expr). (inverse hyperbolic tangent).
log(+Expr) [1S0]
Natural logarithm. Result = In Expr
log10(+Expr)
Base-10 logarithm. Result = 1g Expr
exp(+Expr) [1S0]
Result = eEXPT
+Exprl *% +Expr2 [1SO]

Result = Exprl EXpr2 The result is a float, unless SWI-Prolog is compiled with unbounded in-
teger support and the inputs are integers and produce an integer result. The integer expressions
0, 17 and —17 are guaranteed to work for any integer I. Other integer base values generate a
resource error if the result does not fit in memory.

The ISO standard demands a float result for all inputs and introduces "~ /2 for integer expo-
nentiation. The function £1oat /1 can be used on one or both arguments to force a floating
point result. Note that casting the input result in a floating point computation, while casting the
output performs integer exponentiation followed by a conversion to float.

SWI-Prolog 8.0 Reference Manual

196 CHAPTER 4. BUILT-IN PREDICATES

+Exprl ~ +Expr2 [1SO]
In SWI-Prolog, ~ /2 is equivalent to x« /2. The ISO version is similar, except that it produces
a evaluation error if both Exprl and Expr2 are integers and the result is not an integer. The
table below illustrates the behaviour of the exponentiation functions in ISO and SWI.

Exprl Expr2 | Function | SWI ISO
Int Int *x%x/2 Int or Float | Float
Int Float | x*/2 Float Float
Rational Int *%/2 Rational -
Float Int *x%x /2 Float Float
Float Float | /2 Float Float
Int Int ~/2 Int or Float | Int or error
Int Float | /2 Float Float
Rational Int ~/2 Rational -
Float Int ~/2 Float Float
Float Float | " /2 Float Float

powm(+IntExprBase, +IntExprExp, +IntExprMod)
Result = (IntExprBaselmExP rExp) modulo IntExprMod. Only available when compiled with
unbounded integer support. This formula is required for Diffie-Hellman key-exchange, a
technique where two parties can establish a secret key over a public network. IntExprBase and
IntExprExp must be non-negative (>= 0), IntExprMod must be positive (> 0).%

Igamma(+Expr)
Return the natural logarithm of the absolute value of the Gamma function.®*

erf(+Expr)
Wikipedia: “In mathematics, the error function (also called the Gauss error function) is a
special function (non-elementary) of sigmoid shape which occurs in probability, statistics and
partial differential equations.”

erfc(+Expr)
Wikipedia: “The complementary error function.”

pi [1S0]
Evaluate to the mathematical constant 7 (3.14159...).

e

Evaluate to the mathematical constant e (2.71828...).
epsilon

Evaluate to the difference between the float 1.0 and the first larger floating point number.
inf

Evaluate to positive infinity. See section 2.16.1. This value can be negated using — /1.

8The underlying GMP mpz_powm() function allows negative values under some conditions. As the conditions are
expensive to pre-compute, error handling from GMP is non-trivial and negative values are not needed for Diffie-Hellman
key-exchange we do not support these.

84Some interfaces also provide the sign of the Gamma function. We canot do that in an arithmetic function. Future
versions may provide a predicate 1gamma /3 that returns both the value and the sign.

SWI-Prolog 8.0 Reference Manual

https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Error_function

4.28. MISC ARITHMETIC SUPPORT PREDICATES 197

nan
Evaluate to Not a Number. See section 2.16.1.

cputime
Evaluate to a floating point number expressing the CPU time (in seconds) used by Prolog up till
now. See also statistics/2 and time/1.

eval(+Expr)
Evaluate Expr. Although ISO standard dictates that ‘A=1+2, B is A’ works and unifies B to 3,
it is widely felt that source level variables in arithmetic expressions should have been limited
to numbers. In this view the eval function can be used to evaluate arbitrary expressions.®’

Bitvector functions The functions below are not covered by the standard. The msb/1 function
also appears in hProlog and SICStus Prolog. The getbit /2 function also appears in ECLiPSe,
which also provides setbit(Vectorlndex) and c1lrbit(VectorIndex). The others are SWI-Prolog
extensions that improve handling of —unbounded— integers as bit-vectors.

msb(+IntExpr)
Return the largest integer IV such that (IntExpr >> N) /\ 1 =:= 1. This is the (zero-
origin) index of the most significant 1 bit in the value of IntExpr, which must evaluate to a
positive integer. Errors for 0, negative integers, and non-integers.

Isb(+IntExpr)
Return the smallest integer NV such that (IntExpr >> N) /\ 1 =:= 1. This is the
(zero-origin) index of the least significant 1 bit in the value of IntExpr, which must evaluate to
a positive integer. Errors for 0, negative integers, and non-integers.

popcount(+IntExpr)
Return the number of 1s in the binary representation of the non-negative integer IntExpr.

getbit(+IntExprV, +IntExprl)
Evaluates to the bit value (0 or 1) of the IntExpri-th bit of IntExprV. Both arguments must eval-
uate to non-negative integers. The result is equivalent to (IntExprV >> IntExprI)/\1,
but more efficient because materialization of the shifted value is avoided. Future versions
will optimise (IntExprV >> IntExprI)/\1l to a call to getbit/2, providing both
portability and performance.®®

4.28 Misc arithmetic support predicates

set_random(+Option)
Controls the random number generator accessible through the functions random/1 and
random_float /0. Note that the library random provides an alternative API to the same
random primitives.

8The eval/1 function was first introduced by ECLiPSe and is under consideration for YAP.

% This issue was fiercely debated at the ISO standard mailinglist. The name getbit was selected for compatibility with
ECLiPSe, the only system providing this support. Richard O’Keefe disliked the name and argued that efficient handling of
the above implementation is the best choice for this functionality.

SWI-Prolog 8.0 Reference Manual

198 CHAPTER 4. BUILT-IN PREDICATES

seed(+Seed)
Set the seed of the random generator for this thread. Seed is an integer or the atom
random. If random, repeat the initialization procedure described with the function
random/ 1. Here is an example:

?— set_random(seed(111)), A is random(6) .
A = 5.
?— set_random(seed(111)), A is random(6) .
A = 5.

state(+State)

Set the generator to a state fetched using the state property of random property/1.
Using other values may lead to undefined behaviour.®’

random_property(?Option)
True when Option is a current property of the random generator. Currently, this predicate
provides access to the state. This predicate is not present on systems where the state is
inaccessible.

state(-State)
Describes the current state of the random generator. State is a normal Prolog term that can
be asserted or written to a file. Applications should make no other assumptions about its
representation. The only meaningful operation is to use as argument to set _random/ 1
using the st ate(State) option.®®

current_arithmetic_function(?”Head)
True when Head is an evaluable function. For example:

?— current_arithmetic_function(sin(_)) .
true.

4.29 Built-in list operations

Most list operations are defined in the library 1ist s described in section A.19. Some that are imple-
mented with more low-level primitives are built-in and described here.

is_list(+7erm)
True if Term is bound to the empty list ([]) or a term with functor ** [|]’ %’ and arity 2 and
the second argument is a list.”” This predicate acts as if defined by the definition below on
acyclic terms. The implementation fails safely if Term represents a cyclic list.

8The limitations of the underlying (GMP) library are unknown, which makes it impossible to validate the State.

$8BUG: GMP provides no portable mechanism to fetch and restore the state. The current implementation works, but the
state depends on the platform. Le., it is generally not possible to reuse the state with another version of GMP or on a CPU
with different datasizes or endian-ness.

$The traditional list functor is the dot (* .). This is still the case of the command line option ——traditional is
given. See also section 5.1.

“In versions before 5.0.1, is_list/1 just checked for [] or [_|_] and proper_1ist/1 had the role of the current
is_list/1. The current definition conforms to the de facto standard. Assuming proper coding standards, there should
only be very few cases where a quick-and-dirty 1s_1ist /1 is a good choice. Richard O’Keefe pointed at this issue.

SWI-Prolog 8.0 Reference Manual

4.29. BUILT-IN LIST OPERATIONS 199

is 1list (X) :-—
var (X), !,
fail.
is_list([]).
is_list ([_IT]) :—
is_1ist (T).

memberchk(?Elem, +List) [semidet]
True when Elem is an element of List. This ‘chk’ variant of member /2 is semi deterministic
and typically used to test membership of a list. Raises a t ype error if scanning List encounters
a non-list. Note that memberchk/2 does not perform a full list typecheck. For example,
memberchk (a, [alb]) succeeds without error. If List is cyclic and Elem is not a member
of List, nemberchk/2 eventually raises a t ype error.”!

length(?List, ?Int) [1S0]
True if Int represents the number of elements in Listz. This predicate is a true relation and
can be used to find the length of a list or produce a list (holding variables) of length /nt. The
predicate is non-deterministic, producing lists of increasing length if List is a partial list and
Int is unbound. It raises errors if

e [nt is bound to a non-integer.
e [nt is a negative integer.

e List is neither a list nor a partial list. This error condition includes cyclic lists.””

This predicate fails if the tail of List is equivalent to Int (e.g., length (L, L)).”?

sort(+List, -Sorted) [1S0]
True if Sorted can be unified with a list holding the elements of List, sorted to the standard
order of terms (see section 4.7). Duplicates are removed. The implementation is in C, using
natural merge sort.”* The sort/2 predicate can sort a cyclic list, returning a non-cyclic
version with the same elements.

Note that List may contain non-ground terms. If Sorted is unbound at call-time, for each con-
sequtive pair of elements in Sorted, the relation E1 @< E2 will hold. However, unifying a
variable in Sorted may cause this relation to become invalid, even unifying a variable in Sorted
with another (older) variable. See also section 4.7.1.

sort(+Key, +Order, +List, -Sorted)
True when Sorted can be unified with a list holding the element of List. Key determines which

91 Eventually here means it will scan as many elements as the longest list that may exist given the current stack usage
before raising the exception.

221SO demands failure here. We think an error is more appropriate.

%This is logically correct. An exception would be more appropriate, but to our best knowledge, current practice in Prolog
does not describe a suitable candidate exception term.

%Contributed by Richard O’Keefe.

SWI-Prolog 8.0 Reference Manual

200 CHAPTER 4. BUILT-IN PREDICATES

part of each element in List is used for comparing two term and Order describes the relation
between each set of consecutive elements in Sorted.”>

If Key is the integer zero (0), the entire term is used to compare two elements. Using Key=0 can
be used to sort arbitrary Prolog terms. Other values for Key can only be used with compound
terms or dicts (see section 5.4). An integer key extracts the Key-th argument from a compound
term. An integer or atom key extracts the value from a dict that is associated with the given key.
A type_error is raised if the list element is of the wrong type and an existence_error is raised if
the compound has not enough argument or the dict does not contain the requested key.

Deeper nested elements of structures can be selected by using a list of keys for the Key argument.

The Order argument is described in the table below”®

Order Ordering Duplicate handling

@< ascending remove
@=< ascending keep
@> descending remove

@>= descending keep

The sort is stable, which implies that, if duplicates are kept, the order of duplicates is not
changed. If duplicates are removed, only the first element of a sequence of duplicates appears
in Sorted.

This predicate supersedes most of the other sorting primitives, for example:

sort (List, Sorted) :— sort (0, @<, List, Sorted).
msort (List, Sorted) :— sort (0, @=<, List, Sorted) .
keysort (Pairs, Sorted) :- sort(l, @=<, Pairs, Sorted).

The following example sorts a list of rows, for example resulting from csv_read_file/2)
ascending on the 3th column and descending on the 4th column:

sort (4, @>=, Rows0, Rowsl),
sort (3, @=<, Rowsl, Sorted).

See also sort /2 (ISO), msort /2, keysort/2, predsort/3 and order_by/2.

msort(+List, -Sorted)
Equivalent to sort /2, but does not remove duplicates. Raises a type_error if List is a
cyclic list or not a list.

keysort(+List, -Sorted) [150]
Sort a list of pairs. List must be a list of Key—Value pairs, terms whose principal functor is (-)/2.
List is sorted on Key according to the standard order of terms (see section 4.7.1). Duplicates are

%The definition of this predicate was established after discussion with Joachim Schimpf from the ECLiPSe team.
ECLiPSe currently only accepts <, =<, > and >= for the Order argument but this is likely to change. SWI-Prolog ex-
tends this predicate to deal with dicts.

%For compatibility with ECLiPSe, the values <, =<, > and >= are allowed as synonyms.

SWI-Prolog 8.0 Reference Manual

4.30. FINDING ALL SOLUTIONS TO A GOAL 201

not removed. Sorting is stable with regard to the order of the Values, i.e., the order of multiple
elements that have the same Key is not changed.

The keysort /2 predicate is often used together with library pairs. It can be used to sort
lists on different or multiple criteria. For example, the following predicates sorts a list of atoms
according to their length, maintaining the initial order for atoms that have the same length.

:— use_module (library (pairs)) .

sort_atoms_by_length (Atoms, BylLength) :-
map_list_to_pairs(atom_length, Atoms, Pairs),
keysort (Pairs, Sorted),
pairs_values (Sorted, ByLength).

predsort(+Pred, +List, -Sorted)
Sorts similar to sort/2, but determines the order of two terms by calling
Pred(-Delta, +E1, +E2). This call must unify Delta with one of <, > or =. If the built-
in predicate compare/ 3 is used, the result is the same as sort /2. See also keysort /2.

4.30 Finding all Solutions to a Goal

findall(+Template, :Goal, -Bag) [1SO]
Create a list of the instantiations Template gets successively on backtracking over Goal and
unify the result with Bag. Succeeds with an empty list if Goal has no solutions. £indall/3
is equivalent to bagof /3 with all free variables bound with the existential operator ("), except
that bagof /3 fails when Goal has no solutions.

findall(+Template, :Goal, -Bag, +Tail)
As findall/ 3, but returns the result as the difference list Bag-Tail. The 3-argument version
is defined as

findall (Templ, Goal, Bag) :-
findall (Templ, Goal, Bag, [])

findnsols(+N, @Template, :Goal, -List) [nondet]

findnsols(+N, @Template, :Goal, -List, ?Tail) [nondet]
As findall/3 and findall/4, but generates at most N solutions. If N solutions are
returned, this predicate succeeds with a choice point if Goal has a choice point. Backtracking
returns the next chunk of (at most) N solutions. In addition to passing a plain integer for N,
a term of the form count(N) is accepted. Using count(X), the size of the next chunk can
be controlled using nb_setarg/3. The non-deterministic behaviour used to implement the
chunk option in pengines. Based on Ciao, but the Ciao version is deterministic. Portability
can be achieved by wrapping the goal in once/1. Below are three examples. The first
illustrates standard chunking of answers. The second illustrates that the chunk size can be
adjusted dynamically and the last illustrates that no choice point is left if Goal leaves no
choice-point after the last solution.

SWI-Prolog 8.0 Reference Manual

CHAPTER 4. BUILT-IN PREDICATES

bagof(+Template, :Goal, -Bag)

?— findnsols (5, I, between(l, 12, I), L).
L=1[1, 2, 3, 4, 51 ;
L= 1[6, 7, 8 9, 101 ;
L = [11, 12].
?— State = count (2),
findnsols (State, I, between(l, 12, I), L),
nb_setarg(l, State, 5).
State = count(5), L = [1, 2] ;
State = count(5), L = [3, 4, 5, 6, 7] ;
State = count(5), L = [8, 9, 10, 11, 12].
?- findnsols (4, I, between(l, 4, I), L).
L =11, 2, 3, 4].

[1SO]
Unify Bag with the alternatives of Template. If Goal has free variables besides the one sharing
with Template, bagof /3 will backtrack over the alternatives of these free variables, unifying
Bag with the corresponding alternatives of Template. The construct +Var” Goal tells bagof /3
not to bind Var in Goal. bagof /3 fails if Goal has no solutions.

The example below illustrates bagof /3 and the ~ operator. The variable bindings are printed
together on one line to save paper.

2 ?- listing(foo).

foo(a, b, c).

foo(a, b, d).

foo(b, ¢, e).

foo(b, c, f).

foo(c, c, g).

true.

3 ?- bagof(C, foo(A, B, C), Cs).

A =a, B=Db, C= G308, Cs = [c, dIl ;
A =Db, B=c¢, C= G308, Cs = [e, f] ;
A =c¢, B=c¢ C= G308, Cs = [g].

4 ?- bagof(C, A"foo(A, B, C), Cs).

A = G324, B = Db, C = G326, Cs = [c, d]
A = G324, B = ¢, C = G326, Cs = [e, £,
5 72—

setof(+7Template, +Goal, -Set)

[1SO]

Equivalent to bagof/ 3, but sorts the result using sort /2 to get a sorted list of alternatives

without duplicates.

SWI-Prolog 8.0 Reference Manual

4.31. FORALL 203

4.31 Forall

forall(:Cond, :Action) [semidet]
For all alternative bindings of Cond, Action can be proven. The example verifies that all arith-
metic statements in the given list are correct. It does not say which is wrong if one proves
wrong.

Result

:= Formula) .

?— forall (member (Result = Formula, [2 =1 + 1, 4 =2 %« 2]),

The predicate forall/2 is implemented as \+ (Cond, \+ Action), i.e., There is
no instantiation of Cond for which Action is false.. The use of double negation implies that
forall/2 does not change any variable bindings. It proves a relation. The forall/2 con-
trol structure can be used for its side-effects. E.g., the following asserts relations in a list into
the dynamic database:

?— forall (member (Child-Parent, ChildPairs),
assertz (child_of (Child, Parent))).

Using forall/2 as forall(Generator, SideEffect) is preferred over the classical failure
driven loop as shown below because it makes it explicit which part of the construct is the
generator and which part creates the side effects. Also, unexpected failure of the side effect
causes the construct to fail. Failure makes it evident that there is an issue with the code, while
a failure driven loop would succeed with an erroneous result.

(Generator,
SideEffect,
fail

; true

If your intent is to create variable bindings, the forall/2 control structure is inadequate.
Possibly you are looking for maplist/2, findall/3 or foreach/2.

4.32 Formatted Write

The current version of SWI-Prolog provides two formatted write predicates. The ‘writef’” family
(writef/1l,writef/2, swritef/3), is compatible with Edinburgh C-Prolog and should be con-
sidered deprecated. The ‘format’ family (format/1, format/2, format/3), was defined by
Quintus Prolog and currently available in many Prolog systems, although the details vary.

4.32.1 Writef

writef(+Arom) [deprecated]
Equivalentto writef (Atom, []). Seewritef/2 for details.

SWI-Prolog 8.0 Reference Manual

204

CHAPTER 4. BUILT-IN PREDICATES

writef(+ Format, +Arguments)
Formatted write. Format is an atom whose characters will be printed. Format may contain
certain special character sequences which specify certain formatting and substitution actions.
Arguments provides all the terms required to be output.

Escape sequences to generate a single special character:

\n
\1
\r
\t
AR
\'%

\nnn

Output a newline character (see alsonl/ [0, 1])

Output a line separator (same as \n)

Output a carriage return character (ASCII 13)

Output the ASCII character TAB (9)

The character \ is output

The character % is output

where (nnn) is an integer (1-3 digits); the character with
code (nnn) is output (NB : (nnn) is read as decimal)

[deprecated]

Note that \ 1, \nnn and \\ are interpreted differently when character escapes are in effect. See

section 2.16.1.

Escape sequences to include arguments from Arguments. Each time a % escape sequence is
found in Format the next argument from Arguments is formatted according to the specification.

o° o o oe oe oe o
s 3 O Q. Q = ct

o\°
[0)]

o° o° oo o°
Z Z Hh
= Q

Z
=

print/1 the next item (mnemonic: term)
write/1 the nextitem

writeqg/1 the nextitem

Write the term, ignoring operators. See also
write_term/2. Mnemonic: old Edinburgh
display/1

print/1 the next item (identical to $t)

Put the next item as a character (i.e., it is a character code)
Write the next item N times where N is the second item
(an integer)

Write the next item as a String (so it must be a list of char-
acters)

Perform a ttyflush/0 (no items used)

Write the next item Centered in N columns

Write the next item Left justified in N columns

Write the next item Right justified in NV columns. N is a
decimal number with at least one digit. The item must be
an atom, integer, float or string.

swritef(-String, +Format, +Arguments)
Equivalentto writef/2, but “writes” the result on String instead of the current output stream.

Example:

[deprecated]

SWI-Prolog 8.0 Reference Manual

4.32. FORMATTED WRITE 205

?— swritef (S, ’'%15L%w’, [’'Hello’, ’'World’]).

S = "Hello World"

swritef(-String, +Formart) [deprecated]
Equivalentto swritef (String, Format, []).

4.32.2 Format

The format family of predicates is the most versatile and portable”’ way to produce textual output.

format(+Format)
Defined as ‘format (Format) :— format (Format, []).’. See format/2 for de-
tails.

format(+Format, :Arguments)
Format is an atom, list of character codes, or a Prolog string. Arguments provides the arguments
required by the format specification. If only one argument is required and this single argument
is not a list, the argument need not be put in a list. Otherwise the arguments are put in a list.

Special sequences start with the tilde (~), followed by an optional numeric argument, option-
ally followed by a colon modifier (:), °® followed by a character describing the action to be
undertaken. A numeric argument is either a sequence of digits, representing a positive decimal
number, a sequence ‘(character), representing the character code value of the character (only
useful for ~t) or a asterisk (*), in which case the numeric argument is taken from the next argu-
ment of the argument list, which should be a positive integer. E.g., the following three examples
all pass 46 (.)to "t:

?— format (" "w “46t "w™72|"n’, ['Title’, ’'Page’]).
?— format (" "w "'.t "w™72|"n’, ['Title’, 'Page’]).
?— format (" "w “xt "w~72|"n’, ['Title’, 46, 'Page’]).

Numeric conversion (d, D, e, E, £, g and G) accept an arithmetic expression as argument. This
is introduced to handle rational numbers transparently (see section 4.27.2). The floating point
conversions allow for unlimited precision for printing rational numbers in decimal form. E.g.,
the following will write as many 3’s as you want by changing the ‘50°.

?— format (’ "50f’, [10 rdiv 3]).
3.33

~ Output the tilde itself.

a Output the next argument, which must be an atom. This option is equivalent to w, except
that it requires the argument to be an atom.

“TUnfortunately not covered by any standard.
%The colon modifiers is a SWI-Prolog extension, proposed by Richard O’Keefe.

SWI-Prolog 8.0 Reference Manual

206

CHAPTER 4. BUILT-IN PREDICATES

Interpret the next argument as a character code and add it to the output. This argument
must be a valid Unicode character code. Note that the actually emitted bytes are defined by
the character encoding of the output stream and an exception may be raised if the output
stream is not capable of representing the requested Unicode character. See section 2.19.1
for details.

Output next argument as a decimal number. It should be an integer. If a numeric argument
is specified, a dot is inserted argument positions from the right (useful for doing fixed
point arithmetic with integers, such as handling amounts of money).

The colon modifier (e.g., ~ : d) causes the number to be printed according to the locale of
the output stream. See section 4.23.

Same as d, but makes large values easier to read by inserting a comma every three digits
left or right of the dot. This is the same as ~ : d, but using the fixed English locale.
Output next argument as a floating point number in exponential notation. The numeric

argument specifies the precision. Default is 6 digits. Exact representation depends on the
C library function printf(). This function is invoked with the format % . (precision)e.

E Equivalent to e, but outputs a capital E to indicate the exponent.

f Floating point in non-exponential notation. The numeric argument defines the number of

FoQ @

H

digits right of the decimal point. If the colon modifier (:) is used, the float is formatted
using conventions from the current locale, which may define the decimal point as well as
grouping of digits left of the decimal point.

Floating point in e or f notation, whichever is shorter.
Floating point in E or f notation, whichever is shorter.
Ignore next argument of the argument list. Produces no output.

Emit a decimal number using Prolog digit grouping (the underscore, _). The argument
describes the size of each digit group. The default is 3. See also section 2.16.1. For
example:

?- A is 1<<100, format(’~10I’, [A]).
1_2676506002_2822940149_6703205376

Give the next argument to write_canonical/1.

Output a newline character.

N Only output a newline if the last character output on this stream was not a newline. Not

properly implemented yet.

Give the next argument to print /1.

g Give the next argument to writeqg/1.

Print integer in radix numeric argument notation. Thus ~16r prints its argument hex-
adecimal. The argument should be in the range [2, . .., 36]. Lowercase letters are used for
digits above 9. The colon modifier may be used to form locale-specific digit groups.

Same as r, but uses uppercase letters for digits above 9.

Output text from a list of character codes or a string (see string/1 and section 5.2)
from the next argument.”’

%The s modifier also accepts an atom for compatibility. This is deprecated due to the ambiguity of [].

SWI-Prolog 8.0 Reference Manual

4.32. FORMATTED WRITE 207

@ Interpret the next argument as a goal and execute it. Output written to the
current_output stream is inserted at this place. Goal is called in the module calling
format /3. This option is not present in the original definition by Quintus, but supported
by some other Prolog systems.

t All remaining space between 2 tab stops is distributed equally over ~t statements between
the tab stops. This space is padded with spaces by default. If an argument is supplied, it
is taken to be the character code of the character used for padding. This can be used to do
left or right alignment, centering, distributing, etc. See also ~ | and ~+ to set tab stops. A
tab stop is assumed at the start of each line.

| Set a tab stop on the current position. If an argument is supplied set a tab stop on the
position of that argument. This will cause all ~t’s to be distributed between the previous
and this tab stop.

+ Set a tab stop (as ~ |) relative to the last tab stop or the beginning of the line if no tab
stops are set before the ~+. This constructs can be used to fill fields. The partial format
sequence below prints an integer right-aligned and padded with zeros in 6 columns. The

. sequences in the example illustrate that the integer is aligned in 6 columns regardless
of the remainder of the format specification.

format (/... 7 |"'0t"d"6+...", [..., Integer, ...])

w Give the next argument to write/1.

W Give the next two arguments to write_term/2. For example,
format ("W’, [Term, [numbervars (true)]]). This option is SWI-Prolog
specific.

Example:

simple_statistics :-

<obtain statistics> % left to the user
format (! "tStatistics ™t~ 72| " n"n’),
format (Runtime: ~ ‘.t "2f£734] Inferences: “‘.t "D”72|"n’,

[RunT, Inf]),

will output

Statistics

Runtime:cciuiv.... 3.45 Inferences: 60, 345

format(+Output, + Format, :Arguments)
As format/2, but write the output on the given Output. The de-facto standard only allows
Output to be a stream. The SWI-Prolog implementation allows all valid arguments for
with_output_to/2.'% For example:

' Earlier versions defined s format /3. These predicates have been moved to the library backcomp.

SWI-Prolog 8.0 Reference Manual

208

CHAPTER 4. BUILT-IN PREDICATES

?— format (atom(A), '~“D’, [100000071).
A ="71,000,000"

4.32.3 Programming Format

format_predicate(+ Char, +Head)

If a sequence ~c (tilde, followed by some character) is found, the format/3 and friends
first check whether the user has defined a predicate to handle the format. If not, the built-in
formatting rules described above are used. Char is either a character code or a one-character
atom, specifying the letter to be (re)defined. Head is a term, whose name and arity are used
to determine the predicate to call for the redefined formatting character. The first argument
to the predicate is the numeric argument of the format command, or the atom default if
no argument is specified. The remaining arguments are filled from the argument list. The
example below defines ~T to print a timestamp in ISO8601 format (see format_time/3).
The subsequent block illustrates a possible call.

:— format_predicate(’'T’, format_time(_Arg,_Time)).

format_time (_Arg, Stamp) :-
must_be (number, Stamp),
format_time (current_output, ’'%$FT%$T%z’, Stamp).

?— get_time (Now),

format (" Now, it is "T™n’, [Now]).
Now, it is 2012-06-04T19:02:01+0200
Now = 1338829321.6620328.

current_format_predicate(?’Code, ?:Head)

True when ~Code is handled by the user-defined predicate specified by Head.

4.33 Global variables

Global variables are associations between names (atoms) and terms. They differ in various ways from
storing information using assert/1 or recorda/3.

e The value lives on the Prolog (global) stack. This implies that lookup time is independent of the

size of the term. This is particularly interesting for large data structures such as parsed XML
documents or the CHR global constraint store.

e They support both global assignment using nb_setval/2 and backtrackable assignment using

b_setval/2.

e Only one value (which can be an arbitrary complex Prolog term) can be associated to a variable

at a time.

SWI-Prolog 8.0 Reference Manual

4.33. GLOBAL VARIABLES 209

e Their value cannot be shared among threads. Each thread has its own namespace and values for
global variables.

e Currently global variables are scoped globally. We may consider module scoping in future
versions.

Both b_setval/2 and nb_setval/2 implicitly create a variable if the referenced name does
not already refer to a variable.

Global variables may be initialised from directives to make them available during the program
lifetime, but some considerations are necessary for saved states and threads. Saved states do not store
global variables, which implies they have to be declared with initialization/1 to recreate them
after loading the saved state. Each thread has its own set of global variables, starting with an empty
set. Using thread_initialization/1 to define a global variable it will be defined, restored
after reloading a saved state and created in all threads that are created affer the registration. Finally,
global variables can be initialised using the exception hook exception/3. The latter technique is
used by CHR (see chapter 9).

b_setval(+Name, +Value)
Associate the term Value with the atom Name or replace the currently associated value with
Value. If Name does not refer to an existing global variable, a variable with initial value [] is
created (the empty list). On backtracking the assignment is reversed.

b_getval(+Name, -Value)
Get the value associated with the global variable Name and unify it with Value. Note that this
unification may further instantiate the value of the global variable. If this is undesirable the
normal precautions (double negation or copy_term/2) must be taken. The b_getval/2
predicate generates errors if Name is not an atom or the requested variable does not exist.

nb_setval(+Name, +Value)
Associates a copy of Value created with duplicate_term/2 with the atom Name. Note that
this can be used to set an initial value other than [] prior to backtrackable assignment.

nb_getval(+Name, -Value)
The nb_getval/2 predicate is a synonym for b_getval/2, introduced for compatibility
and symmetry. As most scenarios will use a particular global variable using either non-
backtrackable or backtrackable assignment, using nb_getval/2 can be used to document
that the variable is non-backtrackable. Raises existence_error(variable, Name) if the
variable does not exist. Alternatively, nb_current/2 can used to query a global variable.
This version fails if the variable does not exist rather than raising an exception.

nb_linkval(+Name, +Value)
Associates the term Value with the atom Name without copying it. This is a fast special-
purpose variation of nb_setval/2 intended for expert users only because the semantics on
backtracking to a point before creating the link are poorly defined for compound terms. The
principal term is always left untouched, but backtracking behaviour on arguments is undone if
the original assignment was frailed and left alone otherwise, which implies that the history that
created the term affects the behaviour on backtracking. Consider the following example:

SWI-Prolog 8.0 Reference Manual

210 CHAPTER 4. BUILT-IN PREDICATES

demo_nb_linkval :-—
T = nice(N),
(N = world,
nb_linkval (myvar, T),
fail
; nb_getval (myvar, V),
writeln (V)

nb_current(?Name, ?Value)
Enumerate all defined variables with their value. The order of enumeration is undefined. Note
that nb_current /2 can be used as an alternative for nb_getval/2 to request the value of
a variable and fail silently if the variable does not exists.

nb_delete(+Name)
Delete the named global variable. Succeeds also if the named variable does not exist.

4.33.1 Compatibility of SWI-Prolog Global Variables

Global variables have been introduced by various Prolog implementations recently. The implemen-
tation of them in SWI-Prolog is based on hProlog by Bart Demoen. In discussion with Bart it was
decided that the semantics of hProlog nb_setwval/2, which is equivalent to nb_1inkval/2, is
not acceptable for normal Prolog users as the behaviour is influenced by how built-in predicates that
construct terms (read/ 1, =../2, etc.) are implemented.

GNU-Prolog provides a rich set of global variables, including arrays. Arrays can be implemented
easily in SWI-Prolog using functor/3 and setarg/3 due to the unrestricted arity of compound
terms.

4.34 Terminal Control

The following predicates form a simple access mechanism to the Unix termcap library to provide
terminal-independent I/O for screen terminals. These predicates are only available on Unix machines.
The SWI-Prolog Windows console accepts the ANSI escape sequences.

tty_get_capability(+Name, +Type, -Result)
Get the capability named Name from the termcap library. See termcap(5) for the capability
names. Type specifies the type of the expected result, and is one of string, number or
bool. String results are returned as an atom, number results as an integer, and bool results as
the atom on or of f£. If an option cannot be found, this predicate fails silently. The results are
only computed once. Successive queries on the same capability are fast.

tty_goto(+X, +Y)
Goto position (X,Y) on the screen. Note that the predicates line_count/2 and
line_position/2 will not have a well-defined behaviour while using this predicate.

SWI-Prolog 8.0 Reference Manual

4.35. OPERATING SYSTEM INTERACTION 211

tty_put(+Atom, +Lines)
Put an atom via the termcap library function tputs(). This function decodes padding information
in the strings returned by tty_get_capability/3 and should be used to output these
strings. Lines is the number of lines affected by the operation, or 1 if not applicable (as in
almost all cases).

tty_size(-Rows, -Columns)
Determine the size of the terminal. Platforms:

Unix If the system provides ioctl calls for this, these are used and tty_size/2 properly
reflects the actual size after a user resize of the window. The ioctl is issued on teh
file descriptor associated with the user_input stream. As a fallback, the system uses
tty_get_capability/3 using 1i and co capabilities. In this case the reported size
reflects the size at the first call and is not updated after a user-initiated resize of the termi-
nal.

Windows Getting the size of the terminal is provided for swipl-win.exe. The requested
value reflects the current size. For the multithreaded version the console that is associated
with the user_input stream is used.

4.35 Operating System Interaction

The predicates in this section provide basic access to the operating system that has been part of the
Prolog legacy tradition. Note that more advanced access to low-level OS features is provided by
several libaries from the c11ib package, notably library process, socket, unix and filesex.

shell(+ Command)
Equivalent to ‘shell (Command, 0)’. See shell/2 for details.

shell(+ Command, -Status)
Execute Command on the operating system. Command is given to the Bourne shell (/bin/sh).
Status is unified with the exit status of the command.

On Windows, shell/[1, 2] executes the command using the CreateProcess() API and waits
for the command to terminate. If the command ends with a & sign, the command is handed to
the WinExec() API, which does not wait for the new task to terminate. See also win_exec/2
and win_shell/2. Please note that the CreateProcess() API does not imply the Windows
command interpreter (cmd . exe and therefore commands that are built in the command inter-
preter can only be activated using the command interpreter. For example, a file can be compied
using the command below.

'?- shell(’cmd.exe /C copy filel.txt file2.txt’). |

Note that many of the operations that can be achieved using the shell built-in commands can
easily be achieved using Prolog primitives. See make directory/1, delete file/1,
rename_file/2, etc. The clib package provides £ilesex, implementing various high level
file operations such as copy_-file/2. Using Prolog primitives instead of shell commands
improves the portability of your program.

SWI-Prolog 8.0 Reference Manual

212 CHAPTER 4. BUILT-IN PREDICATES

The library process provides process_create/3 and several related primitives that sup-
port more fine-grained interaction with processes, including I/O redirection and management of
asynchronous processes.

getenv(+Name, -Value)
Get environment variable. Fails silently if the variable does not exist. Please note that environ-
ment variable names are case-sensitive on Unix systems and case-insensitive on Windows.

setenv(+Name, +Value)
Set an environment variable. Name and Value must be instantiated to atoms or integers. The
environment variable will be passed to shell/[0-2] and can be requested using getenv/2.
They also influence expand_file name/2. Environment variables are shared between
threads. Depending on the underlying C library, setenv/2 and unsetenv/1 may not be
thread-safe and may cause memory leaks. Only changing the environment once and before
starting threads is safe in all versions of SWI-Prolog.

unsetenv(+Name)
Remove an environment variable from the environment. Some systems lack the underlying
unsetenv() library function. On these systems unsetenv/1 sets the variable to the empty
string.

setlocale(+Category, -Old, +New)

Set/Query the locale setting which tells the C library how to interpret text files, write num-
bers, dates, etc. Category is one of all, collate, ctype, messages, monetary,
numeric or time. For details, please consult the C library locale documentation. See also
section 2.19.1. Please note that the locale is shared between all threads and thread-safe usage
of setlocale/3 is in general not possible. Do locale operations before starting threads or
thoroughly study threading aspects of locale support in your environment before using in multi-
threaded environments. Locale settings are used by format_time/3, collation_key/2
and locale_sort/2.

unix(+Command)
This predicate comes from the Quintus compatibility library and provides a partial imple-
mentation thereof. It provides access to some operating system features and unlike the name
suggests, is not operating system specific. Defined Command’s are below.

system(+Command)
Equivalent to calling shel11/1. Use for compatibility only.

shell(+ Command)
Equivalent to calling shel1/1. Use for compatibility only.

shell
Equivalent to calling she11/0. Use for compatibility only.

cd
Equivalent to calling working.directory/2 to the expansion (see
expand_file_name/2) of ~. For compatibility only.

cd(+Directory)
Equivalent to calling working_directory/2. Use for compatibility only.

SWI-Prolog 8.0 Reference Manual

4.35. OPERATING SYSTEM INTERACTION 213

argv(-Argv)
Unify Argv with the list of command line arguments provided to this Prolog run. Please
note that Prolog system arguments and application arguments are separated by —-.
Integer arguments are passed as Prolog integers, float arguments and Prolog floating
point numbers and all other arguments as Prolog atoms. New applications should use the
Prolog flag argv. See also the Prolog flag argv.

4.35.1 Windows-specific Operating System Interaction

The predicates in this section are only available on the Windows version of SWI-Prolog. Their use
is discouraged if there are portably alternatives. For example, win_exec/2 and win_shell/2 can
often be replaced by the more portable shel1/2 or the more powerful process_create/3.

win_exec(+Command, +Show)
Windows only. Spawns a Windows task without waiting for its completion. Show is one
of the Win32 SW_» constants written in lowercase without the SW_: hide maximize
minimize restore show showdefault showmaximized showminimized
showminnoactive showna shownoactive shownormal. In addition, iconic is a
synonym for minimize and normal for shownormal.

win_shell(+Operation, +File, +Show)
Windows only. Opens the document File using the Windows shell rules for doing so. Operation
is one of open, print or explore or another operation registered with the shell for the
given document type. On modern systems it is also possible to pass a URL as File, opening the
URL in Windows default browser. This call interfaces to the Win32 API ShellExecute(). The
Show argument determines the initial state of the opened window (if any). See win_exec/2
for defined values.

win_shell(+Operation, +File)
Same as win_shel1(Operation, File, normal)

win_registry_get_value(+Key, +Name, -Value)
Windows only. Fetches the value of a Windows registry key. Key is an atom formed as a
path name describing the desired registry key. Name is the desired attribute name of the key.
Value is unified with the value. If the value is of type DWORD, the value is returned as an
integer. If the value is a string, it is returned as a Prolog atom. Other types are currently
not supported. The default ‘root’ is HKEY_CURRENT_USER. Other roots can be specified
explicitly as HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE
or HKEY_USERS. The example below fetches the extension to use for Prolog files (see
README . TXT on the Windows version):

?— win_registry_get_value (
" HKEY_LOCAL_MACHINE/Software/SWI/Prolog’,
fileExtension,
Ext) .

Ext = pl

SWI-Prolog 8.0 Reference Manual

214 CHAPTER 4. BUILT-IN PREDICATES

win_folder(?Name, -Directory)
True if Name is the Windows ‘CSIDL’ of Directory. If Name is unbound, all known Windows
special paths are generated. Name is the CSIDL after deleting the leading CSIDL_ and
mapping the constant to lowercase. Check the Windows documentation for the function
SHGetSpecialFolderPath() for a description of the defined constants. This example extracts the
‘My Documents’ folder:

‘?— win_folder (personal, MyDocuments) .

‘MyDocuments = ’C:/Documents and Settings/Jjan/My Documents’

win_add_dll_directory(+AbsDir)
This predicate adds a directory to the search path for dependent DLL files. If possible, this
is achieved with win_add_dl1l_directory/2. Otherwise, $PATH% is extended with
the provided directory. AbsDir may be specified in the Prolog canonical syntax. See
prolog_to_os_filename/2. Note that use foreign_library/1 passes an abso-
lute path to the DLL if the destination DLL can be located from the specification using
absolute_file_name/3.

win_add_dll_directory(+AbsDir, -Cookie)
This predicate adds a directory to the search path for dependent DLL files. If the call is success-
ful it unifies Cookie with a handle that must be passed to win_remove_dl1l directory/1
to remove the directory from the search path. Error conditions:

e This predicate is available in the Windows port of SWI-Prolog starting from 6.3.8/6.2.6.

o This predicate fails if Windows does not yet support the underlying primitives. These are
available in recently patched Windows 7 systems and later.

o This predicate throws an acception if the provided path is invalid or the underlying Win-
dows API returns an error.

If open_shared.object/2 is passed an absolute path to a DLL on a Win-
dows installation that supports AddDIlIDirectory() and friends,'”! SWI-Prolog uses
LoadLibraryEx() with the flags LOAD_LIBRARY SEARCHDLL_LOAD DIR and
LOAD_LIBRARY_SEARCH_DEFAULT_DIRS. In this scenario, directories from %PATH$%
and not searched. Additional directories can be added using win_add_dl1l_directory/2.

win_remove_dll_directory(-Cookie)
Remove a DLL search directory installed using win_add_dl1 _directory/2.

4.35.2 Dealing with time and date

Representing time in a computer system is surprisingly complicated. There are a large number of
time representations in use, and the correct choice depends on factors such as compactness, resolution
and desired operations. Humans tend to think about time in hours, days, months, years or centuries.
Physicists think about time in seconds. But, a month does not have a defined number of seconds.

10Windows 7 with up-to-date patches or Windows 8.

SWI-Prolog 8.0 Reference Manual

4.35. OPERATING SYSTEM INTERACTION 215

Even a day does not have a defined number of seconds as sometimes a leap-second is introduced to
synchronise properly with our earth’s rotation. At the same time, resolution demands a range from
better than pico-seconds to millions of years. Finally, civilizations have a wide range of calendars.
Although there exist libraries dealing with most if this complexity, our desire to keep Prolog clean and
lean stops us from fully supporting these.

For human-oriented tasks, time can be broken into years, months, days, hours, minutes, seconds
and a timezone. Physicists prefer to have time in an arithmetic type representing seconds or frac-
tion thereof, so basic arithmetic deals with comparison and durations. An additional advantage of
the physicist’s approach is that it requires much less space. For these reasons, SWI-Prolog uses an
arithmetic type as its prime time representation.

Many C libraries deal with time using fixed-point arithmetic, dealing with a large but finite time
interval at constant resolution. In our opinion, using a floating point number is a more natural choice
as we can use a natural unit and the interface does not need to be changed if a higher resolution is
required in the future. Our unit of choice is the second as it is the scientific unit.'’> We have placed
our origin at 1970-1-1T0:0:0Z for compatibility with the POSIX notion of time as well as with older
time support provided by SWI-Prolog.

Where older versions of SWI-Prolog relied on the POSIX conversion functions, the current im-
plementation uses libtai to realise conversion between time-stamps and calendar dates for a period of
10 million years.

Time and date data structures

We use the following time representations

TimeStamp
A TimeStamp is a floating point number expressing the time in seconds since the Epoch at
1970-1-1.

date(Y,M,D,H,Mn,S,Off,TZ,DST)

We call this term a date-time structure. The first 5 fields are integers expressing the year,
month (1..12), day (1..31), hour (0..23) and minute (0..59). The S field holds the seconds as a
floating point number between 0.0 and 60.0. Off is an integer representing the offset relative to
UTC in seconds, where positive values are west of Greenwich. If converted from local time
(see stamp_date_time/3), TZ holds the name of the local timezone. If the timezone is not
known, 7Z is the atom —. DST is true if daylight saving time applies to the current time,
false if daylight saving time is relevant but not effective, and — if unknown or the timezone
has no daylight saving time.

date(Y,M,D)
Date using the same values as described above. Extracted using date_time_value/3.

time(H,Mn,S)
Time using the same values as described above. Extracted using date_time_value/3.

12Using Julian days is a choice made by the Eclipse team. As conversion to dates is needed for a human readable notation
of time and Julian days cannot deal naturally with leap seconds, we decided for the second as our unit.

SWI-Prolog 8.0 Reference Manual

http://cr.yp.to/libtai.html

216 CHAPTER 4. BUILT-IN PREDICATES

Time and date predicates

get_time(-TimeStamp)
Return the current time as a TimeStamp. The granularity is system-dependent. See sec-
tion 4.35.2.

stamp_date_time(+TimeStamp, -DateTime, +TimeZone)
Convert a TimeStamp to a DateTime in the given timezone. See section 4.35.2 for details on
the data types. TimeZone describes the timezone for the conversion. It is one of local to
extract the local time, UTC’ to extract a UTC time or an integer describing the seconds west
of Greenwich.

date_time_stamp(+DateTime, -TimeStamp)
Compute the timestamp from a date/9 term. Values for month, day, hour, minute or second
need not be normalized. This flexibility allows for easy computation of the time at any given
number of these units from a given timestamp. Normalization can be achieved following this
call with stamp_date_t ime/ 3. This example computes the date 200 days after 2006-7-14:

?— date_time_stamp (date(2006,7,214,0,0,0,0,-,-), Stamp),
stamp_date_time (Stamp, D, 0),
date_time_value (date, D, Date).

Date = date (2007, 1, 30)

When computing a time stamp from a local time specification, the UTC offset (arg 7), TZ (arg 8)
and DST (arg 9) argument may be left unbound and are unified with the proper information.
The example below, executed in Amsterdam, illustrates this behaviour. On the 25th of March
at 01:00, DST does not apply. At 02.00, the clock is advanced by one hour and thus both 02:00
and 03:00 represent the same time stamp.

1 ?- date_time_stamp (date(2012,3,25,1,0,0,UTCOff,TZ,DST),
Stamp) .

UTCOff = -3600,

TZ = 'CET’,

DST = false,

Stamp = 1332633600.0.

2 ?- date_time_stamp(date(2012,3,25,2,0,0,UTCOff,TZ,DST),
Stamp) .

UTCOff = -7200,

Tz = ’'CEST’,

DST = true,

Stamp = 1332637200.0.

3 ?- date_time_stamp(date(2012,3,25,3,0,0,UTCOff,TZ,DST),
Stamp) .

UTCOff = -7200,

Tz = "CEST’,

SWI-Prolog 8.0 Reference Manual

4.35. OPERATING SYSTEM INTERACTION 217

DST
Stamp = 1332637200.0.
| |

= true, ‘

Note that DST and offset calculation are based on the POSIX function mktime(). If mktime()
returns an error, a representation_error dst is generated.

date_time_value(’Key, +DateTime, ?Value)
Extract values from a date/9 term. Provided keys are:

key value

year Calendar year as an integer

month Calendar month as an integer 1..12
day Calendar day as an integer 1..31
hour Clock hour as an integer 0..23
minute Clock minute as an integer 0..59
second Clock second as a float 0.0..60.0
utc_offset Offset to UTC in seconds (positive is west)
time_zone Name of timezone; fails if unknown
daylight_saving Bool (true) if dstis in effect

date Term date(Y,M,D)

time Term t ime(H,M,S)

format_time(+Out, +Format, +StampOrDateTime)
Modelled after POSIX strftime(), using GNU extensions. QOut is a destination as specified
with with_output_to/2. Format is an atom or string with the following conversions.

Conversions start with a percent (%) character.

103 StampOrDateTime is either a numeric

time-stamp, a term date(Y,M,D,H,M,S,0,TZ,DST) or a term date(Y¥,M,D).

a

g o O Q

The abbreviated weekday name according to the current locale. Use format_time/4
for POSIX locale.

The full weekday name according to the current locale. Use format_t ime /4 for POSIX
locale.

The abbreviated month name according to the current locale. Use format_time/4 for
POSIX locale.

The full month name according to the current locale. Use format_time/4 for POSIX
locale.

The preferred date and time representation for the current locale.
The century number (year/100) as a 2-digit integer.
The day of the month as a decimal number (range 01 to 31).

Equivalent to %m/%d/%y. (For Americans only. Americans should note that in other
countries %d/%m/%y is rather common. This means that in an international context this
format is ambiguous and should not be used.)

1% Descriptions taken from Linux Programmer’s Manual

SWI-Prolog 8.0 Reference Manual

218

CHAPTER 4. BUILT-IN PREDICATES

Like %d, the day of the month as a decimal number, but a leading zero is replaced by a
space.

Modifier. Not implemented.

£ Number of microseconds. The f can be prefixed by an integer to print the desired number

of digits. E.g., $3£ prints milliseconds. This format is not covered by any standard, but
available with different format specifiers in various incarnations of the strftime() function.

Equivalent to %Y-%m-%d (the ISO 8601 date format).
Like %G, but without century, i.e., with a 2-digit year (00-99).

The ISO 8601 year with century as a decimal number. The 4-digit year corresponding to
the ISO week number (see % V). This has the same format and value as %y, except that if
the ISO week number belongs to the previous or next year, that year is used instead.

The ISO 8601:1988 week number of the current year as a decimal number, range 01 to
53, where week 1 is the first week that has at least 4 days in the current year, and with
Monday as the first day of the week. See also %U and %W.

h Equivalent to %b.

H The hour as a decimal number using a 24-hour clock (range 00 to 23).

I The hour as a decimal number using a 12-hour clock (range 01 to 12).

3

=

The day of the year as a decimal number (range 001 to 366).

The hour (24-hour clock) as a decimal number (range 0 to 23); single digits are preceded
by a blank. (See also %H.)

The hour (12-hour clock) as a decimal number (range 1 to 12); single digits are preceded
by a blank. (See also %I.)

The month as a decimal number (range 01 to 12).

The minute as a decimal number (range 00 to 59).

n A newline character.

@)

Modifier to select locale-specific output. Not implemented.

p Either ‘AM’ or ‘PM’ according to the given time value, or the corresponding strings for

t
T

the current locale. Noon is treated as ‘pm’ and midnight as ‘am’.'**

Like %p but in lowercase: ‘am’ or ‘pm’ or a corresponding string for the current locale.

The time in a.m. or p.m. notation. In the POSIX locale this is equivalent to ‘%I:%M:%S

’

op’.

The time in 24-hour notation (%H:%M). For a version including the seconds, see %T
below.

The number of seconds since the Epoch, i.e., since 1970-01-01 00:00:00 UTC.

The second as a decimal number (range 00 to 60). (The range is up to 60 to allow for
occasional leap seconds.)

A tab character.

The time in 24-hour notation (%H:%M:%S).

1%Despite the above clain, some locales yield am or pm in lower case.

SWI-Prolog 8.0 Reference Manual

4.35. OPERATING SYSTEM INTERACTION 219

u The day of the week as a decimal, range 1 to 7, Monday being 1. See also %w.

U The week number of the current year as a decimal number, range 00 to 53, starting with
the first Sunday as the first day of week 01. See also %V and %W.

w The day of the week as a decimal, range 0 to 6, Sunday being 0. See also %u.

=

The week number of the current year as a decimal number, range 00 to 53, starting with
the first Monday as the first day of week O1.

The preferred date representation for the current locale without the time.
The preferred time representation for the current locale without the date.

The year as a decimal number without a century (range 00 to 99).

KoORKX X

The year as a decimal number including the century.

The timezone as hour offset from GMT using the format HHmm. Required to emit
RFC822-conforming dates (using ’ $a, %d %b $Y %T %z’). Our implementation
supports % : z, which modifies the output to HH:mm as required by XML-Schema. Note
that both notations are valid in ISO 8601. The sequence % : z is compatible to the GNU
date(1) command.

N

The timezone or name or abbreviation.

+ N

The date and time in date(1) format.

A literal ‘%’ character.

o\°

The table below gives some format strings for popular time representations. RFC1123
is used by HTTP. The full implementation of http_timestamp/2 as available from
http/http_header is here.

http_timestamp (Time, Atom) :-
stamp_date_time (Time, Date, 'UTC’),
format_time (atom (Atom),
"$a, %d %$b %Y %T GMT’,
Date, posix).

Standard Format string
xsd "SFT$TS: 2z’
ISO8601 ' SFTST%z’

RFC822 "$a, %d %b %Y 3T %z’
RFC1123 ’%a, %d %b %Y %T GMT’

format_time(+Out, +Format, +StampOrDateTime, +Locale)
Format time given a specified Locale. This predicate is a work-around for lacking proper
portable and thread-safe time and locale handling in current C libraries. In its current
implementation the only value allowed for Locale is posix, which currently only modifies
the behaviour of the a, A, b and B format specifiers. The predicate is used to be able to emit
POSIX locale week and month names for emitting standardised time-stamps such as REC1123.

parse_time(+Text, -Stamp)
Same as parse_t ime(Text, _Format, Stamp). See parse_time/3.

SWI-Prolog 8.0 Reference Manual

220 CHAPTER 4. BUILT-IN PREDICATES

parse_time(+7ext, ?Format, -Stamp)
Parse a textual time representation, producing a time-stamp. Supported formats for 7ext are
in the table below. If the format is known, it may be given to reduce parse time and avoid
ambiguities. Otherwise, Format is unified with the format encountered.

Name Example

rfc_1123 | Fri, 08 Dec 2006 15:29:44 GMT
Fri, 08 Dec 2006 15:29:44 +0000
is0_.8601 | 2006-12-08T17:29:44+02:00
20061208T172944+0200
2006-12-08T15:29%2

2006-12-08

20061208

2006-12

2006-W49-5

2006-342

day_of_the_week(+Date,-DayOfThe Week)
Computes the day of the week for a given date. Date = date (Year, Month, Day) . Days of
the week are numbered from one to seven: Monday = 1, Tuesday =2, ..., Sunday = 7.

4.35.3 Controlling the swipl-win.exe console window

The Windows executable swipl-win.exe console has a number of predicates to control the appear-
ance of the console. Being totally non-portable, we do not advise using it for your own application,
but use XPCE or another portable GUI platform instead. We give the predicates for reference here.

window_title(-Old, +New)
Unify Old with the title displayed in the console and change the title to New.'?

win_window_pos(+ListOfOptions)
Interface to the MS-Windows SetWindowPos() function, controlling size, position and stacking
order of the window. ListOfOptions is a list that may hold any number of the terms below:

size(W, H)
Change the size of the window. W and H are expressed in character units.
position(X, Y)
Change the top-left corner of the window. The values are expressed in pixel units.
zorder(ZOrder)
Change the location in the window stacking order. Values are bottom, top, topmost
and notopmost. Topmost windows are displayed above all other windows.

show(Bool)
If t rue, show the window, if £alse hide the window.

activate
If present, activate the window.

%SBUG: This predicate should have been called win_window_tit le for consistent naming.

SWI-Prolog 8.0 Reference Manual

4.36. FILE SYSTEM INTERACTION 221

win_has_menu
True if win_insert menu/2 and win_insert menu_item/4 are present.

win_insert_menu(+Label, +Before)
Insert a new entry (pulldown) in the menu. If the menu already contains this entry, nothing is
done. The Label is the label and, using the Windows convention, a letter prefixed with & is
underlined and defines the associated accelerator key. Before is the label before which this one
must be inserted. Using — adds the new entry at the end (right). For example, the call below
adds an Application entry just before the Help menu.

‘win_insert_menu (" &Application’, ’&Help’) ‘

win_insert_menu_item(+Pulldown, +Label, +Before, :Goal)
Add an item to the named Pulldown menu. Label and Before are handled as in
win_insert_menu/2, but the label — inserts a separator. Goal is called if the user
selects the item.

4.36 File System Interaction

access_file(+File, +Mode)
True if File exists and can be accessed by this Prolog process under mode Mode. Mode is one
of the atoms read, write, append, exist, none or execute. File may also be the name
of a directory. Fails silently otherwise. access_file (File, none) simply succeeds
without testing anything.

If Mode is write or append, this predicate also succeeds if the file does not exist and the
user has write access to the directory of the specified location.

The bahaviour is backed up by the POSIX access() API. The Windows replacement (_waccess())
returns incorrect results because it does not consider ACLs (Access Control Lists). The Prolog
flag win_file_access_check may be used to control the level of checking performed by
Prolog. Please note that checking access never provides a guarantee that a subsequent open
succeeds without errors due to inherent concurrency in file operations. It is generally more
robust to try and open the file and handle possible exceptions. See open/4 and catch/3.

exists_file(+File)
True if File exists and is a regular file. This does not imply the user has read or write access to
the file. See also exists_directory/1 and access_file/2.

file_directory_name(+File, -Directory)
Extracts the directory part of File. This predicate removes the longest match for the regular

expression /x [~/ 1+ /*$. If the result is empty it binds Directory to / if the first character of
Fileis / and . otherwise. The behaviour is consistent with the POSIX dirname program.'®

See also directory_-file_path/3 from filesex. The system ensures that for every
valid Path using the Prolog (POSIX) directory separators, following is true on systems with a
sound implementation of same_file/2.!%” See also prolog_to_os_filename/2.

106Before SWI-Prolog 7.7.13 trailing / where not removed, translation /a/b/ into /a/b. Volker Wysk pointed at this
incorrect behaviour.
0n some systems, Path and Path2 refer to the same entry in the file system, but same_file/2 may fail.

SWI-Prolog 8.0 Reference Manual

222 CHAPTER 4. BUILT-IN PREDICATES

file_directory_name (Path, Dir),
file_base_name (Path, File),
directory_file_path(Dir, File, Path2),
same_file (Path, Path2).

file_base_name(+Path, -File)
Extracts the file name part from a path. Similarto file directory_name/2 the extraction
is based on the regex /% ([~/1+*)/*$, now capturing the non-/ segment. If the segment
is empty it unifies File with / if Path starts with / and the empty atom (’ ’) otherwise. The

behaviour is consistent with the POSIX basename program.'%®

same_file(+Filel, +File2)
True if both filenames refer to the same physical file. That is, if Filel and File2 are the same
string or both names exist and point to the same file (due to hard or symbolic links and/or
relative vs. absolute paths). On systems that provide stat() with meaningful values for st _dev
and st_inode, same_file/2 is implemented by comparing the device and inode identifiers.
On Windows, same_file/2 compares the strings returned by the GetFullPathName() system
call.

exists_directory(+Directory)
True if Directory exists and is a directory. This does not imply the user has read, search or
write permission for the directory.

delete_file(+File)
Remove File from the file system.

rename_file(+Filel, +File2)
Rename Filel as File2. The semantics is compatible to the POSIX semantics of the rename()
system call as far as the operating system allows. Notably, if File2 exists, the operation
succeeds (except for possible permission errors) and is afomic (meaning there is no window
where File2 does not exist).

size_file(+File, -Size)
Unify Size with the size of File in bytes.

time_file(+File, -Time)
Unify the last modification time of File with Time. Time is a floating point number expressing
the seconds elapsed since Jan 1, 1970. See also convert _time/[2, 8] and get_time/1.

absolute_file_name(+File, -Absolute)
Expand a local filename into an absolute path. The absolute path is canonicalised: references to
. and . . are deleted. This predicate ensures that expanding a filename returns the same abso-
lute path regardless of how the file is addressed. SWI-Prolog uses absolute filenames to register
source files independent of the current working directory. See also absolute_file name/3
and expand_file_name/2.

1% Before SWI-Prolog 7.7.13, if argPath ended with a / File was unified with the empty atom.

SWI-Prolog 8.0 Reference Manual

4.36. FILE SYSTEM INTERACTION 223

absolute_file_name(+Spec, -Absolute, +Options)
Convert the given file specification into an absolute path. Spec is a term Alias(Relative) (e.g.,
(library (lists)), a relative filename or an absolute filename. The primary intention of
this predicate is to resolve files specified as Alias(Relative). Option is a list of options to guide
the conversion:

extensions(ListOfExtensions)
List of file extensions to try. Default is ’7'. For each extension,
absolute_file name/3 will first add the extension and then verify the condi-
tions imposed by the other options. If the condition fails, the next extension on the list is
tried. Extensions may be specified both as . ext or plain ext.

relative_to(+ FileOrDir)
Resolve the path relative to the given directory or the directory holding the given
file. Without this option, paths are resolved relative to the working directory (see
working. directory/2) or, if Spec is atomic and absolute_file name/ [2, 3]
is executed in a directive, it uses the current source file as reference.

access(Mode)
Imposes the condition access_file(File, Mode). Mode is one of read, write, append,
execute, exist or none. See also access_file/2.

file_type(Type)
Defines extensions. Current mapping: txt implies [’ ’], prolog implies [’ .pl’,
"71, executable implies [’ .so’, '’]1, glf implies [’ .glf’, '’] and
directory implies [/’]. The file type source is an alias for prolog for com-
patibility with SICStus Prolog. See also prolog_file_type/2. This predicate only
returns non-directories, unless the option £ile_type(directory) is specified.

file_errors(fail/error)
If error (default), throw an existence_error exception if the file cannot be found.
If fail, stay silent.'””

solutions(first/all)
If £irst (default), the predicate leaves no choice point. Otherwise a choice point will be
left and backtracking may yield more solutions.

expand(Boolean)
If true (default is false) and Spec is atomic, call expand_file_name/2 followed
by member/2 on Spec before proceeding. This is a SWI-Prolog extension intended to
minimise porting effort after SWI-Prolog stopped expanding environment variables and
the ~ by default. This option should be considered deprecated. In particular the use of
wildchart patterns such as should be avoided.

The Prolog flag verbose_file_search can be set to true to help debugging Prolog’s
search for files.

This predicate is derived from Quintus Prolog. In Quintus Prolog, the argument order was
absolute_file_name(+Spec, +Options, -Path). The argument order has been changed for
compatibility with ISO and SICStus. The Quintus argument order is still accepted.

199Sjlent operation was the default up to version 3.2.6.

SWI-Prolog 8.0 Reference Manual

224 CHAPTER 4. BUILT-IN PREDICATES

is_absolute_file_name(+ File)
True if File specifies an absolute path name. On Unix systems, this implies the path starts
with a /’. For Microsoft-based systems this implies the path starts with (lerter):. This
predicate is intended to provide platform-independent checking for absolute paths. See also
absolute_file name/2 and prolog_to_os_filename/2.

file_name_extension(?’Base, ?Extension, ?Name)
This predicate is used to add, remove or test filename extensions. The main reason for its
introduction is to deal with different filename properties in a portable manner. If the file system
is case-insensitive, testing for an extension will also be done case-insensitive. Extension may
be specified with or without a leading dot (.). If an Extension is generated, it will not have a
leading dot.

directory_files(+Directory, -Entries)
Unify Entries with a list of entries in Directory. Each member of Entries is an atom denoting an
entry relative to Directory. Entries contains all entries, including hidden files and, if supplied
by the OS, the special entries . and . .. See also expand_file_name/2.'""

expand_file_name(+ WildCard, -List)
Unify List with a sorted list of files or directories matching WildCard. The normal Unix wild-
card constructs ‘?°, ‘+”, ‘[...]” and {. ..} are recognised. The interpretation of ‘{. ..}’
is slightly different from the C shell (csh(1)). The comma-separated argument can be arbitrary
patterns, including ‘{. . .} patterns. The empty pattern is legal as well: ‘\ { .p1, \'}” matches
either ‘. p1’ or the empty string.

If the pattern contains wildcard characters, only existing files and directories are returned. Ex-
panding a ‘pattern’ without wildcard characters returns the argument, regardless of whether or
not it exists.

Before expanding wildcards, the construct \$\arg{var} is expanded to the value of the
environment variable var, and a possible leading ~ character is expanded to the user’s home
directory.'!!

prolog_to_os_filename(?PrologPath, ?OsPath)
Convert between the internal Prolog path name conventions and the operating system path
name conventions. The internal conventions follow the POSIX standard, which implies that
this predicate is equivalent to =/2 (unify) on POSIX (e.g., Unix) systems. On Windows systems
it changes the directory separator from \ into /.

read_link(+File, -Link, -Target)
If File points to a symbolic link, unify Link with the value of the link and Target to the file the
link is pointing to. Target points to a file, directory or non-existing entry in the file system, but
never to a link. Fails if File is not a link. Fails always on systems that do not support symbolic
links.

"0This predicate should be considered a misnomer because it returns entries rather than files. We stick to this name for
compatibility with, e.g., SICStus, Ciao and YAP.

"On Windows, the home directory is determined as follows: if the environment variable HOME exists, this is used. If
the variables HOMEDRIVE and HOMEPATH exist (Windows-NT), these are used. At initialisation, the system will set the
environment variable HOME to point to the SWI-Prolog home directory if neither HOME nor HOMEPATH and HOMEDRIVE
are defined.

SWI-Prolog 8.0 Reference Manual

4.36. FILE SYSTEM INTERACTION 225

tmp_file(+Base, -TmpName) [deprecated]
Create a name for a temporary file. Base is an identifier for the category of file. The TmpName
is guaranteed to be unique. If the system halts, it will automatically remove all created
temporary files. Base is used as part of the final filename. Portable applications should limit
themselves to alphanumeric characters.

Because it is possible to guess the generated filename, attackers may create the filesystem entry
as a link and possibly create a security issue. New code should use tmp_file_stream/3.

tmp _file_stream(+Encoding, -FileName, -Stream)

tmp_file_stream(-FileName, -Stream, +Options)
Create a temporary filename FileName, open it for writing and unify Stream with the output
stream. If the OS supports it, the created file is only accessible to the current user and the file
is created using the open()-flag O_EXCL, which guarantees that the file did not exist before this
call. The following options are processed:

encoding(+FEncoding)
Encoding of Stream. Default is the value of the Prolog flag encoding. The value
binary opens the file in binary mode.

extension(+Ext)
Ensure the created file has the given extension. Default is no extension. Using an exten-
sion may be necessary to run external programs on the file.

This predicate is a safe replacement of tmp_file/2. Note that in those cases where the
temporary file is needed to store output from an external command, the file must be closed
first. E.g., the following downloads a file from a URL to a temporary file and opens the file for
reading (on Unix systems you can delete the file for cleanup after opening it for reading):

open_url (URL, In) :-
tmp_file stream(text, File, Stream),
close (Stream),
process_create (curl, ['-o’, File, URL], [1),
open(File, read, In),
delete_file(File). % Unix-only

Temporary files created using this call are removed if the Prolog process terminates gracefully.
Calling delete_file/1 using FileName removes the file and removes the entry from the
administration of files-to-be-deleted.

make_directory(+Directory)
Create a new directory (folder) on the filesystem. Raises an exception on failure. On Unix
systems, the directory is created with default permissions (defined by the process umask
setting).

delete_directory(+Directory)
Delete directory (folder) from the filesystem. Raises an exception on failure. Please note that
in general it will not be possible to delete a non-empty directory.

SWI-Prolog 8.0 Reference Manual

226 CHAPTER 4. BUILT-IN PREDICATES

working_directory(-Old, +New)
Unify Old with an absolute path to the current working directory and change working directory
to New. Use the pattern working_directory(CWD, CWD) to get the current directory. See
also absolute file name/2 and chdir/1.!"” Note that the working directory is shared
between all threads.

chdir(+Path)
Compatibility predicate. New code should use working._directory/2.

4.37 User Top-level Manipulation

break
Recursively start a new Prolog top level. This Prolog top level shares everything from the
environment it was started in. Debugging is switched off on entering a break and restored on
leaving one. The break environment is terminated by typing the system’s end-of-file character
(control-D). If that is somehow not functional, the term end_of_file. can be entered to
return from the break environment. If the -t toplevel command line option is given, this
goal is started instead of entering the default interactive top level (prolog/0).

Notably the gui based versions (swipl-win on Windows and MacOS) provide the menu
Run/New thread that opens a new toplevel that runs concurrently with the initial toplevel.
The concurrent toplevel can be used to examine the program, in particular global dy-
namic predicates. It can not access global variables or thread-local dynamic predicates (see
thread_local/1) of the main thread.

abort
Abort the Prolog execution and restart the top level. If the -t toplevel command line
option is given, this goal is restarted instead of entering the default interactive top level.

Aborting is implemented by throwing the reserved exception ’ Saborted’. This exception
can be caught using catch/ 3, but the recovery goal is wrapped with a predicate that prunes
the choice points of the recovery goal (i.e., as once/1) and re-throws the exception. This is
illustrated in the example below, where we press control-C and ‘a’. See also section 4.11.1.

‘?— catch ((repeat, fail), E, true). ‘
“CAction (h for help) ? abort |

o

% Execution Aborted

halt [1SO]
Terminate Prolog execution. This is the same as halt(0). See halt /1 for details.

halt(+Status) [150]
Terminate Prolog execution with Status. This predicate calls PL_halt () which preforms the
following steps:

1. Set the Prolog flag exit _status to Status.

2BUG: Some of the file /O predicates use local filenames. Changing directory while file-bound streams are open causes
wrong results on telling/1, seeing/1 and current_stream/3.

SWI-Prolog 8.0 Reference Manual

4.38. CREATING A PROTOCOL OF THE USER INTERACTION 227

2. Call all hooks registered using at _halt /1. If Status equals O (zero), any of these hooks
calls cancel_halt /1, termination is cancelled.

3. Call all hooks registered using PL_at _halt (). Inthe future, if any of these hooks returns
non-zero, termination will be cancelled. Currently, this only prints a warning.

4. Perform the following system cleanup actions:

e Cancel all threads, calling thread_at_exit/1 registered termination hooks.
Threads not responding within 1 second are cancelled forcefully.

Flush I/O and close all streams except for standard 1/O.

Reset the terminal if its properties were changed.

Remove temporary files and incomplete compilation output.

Reclaim memory.

5. Call exit(Status) to terminate the process

prolog
This goal starts the default interactive top level. Queries are read from the stream user_input.
See also the Prolog flag history. The prolog/0 predicate is terminated (succeeds) by
typing the end-of-file character (typically control-D).

The following two hooks allow for expanding queries and handling the result of a query. These
hooks are used by the top level variable expansion mechanism described in section 2.8.

expand_query(+Query, -Expanded, +Bindings, -ExpandedBindings)
Hook in module user, normally not defined. Query and Bindings represents the query read
from the user and the names of the free variables as obtained using read_term/3. If this
predicate succeeds, it should bind Expanded and ExpandedBindings to the query and bindings
to be executed by the top level. This predicate is used by the top level (prolog/0). See also
expand_answer/2 and term_expansion/2.

expand_answer(+Bindings, -ExpandedBindings)
Hook in module user, normally not defined. Expand the result of a successfully executed
top-level query. Bindings is the query (Name) = (Value) binding list from the query.
ExpandedBindings must be unified with the bindings the top level should print.

4.38 Creating a Protocol of the User Interaction

SWI-Prolog offers the possibility to log the interaction with the user on a file.''* All Prolog interac-
tion, including warnings and tracer output, are written to the protocol file.

protocol(+File)
Start protocolling on file File. If there is already a protocol file open, then close it first. If File
exists it is truncated.

protocola(+File)
Equivalent to protocol/1, but does not truncate the File if it exists.

113 A similar facility was added to Edinburgh C-Prolog by Wouter Jansweijer.

SWI-Prolog 8.0 Reference Manual

228 CHAPTER 4. BUILT-IN PREDICATES

noprotocol
Stop making a protocol of the user interaction. Pending output is flushed on the file.

protocolling(-File)
True if a protocol was started with protocol/1 or protocola/1 and unifies File with the
current protocol output file.

4.39 Debugging and Tracing Programs

This section is a reference to the debugger interaction predicates. A more use-oriented overview of
the debugger is in section 2.9.

If you have installed XPCE, you can use the graphical front-end of the tracer. This front-end is
installed using the predicate guitracer/0.

trace
Start the tracer. trace/0 itself cannot be seen in the tracer. Note that the Prolog top level
treats t race/ 0 special; it means ‘trace the next goal’.

tracing
True if the tracer is currently switched on. t racing/0 itself cannot be seen in the tracer.

notrace
Stop the tracer. not race/ 0 itself cannot be seen in the tracer.

guitracer
Installs hooks (see prolog_trace_interception/4) into the system that redirect tracing
information to a GUI front-end providing structured access to variable bindings, graphical
overview of the stack and highlighting of relevant source code.

noguitracer
Revert back to the textual tracer.

trace(+Pred)
Equivalent to trace (Pred, +all).

trace(+Pred, +Ports)
Put a trace point on all predicates satisfying the predicate specification Pred. Ports is a list
of port names (call, redo, exit, fail). The atom all refers to all ports. If the port is
preceded by a — sign, the trace point is cleared for the port. If it is preceded by a +, the trace
point is set.

The predicate t race/2 activates debug mode (see debug/0). Each time a port (of the 4-
port model) is passed that has a trace point set, the goal is printed as with trace/0. Unlike
trace/0, however, the execution is continued without asking for further information. Exam-

ples:
?- trace(hello). Trace all ports of hello with any arity in any mod-
ule.
?- trace(foo/2, +fail). Trace failures of foo/2 in any module.
?- trace(bar/1, -all). Stop tracing bar/1.

SWI-Prolog 8.0 Reference Manual

4.39. DEBUGGING AND TRACING PROGRAMS 229

The predicate debugging/0 shows all currently defined trace points.

notrace(:Goal)

Call Goal, but suspend the debugger while Goal is executing. The current implementation cuts
the choice points of Goal after successful completion. See once/1. Later implementations
may have the same semantics as call/1.

debug

Start debugger. In debug mode, Prolog stops at spy and trace points, disables last-call optimi-
sation and aggressive destruction of choice points to make debugging information accessible.
Implemented by the Prolog flag debug.

Note that the min_free parameter of all stacks is enlarged to 8 K cells if debugging is switched
off in order to avoid excessive GC. GC complicates tracing because it renames the _G(NNN)
variables and replaces unreachable variables with the atom <garbage_collected>. Call-
ing nodebug/ 0 does not reset the initial free-margin because several parts of the top level and
debugger disable debugging of system code regions. See also set_prolog._stack/2.

nodebug

Stop debugger. Implemented by the Prolog flag debug. See also debug/0.

debugging

Print debug status and spy points on current output stream. See also the Prolog flag debug.

Spy(+Pred)

Put a spy point on all predicates meeting the predicate specification Pred. See section 4.5.

nospy(+Pred)

Remove spy point from all predicates meeting the predicate specification Pred.

nospyall

Remove all spy points from the entire program.

leash(?Ports)

Set/query leashing (ports which allow for user interaction). Ports is one of +Name, -Name,
?Name or a list of these. +Name enables leashing on that port, -Name disables it and ?Name
succeeds or fails according to the current setting. Recognised ports are call, redo, exit,
fail and unify. The special shorthand all refers to all ports, full refers to all ports
except for the unify port (default). half refers to the call, redo and fail port.

visible(+ Ports)

Set the ports shown by the debugger. See 1eash/1 for a description of the Ports specification.
Defaultis full.

unknown(-Old, +New)

Edinburgh-Prolog compatibi