ERLANG

STDLIB

Copyright © 1997-2019 Ericsson AB. All Rights Reserved.
STDLIB 3.8.2.2
November 20, 2019

Copyright © 1997-2019 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

November 20, 2019

1.1 Introduction

1 STDLIB User's Guide

1.1 Introduction

1.1.1 Scope

The Standard Erlang Libraries application, STDLIB, is mandatory in the sense that the minimal system based on
Erlang/OTP consists of STDLIB and Kernel.

STDLIB contains the following functional aress:

e Erlang shell

e Command interface

e Query interface

* Interfaceto standard Erlang /O servers

« Interfaceto the Erlang built-in term storage BIFs

* Regular expression matching functions for strings and binaries
e Finite state machine

e Event handling

* Functionsfor the server of aclient-server relation

e Function to control applicationsin a distributed manner

e Start and control of slave nodes

e Operations on finite sets and relations represented as sets
e Library for handling binary data

» Disk-based term storage

e List processing

* Mapsprocessing

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 The Erlang I/O Protocol

The 1/O protocol in Erlang enables bi-directional communication between clients and servers.

e Thel/O serverisaprocessthat handlesthe requests and performsthe requested task on, for example, an 1/O device.
* Theclientisany Erlang process wishing to read or write data from/to the 1/O device.

The common 1/0 protocol has been present in OTP since the beginning, but has been undocumented and has also
evolved over the years. In an addendum to Robert Virding's rationale, the original 1/O protocol is described. This
section describes the current 1/O protocol.

Theoriginal 1/0 protocol was simple and flexible. Demandsfor memory efficiency and execution time efficiency have
triggered extensions to the protocol over the years, making the protocol larger and somewhat less easy to implement
than the original. It can certainly be argued that the current protocol is too complex, but this section describes how
it looks today, not how it should have looked.

Ericsson AB. All Rights Reserved.: STDLIB | 1

1.2 The Erlang 1/O Protocol

The basic ideas from the origina protocol still hold. The 1/0 server and client communicate with one single, rather
simplistic protocol and no server stateis ever present in the client. Any 1/O server can be used together with any client
code, and the client code does not need to be aware of the I/O device that the 1/O server communicates with.

1.2.1 Protocol Basics

As described in Robert's paper, 1/0 servers and clients communicate using i o_r equest /i o_repl y tuples as
follows:

{io request, From, ReplyAs, Request}
{io reply, ReplyAs, Reply}

Theclient sendsani o_r equest tupleto the I/O server and the server eventually sendsacorrespondingi o_r epl y
tuple.

 Fromisthepi d() of the client, the process which the I/O server sends the I/O reply to.

* Repl yAs can be any datum and is returned in the corresponding i o_r epl y. Thei o module monitors the the
I/0 server and uses the monitor reference as the Repl yAs datum. A more complicated client can have many
outstanding 1/0 regqueststo the same /O server and can use different references (or something el se) to differentiate
among the incoming 1/0 replies. Element Repl yAs isto be considered opaque by the 1/O server.

Noticethat the pi d() of the I/O server is not explicitly presentin tuplei o_r epl y. Thereply can be sent from
any process, not necessarily the actual 1/0 server.
 Request and Repl y are described below.

When an 1/O server receives an i 0_r equest tuple, it acts upon the Request part and eventually sends an
i o_reply tuplewith the corresponding Repl y part.

1.2.2 Output Requests

To output characters on an 1/0 device, the following Request sexist:

{put_chars, Encoding, Characters}
{put_chars, Encoding, Module, Function, Args}

 Encodi ngisuni code orl ati nl, meaning that the characters are (in case of binaries) encoded as UTF-8 or
ISO Latin-1 (pure bytes). A well-behaved /O server is also to return an error indication if list elements contain
integers > 255 when Encodi ngissettol ati nl.

Notice that this does not in any way tell how characters are to be put on the 1/O device or handled by the I/O
server. Different 1/O servers can handle the characters however they want, this only tells the I/O server which
format the data is expected to have. In the Modul e/Funct i on/Ar gs case, Encodi ng tells which format the
designated function produces.

Notice also that byte-oriented datais simplest sent using the 1SO Latin-1 encoding.

e Charact ers are the data to be put on the I/O device. If Encodi ng isl ati nl, thisisaniolist().If
Encodi ng is uni code, this is an Erlang standard mixed Unicode list (one integer in a list per character,
charactersin binaries represented as UTF-8).

e Modul e,Functi on,and Ar gs denoteafunctionthat iscalled to producethedata(likei o_I i b: f or mat / 2).

Ar gs isalist of arguments to the function. The function is to produce data in the specified Encodi ng. The I/
O server isto call thefunction asappl y(Mod, Func, Args) and put the returned data on the I/O device as
ifitwassentina{put _chars, Encodi ng, Characters} request. If the function returns anything else
than abinary or list, or throws an exception, an error isto be sent back to the client.

The /O server repliesto the client withani o_r epl y tuple, where element Repl y isone of:

2 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/0O Protocol

ok

{error, Error}

Er r or describesthe error to the client, which can do whatever it wants with it. Thei o module typically
returnsit "asis".

For backward compatibility, the following Request s are aso to be handled by an /O server (they are not to be
present after Erlang/OTP R15B):

{put _chars, Characters}
{put_chars, Module, Function, Args}

These areto behave as{ put _chars, latinl, Characters} and{put_chars, latinl, Module,
Function, Args}, respectively.

1.2.3 Input Requests

To read characters from an 1/O device, the following Request sexist:

{get until, Encoding, Prompt, Module, Function, ExtraArgs}

Encodi ng denotes how data is to be sent back to the client and what data is sent to the function denoted by
Modul e/Funct i on/Ext r aAr gs. If the function supplied returns data as a list, the data is converted to this
encoding. If the function supplied returns data in some other format, no conversion can be done, and it is up to
the client-supplied function to return datain a proper way.

If Encodi ngisl ati nl, listsof integers0. . 255 or binaries containing plain bytes are sent back to the client
when possible. If Encodi ng isuni code, listswith integers in the whole Unicode range or binaries encoded in
UTF-8 are sent to the client. The user-supplied function always sees lists of integers, never binaries, but the list
can contain numbers > 255 if Encodi ng isuni code.

Pr onpt isalist of characters (not mixed, no binaries) or an atom to be output as a prompt for input on the I/0
device. Pr onpt isoftenignored by the I/O server; if setto' ' , it isalwaysto beignored (and results in nothing
being written to the I/O device).

Modul e, Funct i on, and Ext r aAr gs denote a function and arguments to determine when enough data is
written. The function is to take two more arguments, the last state, and a list of characters. The function is to
return one of:

{done, Result, RestChars}
{more, Continuation}

Resul t canbeany Erlangterm, butifitisal i st () ,thel/O server canconvertittoabi nary() of appropriate
format before returning it to the client, if the 1/0 server is set in binary mode (see below).

The function is called with the data the I/O server finds on its 1/O device, returning one of:

e {done, Result, RestChars} whenenoughdataisread. InthiscaseResul t issent tothe client and
Rest Char s iskept in the I/O server as a buffer for later input.

« {nore, Continuation},whichindicatesthat more characters are needed to complete the request.

Cont i nuat i on is sent as the state in later cals to the function when more characters are available. When no
more characters are available, the function must return { done, eof, Rest}. Theinitia state is the empty
list. The datawhen an end of fileis reached on the 10 device isthe atom eof .

An emulation of theget _| i ne request can be (inefficiently) implemented using the following functions:

Ericsson AB. All Rights Reserved.: STDLIB | 3

1.2 The Erlang 1/O Protocol

-module(demo) .
-export([until newline/3, get line/1]).

until newline(ThisFar,eof, MyStopCharacter) ->
{done,eof,[]1};
until newline(ThisFar,CharList,MyStopCharacter) ->
case
lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharlList)
of
{L,[1} ->
{more,ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done,ThisFar++L2++[MyStopCharacter],Rest}
end.

get line(IoServer) ->
IoServer ! {io request,

self(),
IoServer,
{get until, unicode, '', ?MODULE, until newline, [$\n]}},
receive
{io_reply, IoServer, Data} ->
Data
end.

Noticethat the last element inthe Request tuple ([$\ n]) isappended to the argument list when the function is
called. Thefunctionistobecalledlikeappl y(Modul e, Function, [State, Data | ExtraArgs])
by the 1/O server.

A fixed number of charactersis requested using the following Request :

{get chars, Encoding, Prompt, N}
e« Encodi ng and Pronpt asforget _until.
¢ Nisthe number of charactersto be read from the 1/O device.

A singleline (asin former example) is requested with the following Request :

{get line, Encoding, Prompt}
e Encodi ng and Pr onpt asforget _until.

Clearly, get _chars and get _| i ne could be implemented with the get _unt i | request (and indeed they were
originally), but demands for efficiency have made these additions necessary.

The /O server repliesto theclient withani o_r epl y tuple, where element Repl y isone of:

Data
eof
{error, Error}
« Dat aisthecharactersread, in list or binary form (depending on the 1/0O server mode, see the next section).
» eof isreturned when input end is reached and no more data is available to the client process.
e Error describesthe error to the client, which can do whatever it wants with it. Thei o module typically returns
itasis.
For backward compatibility, the following Request s are aso to be handled by an /O server (they are not to be
present after Erlang/OTP R15B):

4 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/0O Protocol

{get until, Prompt, Module, Function, ExtraArgs}
{get chars, Prompt, N}
{get line, Prompt}

These are to behave as {get _until, latinl, Pronpt, Mdule, Function, ExtraArgs},
{get _chars, latinl, Pronpt, N},and{get line, latinl, Pronpt},respectively.

1.2.4 1/0O Server Modes

Demands for efficiency when reading data from an 1/O server has not only lead to the addition of theget | i ne and
get _char s requests, but has also added the concept of 1/0 server options. No options are mandatory to implement,
but al 1/0O servers in the Erlang standard libraries honor the bi nar y option, which alows element Dat a of the
i o_reply tupleto be abinary instead of alist when possible. If the data is sent as a binary, Unicode data is sent
in the standard Erlang Unicode format, that is, UTF-8 (notice that the function of theget _unti | request till gets
list data regardless of the I/O server mode).

Notice that the get _unti | request alows for a function with the data specified as always being a list. Also, the
return value data from such a function can be of any type (asisindeed the casewhen ani o: f r ead/ 2, 3 request is
sent to an 1/0 server). The client must be prepared for data received as answersto those requeststo bein variousforms.
However, the I/O server isto convert the results to binaries whenever possible (that is, when the function supplied to
get _unti | returnsalist). Thisisdonein the examplein section An Annotated and Working Example 1/0 Server.

An 1/O server in binary mode affects the data sent to the client, so that it must be able to handle binary data. For
convenience, the modes of an 1/0 server can be set and retrieved using the following 1/0 requests:

{setopts, Opts}
e Optsisalist of optionsin the format recognized by the pr opl i st s module (and by the 1/0 server).
Asan example, the I/O server for the interactive shell (in gr oup. er |) understands the following options:

{binary, boolean()} (or binary/list)

{echo, boolean()}

{expand fun, fun()}

{encoding, unicode/latinl} (or unicode/latinl)

Options bi nary and encodi ng are common for al 1/0 serversin OTP, while echo and expand are valid only
for this1/O server. Option uni code notifies how characters are put on the physical 1/0 device, that is, if the terminal
itself is Unicode-aware. It does not affect how characters are sent in the 1/0O protocol, where each request contains
encoding information for the provided or returned data.

The I/O server isto send one of the following as Repl y:
ok
{error, Error}

An error (preferably enot sup) is to be expected if the option is not supported by the I/O server (like if an echo
optionissentinaset opt s request to aplain file).

To retrieve options, the following request is used:

getopts

This request asks for acomplete list of al options supported by the I/O server aswell as their current values.
The 1/O server replies:

Ericsson AB. All Rights Reserved.: STDLIB | 5

1.2 The Erlang 1/O Protocol

OptList
{error, Error}

e OptlList isalist of tuples{ Opti on, Val ue}, where Opti on awaysisan atom.

1.2.5 Multiple /0O Requests

The Request element caninitself contain many Request s by using the following format:

{requests, Requests}

» Requestsisalistof vaidi o_request tuplesfor the protocol. They must be executed in the order that
they appear in the list. The execution isto continue until one of the requests resultsin an error or the list is
consumed. The result of the last request is sent back to the client.

Thel/O server can, for alist of requests, send any of the following valid resultsin the reply, depending on the requests
inthelist:

ok

{ok, Data}
{ok, Options}
{error, Error}

1.2.6 Optional /0O Request

The following I/O request is optional to implement and a client isto be prepared for an error return:

{get geometry, Geometry}
e Ceonetry istheatomr ows or theatom col umms.
The /O server isto send the Repl y as:

{ok, N}
{error, Error}
* Nisthe number of character rows or columnsthat the 1/O device has, if applicable to the 1/O device handled by
the 1/O server, otherwise{ er r or, enot sup} isagood answer.

1.2.7 Unimplemented Request Types

If an 1/O server encounters a request that it does not recognize (that is, thei o_r equest tuple has the expected
format, but the Request isunknown), the I/O server isto send avalid reply with the error tuple:

{error, request}
This makes it possible to extend the protocol with optional requests and for the clients to be somewhat backward
compatible.
1.2.8 An Annotated and Working Example I/O Server

An |/O server is any process capable of handling the 1/0 protocol. There is no generic 1/0 server behavior, but could
well be. The framework is simple, a process handling incoming requests, usually both [/O-requests and other 1/0
device-specific requests (positioning, closing, and so on).

6 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/0O Protocol

The example 1/O server stores charactersin an ETS table, making up afairly crude RAM file.

The module begins with the usual directives, afunction to start the I/O server and a main loop handling the requests:
-module(ets io server).
-export([start link/0, init/0, loop/1l, until newline/3, until enough/3]).
-define(CHARS_PER REC, 10).

-record(state, {
table,
position, % absolute
mode % binary | list
H.

start link() ->
spawn_link(?MODULE,init,[]).

init() ->
Table = ets:new(noname, [ordered set]),

?MODULE: loop (#state{table = Table, position 0, mode=list}).

loop(State) ->
receive
{io request, From, ReplyAs, Request} ->
case request(Request,State) of
{Tag, Reply, NewState} when Tag =:= ok; Tag =:
reply(From, ReplyAs, Reply),
?MODULE:loop (NewState);
{stop, Reply, NewState} ->
reply(From, ReplyAs, Reply),
exit(Reply)
end;
%% Private message
{From, rewind} ->
From ! {self(), ok},
?MODULE: loop(State#state{position = 0});
_Unknown ->
?MODULE: loop(State)
end.

error ->

The main loop receives messages from the client (which can usethethei o moduleto send requests). For each request,
thefunction r equest / 2 iscalled and areply is eventually sent using functionr epl y/ 3.

The "private" message { From rewi nd} results in the current position in the pseudo-file to be reset to O (the
beginning of the "file"). Thisis atypical example of 1/O device-specific messages not being part of the 1/O protocol.
It isusually abad ideato embed such private messagesini o_r equest tuples, asthat can confuse the reader.

First, we examine the reply function:

reply(From, ReplyAs, Reply) ->
From ! {io reply, ReplyAs, Reply}.

It sendsthei o_r epl y tuple back to the client, providing element Repl yAs received in the request along with the
result of the request, as described earlier.

We need to handle some requests. First the requests for writing characters:

Ericsson AB. All Rights Reserved.: STDLIB | 7

1.2 The Erlang 1/O Protocol

request({put_chars, Encoding, Chars}, State) ->
put_chars(unicode:characters to list(Chars,Encoding),State);
request({put _chars, Encoding, Module, Function, Args}, State) ->
try
request({put_chars, Encoding, apply(Module, Function, Args)}, State)
catch
7->
{error, {error,Function}, State}
end;

The Encodi ng says how the characters in the request are represented. We want to store the characters as lists in
the ETS table, so we convert them to lists using function uni code: characters_to | i st/ 2. The conversion
function conveniently accepts the encoding typesuni code and| at i n1, so we can use Encodi ng directly.

When Modul e, Functi on, and Ar gunent s are provided, we apply it and do the same with the result as if the
data was provided directly.

We handle the requests for retrieving data:

request({get until, Encoding, Prompt, M, F, As}, State) ->
get until(Encoding, M, F, As, State);
request({get chars, Encoding, Prompt, N}, State) ->
%% To simplify the code, get chars is implemented using get until
get until(Encoding, ?MODULE, until enough, [N], State);
request({get line, Encoding, Prompt}, State) ->
%% To simplify the code, get line is implemented using get until
get until(Encoding, ?MODULE, until newline, [$\n], State);

Herewe have cheated alittle by more or lessonly implementingget _unt i | and using internal hel persto implement
get _chars and get | i ne. In production code, this can be inefficient, but that depends on the frequency of the
different requests. Before we start implementing functionsput _char s/ 2 andget _unti | / 5, weexaminethefew
remaining requests:

request({get geometry, }, State) ->
{error, {error,enotsup}, State};
request({setopts, Opts}, State) ->
setopts(Opts, State);
request(getopts, State) ->
getopts(State);
request({requests, Reqs}, State) ->
multi request(Reqs, {ok, ok, State});

Request get _geonet r y hasno meaning for this1/O server, sothereplyis{ error, enot sup}.Theonly option
we handleisbi nar y/l i st , which isdonein separate functions.

The multi-request tag (r equest s) is handled in a separate loop function applying the requests in the list one after
another, returning the last result.

We need to handle backward compatibility and the fi | e module (which uses the old requests until backward
compatibility with pre-R13 nodes is no longer needed). Notice that the 1/0 server does not work with a simple
file:wite/2ifthesearenot added:

request({put_chars,Chars}, State) ->
request({put_chars,latinl,Chars}, State);
request({put_chars,M,F,As}, State) ->
request({put_chars,latinl,M,F,As}, State);
request({get chars,Prompt,N}, State) ->
request({get chars,latinl,Prompt,N}, State);
request({get line,Prompt}, State) ->
request({get line,latinl,Prompt}, State);
request({get until, Prompt,M,F,As}, State) ->
request({get until,latinl,Prompt,M,F,As}, State);

8 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/0O Protocol

{error, request} must bereturned if the request is not recognized:

request(Other, State) ->
{error, {error, request}, State}.

Next we handle the different requests, first the fairly generic multi-request type:

multi request([R|Rs], {ok, Res, State}) ->
multi request(Rs, request(R, State));
multi request([| 1, Error) ->
Error;
multi request([], Result) ->
Result.

We loop through the requests one at the time, stopping when we either encounter an error or the list is exhausted.
The last return value is sent back to the client (it is first returned to the main loop and then sent back by function
io_reply).

Requests get opt s and set opt s are also smpleto handle. We only change or read the state record:

setopts(Opts0,State) ->
Opts = proplists:unfold(
proplists:substitute negations(
[{list,binary}],
Opts0)),
case check valid opts(Opts) of
true ->
case proplists:get value(binary, Opts) of
true ->
{ok,ok,State#state{mode=binary}};
false ->
{ok,ok,State#state{mode=binary}};
->
{ok,ok,State}

end;
false ->
{error,{error,enotsup},State}
end.
check valid opts([]) ->
true;

check valid opts([{binary,Bool}|T]) when is boolean(Bool) ->
check valid opts(T);

check valid opts() ->
false.

getopts(#state{mode=M} = S) ->
{ok, [{binary, case M of
binary ->
true;
7->
false
end}],S}.

As a convention, al 1/0O servers handle both {setopts, [binary]}, {setopts, [list]}, and
{setopts, [{binary, boolean()}]}, hencethetrick with proplists:substitute_negations/2
and propl i sts: unfol d/ 1. If invalid options are sent to us, wesend { err or, enot sup} back to theclient.

Request get opt s istoreturnalist of { Opt i on, Val ue} tuples. This hasthe twofold function of providing both
the current values and the available options of this 1/0O server. We have only one option, and hence return that.

So far this I/O server is fairly generic (except for request r ewi nd handled in the main loop and the creation of an
ETStable). Most /O servers contain code similar to this one.

Ericsson AB. All Rights Reserved.: STDLIB | 9

1.2 The Erlang 1/O Protocol

To make the example runnable, we start implementing the reading and writing of the datato/from the ETS table. First
function put _char s/ 3:

put chars(Chars, #state{table = T, position = P} = State) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
[apply update(T,U) || U <- split data(Chars, R, C) 1,
{ok, ok, State#state{position = (P + length(Chars))}}.

We aready have the data as (Unicode) lists and therefore only split the list in runs of a predefined size and put
each run in the table at the current position (and forward). Functionsspl i t _dat a/ 3 andappl y_updat e/ 2 are
implemented below.

Now we want to read data from the table. Function get _unt i | / 5 reads data and applies the function until it says
that it is done. The result is sent back to the client:

get until(Encoding, Mod, Func, As,
#state{position = P, mode = M, table = T} = State) ->
case get loop(Mod,Func,As,T,P,[]) of
{done,Data, ,NewP} when is binary(Data); is list(Data) ->
if
M =:= bipary ->
{ok,
unicode:characters to binary(Data, unicode, Encoding),
State#state{position = NewP}};
true ->
case check(Encoding,
unicode:characters to list(Data, unicode))
of
{error, } =E ->
{error, E, State};
List ->
{ok, List,
State#state{position = NewP}}
end
end;
{done,Data, ,NewP} ->
{ok, Data, State#state{position = NewP}};
Error ->
{error, Error, State}
end.

get loop(M,F,A,T,P,C) ->
{NewP,L} = get(P,T),
case catch apply(M,F,[C,L|A]) of
{done, List, Rest} ->
{done, List, [], NewP - length(Rest)};
{more, NewC} ->
get loop(M,F,A,T,NewP,NewC);
->
{error,F}
end.

Herewea so handlethemode (bi nary orl i st)that canbeset by request set opt s. By default, all OTP1/O servers
send data back to the client as lists, but switching mode to bi nar y can increase efficiency if the I/O server handles
it in an appropriate way. The implementation of get _unt i | isdifficult to get efficient, as the supplied function is
defined to take lists as arguments, but get _char s and get _| i ne can be optimized for binary mode. However,
this example does not optimize anything.

It is important though that the returned datais of the correct type depending on the options set. We therefore convert
the lists to binaries in the correct encoding if possible before returning. The function supplied in the get _unt i |
request tuple can, asitsfinal result return anything, so only functions returning lists can get them converted to binaries.

10 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/0O Protocol

If the request contains encoding tag uni code, thelists can contain al Unicode code points and the binaries are to be
inUTF-8. If theencodingtagisl at i n1,theclientisonly to get charactersintherangeO. . 255. Functioncheck/ 2
takes care of not returning arbitrary Unicode code points in lists if the encoding was specified as| ati nl. If the
function does not return alist, the check cannot be performed and the result is that of the supplied function untouched.

To manipulate the table we implement the following utility functions:

check(unicode, List) ->
List;

check(latinl, List) ->
try

[throw(not_ unicode) || X <- List,

X > 255 1],

List
catch

throw: ->

{error, {cannot convert, unicode, latinl}}

end.

The function check provides an error tuple if Unicode code points > 255 are to be returned if the client requested
latinl.

The two functions until _new ine/3 and until_enough/ 3 are helpers used together with function
get _until/5toimplementget chars andget _I i ne (inefficiently):

until newline([],eof, MyStopCharacter) ->
{done,eof, [1};

until newline(ThisFar,eof, MyStopCharacter) ->
{done, ThisFar, [1};

until newline(ThisFar,CharList,MyStopCharacter) ->
case

lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)

of

{L,[1} ->

{more,ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done, ThisFar++L2++[MyStopCharacter],Rest}

end.

until enough([],eof, N) ->
{done,eof, [1};

until enough(ThisFar,eof, N) ->
{done, ThisFar, [1};

until enough(ThisFar,CharList,N)

when length(ThisFar) + length(CharList) >= N ->

{Res,Rest} = my split(N,ThisFar ++ CharList, []),
{done,Res,Rest};

until enough(ThisFar,CharList, N) ->
{more,ThisFar++CharList}.

As can be seen, the functions above are just the type of functions that are to be providedinget _unt i | requests.
To complete the I/O server, we only need to read and write the table in an appropriate way:

Ericsson AB. All Rights Reserved.: STDLIB | 11

1.3 Using Unicode in Erlang

get(P,Tab) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
case ets:lookup(Tab,R) of
[1->
{P,eof};
[{R,List}] ->
case my split(C,List,[]) of
{11} ->
{P+length(List),eof};
{ ,Data} ->
{P+length(Data),Data}
end
end.

my split(0,Left,Acc) ->
{lists:reverse(Acc),Left};
my split(,[],Acc) ->
{lists:reverse(Acc),[1};
my split(N,[H|T],Acc) ->
my split(N-1,T,[H|Acc]).

split data([], ,) ->
[1;

split data(Chars, Row, Col) ->
{This,Left} = my split(?CHARS PER REC - Col, Chars, []),
[{Row, Col, This} | split data(Left, Row + 1, 0) 1.

apply update(Table, {Row, Col, List}) ->
case ets:lookup(Table,Row) of
[1->
ets:insert(Table, {Row, lists:duplicate(Col,0) ++ List});
[{Row, OldData}] ->
{Partl, } = my split(Col,OldData,[]),
{ ,Part2} = my split(Col+length(List),0ldData,[]),
ets:insert(Table,{Row, Partl ++ List ++ Part2})
end.

The table is read or written in chunks of ?CHARS PER REC, overwriting when necessary. The implementation is
clearly not efficient, it isjust working.

This concludes the example. It isfully runnable and you can read or write to the 1/O server by using, for example, the
i 0 module or eventhef i | e module. Itisassimple asthat to implement afully fledged I/O server in Erlang.

1.3 Using Unicode in Erlang

1.3.1 Unicode Implementation

Implementing support for Unicode character setsis an ongoing process. The Erlang Enhancement Proposal (EEP) 10
outlined the basics of Unicode support and specified a default encoding in binaries that all Unicode-aware modules
areto handlein the future.

Hereis an overview what has been done so far:

* Thefunctionality described in EEP10 was implemented in Erlang/OTP R13A.

e Erlang/OTP R14B01 added support for Unicode filenames, but it was not complete and was by default disabled
on platforms where no guarantee was given for the filename encoding.

* With Erlang/OTP R16A came support for UTF-8 encoded source code, with enhancements to many of
the applications to support both Unicode encoded filenames and support for UTF-8 encoded files in many

12 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

circumstances. Most notableisthe support for UTF-8infilesread by f i | e: consul t / 1, release handler support
for UTF-8, and more support for Unicode character setsin the I/O system.

e InErlang/OTP 17.0, the encoding default for Erlang source files was switched to UTF-8.

e InErlang/OTP 20.0, atoms and function can contain Unicode characters. Module names, application names, and
node names are still restricted to the ISO Latin-1 range.

Support was added for normalizations formsin uni code and the st r i ng module now handles utf8-encoded
binaries.

This section outlines the current Unicode support and gives some recipes for working with Unicode data.

1.3.2 Understanding Unicode

Experience with the Unicode support in Erlang has made it clear that understanding Unicode characters and encodings
isnot as easy as one would expect. The complexity of the field and the implications of the standard require thorough
understanding of concepts rarely before thought of.

Also, the Erlang implementation requires understanding of concepts that were never an issue for many (Erlang)
programmers. To understand and use Unicode characters requires that you study the subject thoroughly, even if you
are an experienced programmer.

Asan example, contemplate the issue of converting between upper and lower case |etters. Reading the standard makes
you realize that thereis not a simple one to one mapping in all scripts, for example:

* InGerman, theletter "[3' (sharp s) isin lower case, but the uppercase equivaent is"SS".

* InGreek, theletter "#"' has two different lowercase forms, "#" in word-final position and "#" elsewhere.
e InTurkish, both dotted and dotless "i" exist in lower case and upper case forms.

e Cyrillic"I" has usualy no lowercase form.

» Languages with no concept of upper case (or lower case).

So, a conversion function must know not only one character at atime, but possibly the whole sentence, the natural
language to trandate to, the differences in input and output string length, and so on. Erlang/OTP has currently no
Unicode upper case/l ower case functionality with language specific handling, but publicly available libraries
address these issues.

Another example is the accented characters, where the same glyph has two different representations. The Swedish
letter "6" is one example. The Unicode standard has a code point for it, but you can also write it as 0" followed by
"U+0308" (Combining Diaeresis, with the simplified meaning that the last letter isto have "™ above). They have the
same glyph, user perceived character. They are for most purposes the same, but have different representations. For
example, MacOS X converts al filenamesto use Combining Diaeresis, while most other programs (including Erlang)
try to hide that by doing the opposite when, for example, listing directories. However it isdone, it is usually important
to normalize such charactersto avoid confusion.

The list of examples can be made long. One need a kind of knowledge that was not needed when programs only
considered one or two languages. The complexity of human languages and scripts has certainly made this a challenge
when constructing a universal standard. Supporting Unicode properly in your program will require effort.

1.3.3 What Unicode Is

Unicode is astandard defining code points (numbers) for al known, living or dead, scripts. In principle, every symbol
used in any language has a Unicode code point. Unicode code points are defined and published by the Unicode
Consortium, which is a non-profit organization.

Support for Unicode isincreasing throughout the world of computing, asthe benefits of one common character set are
overwhelming when programs are used in aglobal environment. Along with the base of the standard, the code points
for all the scripts, some encoding standar ds are available.

Ericsson AB. All Rights Reserved.: STDLIB | 13

1.3 Using Unicode in Erlang

Itisvital to understand the difference between encodings and Unicode characters. Unicode characters are code points
according to the Unicode standard, while the encodings are ways to represent such code points. An encoding isonly a
standard for representation. UTF-8 can, for example, be used to represent avery limited part of the Unicode character
set (for example | SO-Latin-1) or the full Unicode range. It is only an encoding format.

As long as all character sets were limited to 256 characters, each character could be stored in one single byte, so
there was more or less only one practical encoding for the characters. Encoding each character in one byte was so
common that the encoding was not even named. With the Unicode system there are much more than 256 characters, so
acommon way is needed to represent these. The common ways of representing the code points are the encodings. This
means awhole new concept to the programmer, the concept of character representation, which was anon-issue earlier.

Different operating systems and tools support different encodings. For example, Linux and MacOS X have chosen
the UTF-8 encoding, which is backward compatible with 7-bit ASCII and therefore affects programs written in plain
English the least. Windows supports alimited version of UTF-16, namely all the code planes where the characters can
be stored in one single 16-bit entity, which includes most living languages.

The following are the most widely spread encodings:
Bytewise representation

Thisisnot aproper Unicoderepresentation, but the representation used for charactersbefore the Unicode standard.
It can still be used to represent character code pointsin the Unicode standard with numbers < 256, which exactly
corresponds to the ISO Latin-1 character set. In Erlang, thisis commonly denoted | at i n1 encoding, which is
dlightly misleading as SO Latin-1 is a character code range, not an encoding.

UTF-8

Each character is stored in one to four bytes depending on code point. The encoding is backward compatible
with bytewise representation of 7-bit ASCII, as all 7-bit characters are stored in one single byte in UTF-8. The
characters beyond code point 127 are stored in more bytes, letting the most significant bit in the first character
indicate a multi-byte character. For details on the encoding, the RFC is publicly available.

Notice that UTF-8 is not compatible with bytewise representation for code points from 128 through 255, so an
SO Latin-1 bytewise representation is generally incompatible with UTF-8.

UTF-16

Thisencoding has many similaritiesto UTF-8, but the basic unit isa 16-bit number. Thismeansthat all characters
occupy at least two bytes, and some high numbers four bytes. Some programs, libraries, and operating systems
claimingtouse UTF-16 only allow for charactersthat can be stored in one 16-bit entity, which isusually sufficient
to handleliving languages. Asthe basic unit is more than one byte, byte-order issues occur, whichiswhy UTF-16
existsin both abig-endian and alittle-endian variant.

In Erlang, the full UTF-16 rangeis supported when applicable, likeintheuni code moduleand in the bit syntax.
UTF-32

The most straightforward representation. Each character is stored in one single 32-bit number. There is no need
for escapes or any variable number of entities for one character. All Unicode code points can be stored in one
single 32-bit entity. Aswith UTF-16, there are byte-order issues. UTF-32 can be both big-endian and little-endian.

Ucs4

Basically the same as UTF-32, but without some Unicode semantics, defined by IEEE, and has little use as a
separate encoding standard. For all normal (and possibly abnormal) use, UTF-32 and UCS-4 are interchangeabl e.

Certain number ranges are unused in the Unicode standard and certain ranges are even deemed invalid. The most
notable invalid range is 16#D800-16#DFFF, as the UTF-16 encoding does not allow for encoding of these numbers.
This is possibly because the UTF-16 encoding standard, from the beginning, was expected to be able to hold all
Unicode charactersin one 16-bit entity, but wasthen extended, |eaving aholein the Unicode range to handl e backward
compatibility.

14 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

Code point 16#FEFF is used for Byte Order Marks (BOMs) and use of that character is not encouraged in other
contexts. It isvalid though, as the character "ZWNBS" (Zero Width Non Breaking Space). BOMs are used to identify
encodings and byte order for programs where such parameters are not known in advance. BOMs are more seldom
used than expected, but can become more widely spread as they provide the means for programs to make educated
guesses about the Unicode format of a certain file.

1.3.4 Areas of Unicode Support

To support Unicode in Erlang, problemsin various areas have been addressed. This section describes each area briefly
and more thoroughly later in this User's Guide.

Representation

To handle Unicode characters in Erlang, a common representation in both lists and binaries is needed. EEP (10)
and the subsequent initial implementation in Erlang/OTP R13A settled a standard representation of Unicode
charactersin Erlang.

Manipulation

The Unicode characters need to be processed by the Erlang program, which iswhy library functions must be able
to handle them. In some cases functionality has been added to already existing interfaces (asthe st r i ng module
now can handle strings with any code points). In some cases new functionality or options have been added (as
inthei o module, the file handling, the uni code module, and the bit syntax). Today most modulesin Kernel
and STDLIB, aswell asthe VM are Unicode-aware.

Filel/O

1/0 is by far the most problematic area for Unicode. A file is an entity where bytes are stored, and the lore of
programming hasbeen to treat characters and bytes asinterchangeabl e. With Unicode characters, you must decide
on an encoding when you want to store the data in afile. In Erlang, you can open atext file with an encoding
option, so that you can read characters from it rather than bytes, but you can also open afile for bytewise 1/O.

The Erlang 1/0-system has been designed (or at | east used) in away whereyou expect any 1/O server to handle any
string data. That is, however, no longer the case when working with Unicode characters. The Erlang programmer
must now know the capabilities of the device wherethe dataends up. Also, portsin Erlang are byte-oriented, so an
arbitrary string of (Unicode) characters cannot be sent to aport without first converting it to an encoding of choice.

Terminal 1/0O

Terminal 1/0O isdlightly easier than file 1/0. The output is meant for human reading and is usually Erlang syntax
(for example, in the shell). There exists syntactic representation of any Unicode character without displaying the
glyph (instead written as\ x{ HHH}). Unicode data can therefore usually be displayed even if the terminal as such
does not support the whole Unicode range.

Filenames

Filenames can be stored as Unicode strings in different ways depending on the underlying operating system and
file system. This can be handled fairly easy by aprogram. The problems arise when the file system isinconsistent
initsencodings. For example, Linux allowsfilesto be named with any sequence of bytes, leaving to each program
tointerpret those bytes. On systemswhere these "transparent” filenames are used, Erlang must be informed about
the filename encoding by a startup flag. The default is bytewiseinterpretation, which isusually wrong, but allows
for interpretation of all filenames.

The concept of "raw filenames" can be used to handlewrongly encoded filenamesif one enables Unicodefilename
tranglation (+f nu) on platforms where thisis not the default.

Ericsson AB. All Rights Reserved.: STDLIB | 15

1.3 Using Unicode in Erlang

Source code encoding

The Erlang source code has support for the UTF-8 encoding and bytewise encoding. The default in Erlang/OTP
R16B was bytewise (I at i n1) encoding. It was changed to UTF-8 in Erlang/OTP 17.0. You can control the
encoding by a comment like the following in the beginning of the file:

%% -*- coding: utf-8 -*-

This of course requires your editor to support UTF-8 aswell. The same comment is also interpreted by functions
likefile:consult/1, the release handler, and so on, so that you can have al text files in your source
directoriesin UTF-8 encoding.

The language

Having the source code in UTF-8 also allows you to write string literals, function names, and atoms containing
Unicode characters with code points > 255. M odule names, application names, and node names are still restricted
to the 1SO Latin-1 range. Binary literals, where you use type / ut f 8, can also be expressed using Unicode
characters > 255. Having module names or application names using characters other than 7-bit ASCII can
cause trouble on operating systems with inconsistent file naming schemes, and can hurt portability, so it is not
recommended.

EEP 40 suggests that the language is also to allow for Unicode characters > 255 in variable names. Whether to
implement that EEP is yet to be decided.

1.3.5 Standard Unicode Representation

In Erlang, strings are lists of integers. A string was until Erlang/OTP R13 defined to be encoded in the ISO Latin-1
(1SO 8859-1) character set, which is, code point by code point, a subrange of the Unicode character set.

The standard list encoding for strings was therefore easily extended to handle the whole Unicode range. A Unicode
string in Erlang is a list containing integers, where each integer is a valid Unicode code point and represents one
character in the Unicode character set.

Erlang stringsin 1SO Latin-1 are a subset of Unicode strings.

Only if a string contains code points < 256, can it be directly converted to a binary by using, for example,
erlang:iolist_to_binary/1 orcan be sent directly to a port. If the string contains Unicode characters >
255, an encoding must be decided upon and the string is to be converted to a binary in the preferred encoding using
uni code: characters_to_binary/ 1, 2, 3. Stringsarenot generally listsof bytes, asthey were before Erlang/
OTP R13, they arelists of characters. Characters are not generally bytes, they are Unicode code points.

Binaries are more troublesome. For performance reasons, programs often store textual datain binariesinstead of lists,
mainly because they are more compact (one byte per character instead of two words per character, as is the case
with lists). Using erl ang: | i st _to_bhi nary/ 1, an ISO Latin-1 Erlang string can be converted into a binary,
effectively using bytewise encoding: one byte per character. This was convenient for those limited Erlang strings, but
cannot be done for arbitrary Unicode lists.

Asthe UTF-8 encoding is widely spread and provides some backward compatibility in the 7-bit ASCII range, it is
selected as the standard encoding for Unicode charactersin binaries for Erlang.

The standard binary encoding is used whenever alibrary function in Erlang is to handle Unicode datain binaries, but
is of course not enforced when communicating externally. Functions and bit syntax exist to encode and decode both
UTF-8, UTF-16, and UTF-32 in binaries. However, library functions dealing with binaries and Unicode in general
only deal with the default encoding.

Character data can be combined from many sources, sometimes available in amix of strings and binaries. Erlang has
for long had the concept of i odat a ori ol i st s, where binaries and lists can be combined to represent a sequence
of bytes. In the same way, the Unicode-aware modules often alow for combinations of binaries and lists, where the

16 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

binaries have characters encoded in UTF-8 and the lists contain such binaries or numbers representing Unicode code
points:

unicode binary() = binary() with characters encoded in UTF-8 coding standard
chardata() = charlist() | unicode binary()

charlist() = maybe improper list(char() | unicode binary() | charlist(),
unicode binary() | nil())

The module uni code even supports similar mixes with binaries containing other encodings than UTF-8, but that is
aspecia caseto alow for conversions to and from external data:

external unicode binary() = binary() with characters coded in a user-specified
Unicode encoding other than UTF-8 (UTF-16 or UTF-32)

external chardata() = external charlist() | external unicode binary()

external charlist() = maybe improper list(char() | external unicode binary() |
external charlist(), external unicode binary() | nil())

1.3.6 Basic Language Support

As from Erlang/OTP R16, Erlang source files can be written in UTF-8 or bytewise (I ati nl) encoding. For
information about how to state the encoding of an Erlang source file, seethe epp(3) module. As from Erlang/OTP
R16, strings and comments can be written using Unicode. As from Erlang/OTP 20, also atoms and functions can be
written using Unicode. Modules, applications, and nodes must till be named using characters from the 1SO Latin-1
character set. (These restrictions in the language are independent of the encoding of the source file))

Bit Syntax

Thebit syntax containstypesfor handling binary datain thethree main encodings. Thetypesarenamedut f 8, ut f 16,
and ut f 32. Theut f 16 and ut f 32 types can be in abig-endian or alittle-endian variant:

<<Ch/utf8, /binary>> = Binl,

<<Ch/utfl16-little, /binary>> = Bin2,

Bin3 = <<$H/utf32-little, $e/utf32-little, $1/utf32-little, $1/utf32-little,
$o/utf32-little>>,

For convenience, literal strings can be encoded with a Unicode encoding in binaries using the following (or similar)
syntax:

Bin4 = <<"Hello"/utfl6>>,

String and Character Literals

For source code, there is an extension to syntax \ OOO (backdlash followed by three octal humbers) and \ xHH
(backslash followed by x, followed by two hexadecimal characters), namely \ x{ H ...} (backslash followed by x,
followed by left curly bracket, any number of hexadecimal digits, and a terminating right curly bracket). This allows
for entering characters of any code point literally in a string even when the encoding of the source file is bytewise
(Iatinl).

Intheshdll, if using aUnicodeinput device, or in source code stored in UTF-8, $ can befollowed directly by aUnicode
character producing an integer. In the following example, the code point of a Cyrillic # is output:

7> $c.
1089

Ericsson AB. All Rights Reserved.: STDLIB | 17

1.3 Using Unicode in Erlang

Heuristic String Detection

In certain output functions and in the output of return values in the shell, Erlang tries to detect string datain lists and
binaries heuristically. Typically you will see heuristic detection in a situation like this:

1> [97,98,99].

"abc"

2> <<97,98,99>>,

<<"abc">>

3> <<195,165,195,164,195,182>>.

o

<<"@ad"/utf8>>

Here the shell detects lists containing printable characters or binaries containing printable characters in bytewise or
UTF-8 encoding. But what is aprintable character? One view is that anything the Unicode standard thinksis printable,
is also printable according to the heuristic detection. The result is then that almost any list of integers are deemed a
string, and all sorts of characters are printed, maybe also characters that your terminal lacks in its font set (resulting
in some unappreciated generic output). Another way is to keep it backward compatible so that only the SO Latin-1
character set is used to detect a string. A third way is to let the user decide exactly what Unicode ranges that are to
be viewed as characters.

Asfrom Erlang/OTP R16B you can select the | SO Latin-1 range or the whole Unicode range by supplying startup flag
+pc latinlor+pc unicode, respectively. For backward compatibility, | at i nl isdefault. Thisonly controls
how heuristic string detection is done. More ranges are expected to be added in the future, enabling tailoring of the
heuristics to the language and region relevant to the user.

The following examples show the two startup options:

$ erl +pc latinl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> [1024].

[1024]

2> [1070,1085,1080,1082,1086,1076] .
[1070,1085,1080,1082,1086,1076]

3> [229,228,246].

"8a6"

4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<208,174,208,189,208,184,208,186,208,190,208,180>>

5> <<229/utf8,228/utf8,246/utf8>>.

no

<<"@ad"/utf8>>

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe]l [kernel-poll:false]

Eshell V5.10.1 (abort with "G)

1> [1024].

||E||

2> [1070,1085,1080,1082,1086,1076] .
"OHnkop"

3> [229,228,246].

"846"

4> <<208,174,208,189,208,184,208,186,208,190,208,180>>.
<<"lOHnkop" /utf8>>

5> <<229/utf8,228/utf8,246/utf8>>.
<<"846"/utf8>>

In the examples, you can see that the default Erlang shell interprets only characters from the 1SO Latinl range as
printable and only detectslists or binaries with those "printable" characters as containing string data. The valid UTF-8

18 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

binary containing the Russian word "######", is not printed as a string. When started with all Unicode characters
printable (+pc uni code), the shell outputs anything containing printable Unicode data (in binaries, either UTF-8
or bytewise encoded) as string data.

These heuristicsarealsoused by i o: format/ 2,i o_l i b: f or mat/ 2, and friends when modifier t is used with
~p or ~P:

$ erl +pc latinl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with "G)

1> io:format("~tp~n", [{<<"330">>, <<"336"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).

{<<"346">>,<<"3546" /utf8>>,<<208,174,208,189,208,184,208,186,208,190,208,180>>}
ok

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)
1> io:format("~tp~n", [{<<"330">>, <<"3&46"/utf8>>, <<208,174,208,189,208,184,208,186,208,190,208,180>>}]).

n2 nQ

{<<"aa0">>,<<"aad" /utf8>>,<<"l0HuKopn" /utf8>>}
ok

Notice that this only affects heuristic interpretation of lists and binaries on output. For example, the ~t s format
sequence always outputs a valid list of characters, regardless of the +pc setting, as the programmer has explicitly
requested string output.

1.3.7 The Interactive Shell

The interactive Erlang shell, when started to a termina or started using command wer | on Windows, can support
Unicode input and output.

On Windows, proper operation requires that a suitable font isinstalled and selected for the Erlang application to use.
If no suitable font is available on your system, try installing the DegjaVu fonts, which are freely available, and then
select that font in the Erlang shell application.

On Unix-like operating systems, the terminal is to be able to handle UTF-8 on input and output (this is done by, for
example, modern versions of XTerm, KDE Konsole, and the Gnome terminal) and your local e settings must be proper.
As an example, a LANG environment variable can be set as follows:

$ echo $LANG
en US.UTF-8
Most systems handle variable LC_CTYPE before LANG, o if that is set, it must be set to UTF- 8:
$ echo $LC CTYPE
en US.UTF-8

The LANGor LC_CTYPE setting are to be consistent with what the terminal is capable of. There is no portable way
for Erlang to ask the terminal about its UTF-8 capacity, we have to rely on the language and character type settings.

To investigate what Erlang thinks about the terminal, thecall i 0: get opt s() can be used when the shell is started:

Ericsson AB. All Rights Reserved.: STDLIB | 19

href

1.3 Using Unicode in Erlang

$ LC CTYPE=en US.IS0-8859-1 erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).

{encoding, latinl}

2> q().

ok

$ LC CTYPE=en US.UTF-8 erl

Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}

2>

When (finally?) everything is in order with the locale settings, fonts. and the terminal emulator, you have probably
found away to input charactersin the script you desire. For testing, the simplest way isto add some keyboard mappings
for other languages, usually done with some applet in your desktop environment.

In aKDE environment, select KDE Control Center (Personal Settings) > Regional and Accessibility > Keyboar d
Layout.

On Windows XP, select Control Panel > Regional and L anguage Options, select tab L anguage, and click button
Details... in the square named Text Servicesand I nput L anguages.

Y our environment probably provides similar means of changing the keyboard layout. Ensure that you have a way to
switch back and forth between keyboards easily if you are not used to this. For example, entering commands using a
Cyrillic character set is not easily done in the Erlang shell.

Now you are set up for some Unicode input and output. The simplest thing to do isto enter a string in the shell:

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with "G)

1> lists:keyfind(encoding, 1, io:getopts()).
{encoding,unicode}

2> "lOHukop" .

"lHnkop"

3> io:format("~ts~n", [v(2)]).

I0HMKOR

ok

4>

While strings can be input as Unicode characters, the language elements are still limited to the ISO Latin-1 character
set. Only character constants and strings are allowed to be beyond that range:

$ erl
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)
1> $E.

958

2> l0HuKonO.

* 1: illegal character

2>

20 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

1.3.8 Unicode Filenames

Most modern operating systems support Unicode filenames in some way. There are many different ways to do this
and Erlang by default treats the different approaches differently:

Mandatory Unicode file naming

Windows and, for most common uses, MacOS X enforce Unicode support for filenames. All files created in the
file system have names that can consistently be interpreted. In MacOS X, all filenames are retrieved in UTF-8
encoding. In Windows, each system call handling filenames has a special Unicode-aware variant, giving much
the same effect. There are no filenames on these systems that are not Unicode filenames. So, the default behavior
of the Erlang VM isto work in "Unicode filename translation mode". This meansthat afilename can be specified
as a Unicode list, which is automatically translated to the proper name encoding for the underlying operating
system and file system.

Doing, for example, afil e: i st _di r/ 1 on one of these systems can return Unicode lists with code points
> 255, depending on the content of the file system.

Transparent file naming

Most Unix operating systems have adopted a simpler approach, namely that Unicode file naming is not enforced,
but by convention. Those systems usually use UTF-8 encoding for Unicode filenames, but do not enforce it.
On such a system, a filename containing characters with code points from 128 through 255 can be named as
plain ISO Latin-1 or use UTF-8 encoding. As no consistency is enforced, the Erlang VM cannot do consistent
trandlation of al filenames.

By default on such systems, Erlang startsin ut f 8 filename mode if the terminal supports UTF-8, otherwisein
I ati n1 mode.

Inl ati nl mode, filenames are bytewise encoded. This allows for list representation of al filenames in the
system. However, a afile named "Ostersund.txt", appearsinfil e: 1 i st _di r/ 1 either as"Ostersund.txt" (if
the filename was encoded in bytewise 1SO Latin-1 by the program creating the file) or more probably as
[195, 150, 115, 116, 101, 114, 115, 117, 110, 100], which isalist containing UTF-8 bytes (not what
you want). If you use Unicode filename translation on such a system, non-UTF-8 filenames are ignored by
functions like fil e:1ist_dir/1. They can be retrieved with function file:list_dir_all/1, but
wrongly encoded filenames appear as "raw filenames".

The Unicode file naming support was introduced in Erlang/OTP R14B01. A VM operating in Unicode filename
translation mode can work with files having names in any language or character set (as long as it is supported by
the underlying operating system and file system). The Unicode character list is used to denote filenames or directory
names. If the file system content is listed, you also get Unicode lists as return value. The support lies in the Kernel
and STDLIB modules, which is why most applications (that do not explicitly require the filenames to be in the ISO
Latin-1 range) benefit from the Unicode support without change.

On operating systems with mandatory Unicode filenames, this means that you more easily conform to the filenames of
other (non-Erlang) applications. Y ou can also process filenamesthat, at least on Windows, were inaccessible (because
of having names that could not be represented in SO Latin-1). Also, you avoid creating incomprehensible filenames
on MacOS X, asthevf s layer of the operating system accepts all your filenames as UTF-8 does not rewrite them.

For most systems, turning on Unicode filename translation is no problem even if it uses transparent file naming. Very
few systems have mixed filename encodings. A consistent UTF-8 named system works perfectly in Unicode filename
mode. It wasstill, however, considered experimental in Erlang/OTP R14B01 and isstill not the default on such systems.

Unicode filename trandlation is turned on with switch +f nu. On Linux, a VM started without explicitly stating the
filenametranslation modedefaultstol at i n1 asthenativefilename encoding. On Windowsand MacOS X, the default
behavior isthat of Unicodefilenametrandation. Thereforef i | e: nat i ve_name_encodi ng/ 0 by default returns
ut f 8 on those systems (Windows does not use UTF-8 on the file system level, but this can safely be ignored by the
Erlang programmer). Thedefault behavior can, asstated earlier, be changed using option +f nu or +f nl totheVM, see
theer | program. If theVM isstarted in Unicode filenametranslation mode, f i | e: nati ve_nanme_encodi ng/ 0

Ericsson AB. All Rights Reserved.: STDLIB | 21

1.3 Using Unicode in Erlang

returns atom ut f 8. Switch +f nu can be followed by w, i , or e to control how wrongly encoded filenames are to
be reported.

e wmeansthat awarning is sent to the er r or _| ogger whenever a wrongly encoded filename is "skipped" in
directory listings. wis the default.

e i meansthat wrongly encoded filenames are silently ignored.
e e means that the API function returns an error whenever a wrongly encoded filename (or directory name) is
encountered.

Noticethatfi | e: read_I i nk/ 1 alwaysreturns an error if the link pointsto an invalid filename.

In Unicode filename mode, filenames given to BIF open_port/ 2 with option { spawn_execut abl e, ...}
are also interpreted as Unicode. So is the parameter list specified in option ar gs available when using
spawn_execut abl e. The UTF-8 translation of arguments can be avoided using binaries, see section Notes About
Raw Filenames.

Notice that the file encoding options specified when opening a file has nothing to do with the filename encoding
convention. You can very well open files containing data encoded in UTF-8, but having filenames in bytewise
(I at i n1) encoding or conversely.

Erlang drivers and NIF-shared objects still cannot be named with names containing code points > 127. This
limitation will be removed in a future release. However, Erlang modules can, but it is definitely not a good idea
and is still considered experimental.

Notes About Raw Filenames

Note that raw filenames not necessarily are encoded the same way as on the OS level.

Raw filenames were introduced together with Unicode filename support in ERTS 5.8.2 (Erlang/OTP R14B01). The
reason "raw filenames' were introduced in the system was to be able to represent filenames, specified in different
encodings on the same system, consistently. It can seem practical to have the VM automatically translate a filename
that is not in UTF-8 to alist of Unicode characters, but this would open up for both duplicate filenames and other
inconsistent behavior.

Consider a directory containing a file named "bjorn" in 1SO Latin-1, while the Erlang VM is operating in Unicode
filename mode (and therefore expects UTF-8 file naming). The 1SO Latin-1 nameis not valid UTF-8 and one can be
tempted to think that automatic conversion in, for example, fil e: 1ist_dir/ 1 isagood idea But what would
happen if we later tried to open the file and have the name as a Unicode list (magically converted fromthe SO Latin-1
filename)? The VM converts the filename to UTF-8, as this is the encoding expected. Effectively this means trying
to open the file named <<"bjorn"/utf8>>. This file does not exist, and even if it existed it would not be the same file
asthe one that was listed. We could even create two files named "bjérn", one named in UTF-8 encoding and one not.
Iffile:list_dir/1wouldautomaticaly convertthe SO Latin-1 filename to alist, we would get two identical
filenames asthe result. To avoid this, we must differentiate between filenames that are properly encoded according to
the Unicode file naming convention (that is, UTF-8) and filenamesthat areinvalid under the encoding. By the common
functionfil e: 1ist_dir/ 1, thewrongly encoded filenames are ignored in Unicode filename translation mode,
but by functionfil e: i st _dir_al I /1 thefilenameswith invalid encoding are returned as"raw" filenames, that
is, as binaries.

The fil e module accepts raw filenames as input. open_port ({spawn_executable, ...} ...)
aso accepts them. As mentioned earlier, the arguments specified in the option list to
open_port ({spawn_executable, ...} ...) undergothesame conversion asthefilenames, meaning that

22 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

the executable is provided with arguments in UTF-8 as well. This trandation is avoided consistently with how the
filenames are treated, by giving the argument as a binary.

To force Unicode filename trand ation mode on systems where thisis not the default was considered experimental in
Erlang/OTP R14B01. This was because the initial implementation did not ignore wrongly encoded filenames, so that
raw filenames could spread unexpectedly throughout the system. As from Erlang/OTP R16B, the wrongly encoded
filenames are only retrieved by special functions (suchasfil e: 1ist_dir_al |/ 1). Sincetheimpact on existing
code is therefore much lower it is now supported. Unicode filename trandlation is expected to be default in future
releases.

Even if you are operating without Unicode file naming transl ation automatically done by the VM, you can access and
create fileswith namesin UTF-8 encoding by using raw filenames encoded as UTF-8. Enforcing the UTF-8 encoding
regardless of the mode the Erlang VM is started in can in some circumstances be a good idea, as the convention of
using UTF-8 filenames is spreading.

Notes About MacOS X

The vf s layer of MacOS X enforces UTF-8 filenames in an aggressive way. Older versions did this by refusing to
create non-UTF-8 conforming filenames, while newer versions replace offending bytes with the sequence "%HH",
where HH isthe origina character in hexadecimal notation. As Unicode translation is enabled by default on MacOS
X, the only way to come up against thisis to either start the VM with flag +f nl or to use araw filename in bytewise
(I at i n1) encoding. If using araw filename, with a bytewise encoding containing characters from 127 through 255,
to create afile, the file cannot be opened using the same hame as the one used to create it. Thereis no remedy for this
behavior, except keeping the filenames in the correct encoding.

MacOS X reorganizes the filenames so that the representation of accents, and so on, uses the "combining characters'.
For example, character 6 isrepresented as code points[111, 776] , where111 ischaracter o and 776 isthe special
accent character "Combining Diaeresis’. This way of normalizing Unicode is otherwise very seldom used. Erlang
normalizes those filenames in the opposite way upon retrieval, so that filenames using combining accents are not
passed up to the Erlang application. In Erlang, filename "bjérn" is retrieved as[98, 106, 246, 114, 110] , not as
[98, 106, 117, 776, 114, 110] , athough the file system can think differently. The normalization into combining
accents is redone when accessing files, so this can usually be ignored by the Erlang programmer.

1.3.9 Unicode in Environment and Parameters

Environment variables and their interpretation are handled much in the same way as filenames. If Unicode filenames
are enabled, environment variables as well as parameters to the Erlang VM are expected to be in Unicode.

If Unicode filenames are enabled, the callsto os: get env/ 0, 1, os: put env/ 2, and os: unset env/ 1 handle
Unicode strings. On Unix-like platforms, the built-in functions trandate environment variables in UTF-8 to/from
Unicode strings, possibly with code points > 255. On Windows, the Unicode versions of the environment system API
are used, and code points > 255 are allowed.

On Unix-like operating systems, parameters are expected to be UTF-8 without trandation if Unicode filenames are
enabled.

1.3.10 Unicode-Aware Modules

Most of the modulesin Erlang/OTP are Unicode-unaware in the sense that they have no notion of Unicode and should
not have. Typically they handle non-textual or byte-oriented data (such asgen_t cp).

Modules handling textual data (such asi o_| i b and st ri ng are sometimes subject to conversion or extension to
be able to handle Unicode characters.

Fortunately, most textual data has been stored in lists and range checking has been sparse, so moduleslikest ri ng
work well for Unicode strings with little need for conversion or extension.

Some modules are, however, changed to be explicitly Unicode-aware. These modules include:

Ericsson AB. All Rights Reserved.: STDLIB | 23

1.3 Using Unicode in Erlang

uni code

Theuni code moduleisclearly Unicode-aware. It contains functions for conversion between different Unicode
formats and some utilitiesfor identifying byte order marks. Few programs handling Unicode data survive without
this module.

Thei o module has been extended along with the actual 1/0 protocol to handle Unicode data. This means that
many functions require binaries to be in UTF-8, and there are modifiersto format control sequencesto allow for
output of Unicode strings.

file,group,user

1/O-servers throughout the system can handle Unicode data and have options for converting data upon output or
input to/from the device. As shown earlier, the shel | module has support for Unicode terminals and thef i | e
module allows for translation to and from various Unicode formats on disk.

Reading and writing of files with Unicode datais, however, not best donewith thef i | e module, asitsinterface
isbyte-oriented. A file opened with a Unicode encoding (like UTF-8) isbest read or written using thei o module.

re

Ther e module alows for matching Unicode strings as a special option. Asthe library is centered on matching
in binaries, the Unicode support is UTF-8-centered.

The graphical library wx has extensive support for Unicode text.

The st ri ng module works perfectly for Unicode strings and SO Latin-1 strings, except the language-dependent
functions string: uppercase/ 1 and string: | owercase/ 1. These two functions can never function
correctly for Unicode characters in their current form, as there are language and locale issues to consider when
converting text between cases. Converting case in an international environment is a large subject not yet addressed
in OTP.

1.3.11 Unicode Data in Files

Although Erlang can handle Unicode data in many forms does not automatically mean that the content of any file can
be Unicode text. The external entities, such as ports and 1/O servers, are not generally Unicode capable.

Ports are always byte-oriented, so before sending data that you are not sure is bytewise-encoded to a port, ensure to
encode it in a proper Unicode encoding. Sometimes this means that only part of the data must be encoded as, for
example, UTF-8. Some parts can be binary data (like a length indicator) or something else that must not undergo
character encoding, so no automatic translation is present.

I/0 servers behave a little differently. The I/O servers connected to terminals (or st dout) can usually cope with
Unicode data regardless of the encoding option. This is convenient when one expects a modern environment but do
not want to crash when writing to an archaic terminal or pipe.

A file can have an encoding option that makes it generaly usable by the i o module (for example
{encodi ng, ut f 8}), but is by default opened as a byte-oriented file. The f i | e module is byte-oriented, so only
ISO Latin-1 characters can be written using that module. Use the i 0 module if Unicode data is to be output to afile
with other encodi ng than| at i n1 (bytewise encoding). It isdightly confusing that afile opened with, for example,
file:open(Name, [read, {encodi ng, utf8}]) cannotbeproperlyreadusingfil e: read(Fil e, N), but
using the i o module to retrieve the Unicode data from it. The reasonisthatfil e:read andfil e: wite (and
friends) are purely byte-oriented, and should be, asthat isthe way to accessfiles other than text files, byte by byte. As
with ports, you can write encoded datainto afile by "manually” converting the data to the encoding of choice (using
theuni code module or the hit syntax) and then output it on abytewise (I at i n1) encoded file.

Recommendations:

24 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

e Usethefil e modulefor files opened for bytewise access ({ encodi ng, | ati n1}).
e Usethei o module when accessing files with any other encoding (for example{ encodi ng, uf 8}).

Functions reading Erlang syntax from files recognize the codi ng: comment and can therefore handle Unicode data
on input. When writing Erlang terms to afile, you are advised to insert such comments when applicable:

$ erl +fna +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with ~G)

1> file:write file("test.term",<<"%% coding: utf-8\n[{\"lOHukopg\",4711}].\n"/utf8>>).
ok

2> file:consult("test.term").

{ok, [[{"0OHukon",4711}11}

1.3.12 Summary of Options

The Unicode support is controlled by both command-line switches, some standard environment variables, and the OTP
version you are using. Most options affect mainly how Unicode datais displayed, not the functionality of the APIsin
the standard libraries. This means that Erlang programs usually do not need to concern themselves with these options,
they are more for the development environment. An Erlang program can be written so that it works well regardless
of the type of system or the Unicode options that are in effect.

Here follows a summary of the settings affecting Unicode:
The LANGand LC_CTYPE environment variables

The language setting in the operating system mainly affects the shell. The terminal (that is, the group leader)
operates with { encodi ng, uni code} only if the environment tells it that UTF-8 is allowed. This setting is
to correspond to the terminal you are using.

The environment can also affect filename interpretation, if Erlang is started with flag +f na (which is default
from Erlang/OTP 17.0).

You can check the setting of this by calling i o: get opt s(), which gives you an option list containing
{encodi ng, uni code} or{encodi ng, | atinl}.

The+pc {uni code|l ati n1} flagtoerl (1)
This flag affects what is interpreted as string data when doing heuristic string detection in the shell and ini o/
i o_lib:format withthe" ~t p" and ~t P formatting instructions, as described earlier.

Y ou can check this option by calling i o: pri nt abl e_range/ 0, which returns uni code or | ati nl. To
be compatible with future (expected) extensions to the settings, rather usei o_| i b: printable_list/1to
check if alist is printable according to the setting. That function takes into account new possible settings returned
fromi o: printabl e_range/ 0.

The +f n{l |ula} [{Wi |e}] flagtoer] (1)

This flag affects how the filenames are to be interpreted. On operating systems with transparent file naming,
this must be specified to alow for file naming in Unicode characters (and for correct interpretation of filenames
containing characters > 255).

« +fnl means bytewise interpretation of filenames, which was the usual way to represent 1SO Latin-1
filenames before UTF-8 file naming got widespread.

e +f nu means that filenames are encoded in UTF-8, which is nowadays the common scheme (although not
enforced).

e +f na meansthat you automatically select between +f nl and +f nu, based on environment variables LANG
and LC_CTYPE. This is optimistic heuristics indeed, nothing enforces a user to have a terminal with the

Ericsson AB. All Rights Reserved.: STDLIB | 25

1.3 Using Unicode in Erlang

same encoding as the file system, but thisis usually the case. Thisis the default on al Unix-like operating
systems, except MacOS X.

Thefilename translation mode can be read with functionf i | e: nati ve_name_encodi ng/ 0, which returns
| at i n1 (bytewise encoding) or ut f 8.

epp: defaul t _encodi ng/ 0

This function returns the default encoding for Erlang source files (if no encoding comment is present) in the
currently running release. In Erlang/OTP R16B, | at i n1 (bytewise encoding) was returned. As from Erlang/
OTP 17.0, ut f 8 isreturned.

The encoding of each file can be specified using comments as described in the epp(3) module.
i 0: setopts/1,2andflags- ol dshel | /-noshel |

When Erlang is started with - ol dshel | or - noshel | , thel/O server for st andar d_i o is by default set to
bytewise encoding, while an interactive shell defaults to what the environment variables says.

You can set the encoding of a file or other 1/O server with function i 0: set opt s/ 2. This can also be
set when opening a file. Setting the terminal (or other st andar d_i o server) unconditionally to option
{'encodi ng, ut f 8} impliesthat UTF-8 encoded characters are written to the device, regardless of how Erlang
was started or the user's environment.

Opening files with option encodi ng is convenient when writing or reading text filesin a known encoding.
You can retrieve the encodi ng setting for an 1/0 server with functioni o: get opt s() .

1.3.13 Recipes

When starting with Unicode, one often stumbles over some common issues. This section describes some methods of
dealing with Unicode data.

Byte Order Marks

A common method of identifying encoding in text filesisto put a Byte Order Mark (BOM) first in the file. The BOM
isthe code point 16#FEFF encoded in the same way astheremaining file. If such afileisto beread, thefirst few bytes
(depending on encoding) are not part of the text. This code outlines how to open afile that is believed to have aBOM,
and sets the files encoding and position for further sequential reading (preferably using thei o module).

Notice that error handling is omitted from the code:

open bom file for reading(File) ->
{ok,F} = file:open(File, [read,binaryl),
{ok,Bin} = file:read(F,4),
{Type,Bytes} = unicode:bom to encoding(Bin),
file:position(F,Bytes),
io:setopts(F, [{encoding,Type}l),
{ok,F}.

Function uni code: bom t o_encodi ng/ 1 identifies the encoding from abinary of at least four bytes. It returns,
along with aterm suitable for setting the encoding of thefile, the byte length of the BOM, so that the file position can
be set accordingly. Notice that functionf i | e: posi ti on/ 2 always works on byte-offsets, so that the byte length
of the BOM is needed.

To open afilefor writing and place the BOM first is even simpler:

open bom file for writing(File,Encoding) ->
{ok,F} = file:open(File, [write,binary]),
ok = file:write(File,unicode:encoding to bom(Encoding)),
io:setopts(F, [{encoding,Encoding}]),
{ok,F}.

26 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

The file is in both these cases then best processed using the i 0 module, as the functions in that module can handle
code points beyond the SO Latin-1 range.

Formatted I/O

When reading and writing to Unicode-aware entities, like afile opened for Unicode translation, you probably want to
format text strings using the functionsin thei o module or thei o_I| i b module. For backward compatibility reasons,
thesefunctionsdo not accept any list asastring, but require aspecial translation modifier whenworking with Unicode
texts. The modifier ist . When applied to control character s in aformatting string, it accepts all Unicode code points
and expects binariesto be in UTF-8:;

1> io:format("~ts~n", [<<"3&0"/utf8>>]).

EED)

ok

2> io:format("~s~n", [<<"380"/utf8>>]).

A¥AxAq

ok
Clearly, the second i o: f or mat / 2 gives undesired output, as the UTF-8 binary isnot in| at i n1. For backward
compatibility, the non-prefixed control character s expects bytewise-encoded ISO Latin-1 charactersin binaries and
lists containing only code points < 256.

Aslong asthe datais always lists, modifier t can be used for any string, but when binary dataisinvolved, care must
be taken to make the correct choice of formatting characters. A bytewise-encoded binary isalso interpreted asastring,
and printed even when using ~t s, but it can be mistaken for a valid UTF-8 string. Avoid therefore using the ~t s
control if the binary contains bytewise-encoded characters and not UTF-8.

Functioni o_| i b: f or mat / 2 behaves similarly. It is defined to return a deep list of characters and the output can
easily be converted to binary datafor outputting on any deviceby asimpleer | ang: | i st _to_bi nary/ 1. When
the trandation modifier is used, the list can, however, contain characters that cannot be stored in one byte. Thecall to
erlang:list_to_binary/ 1 thenfails. However, if the I/O server you want to communicate with is Unicode-
aware, the returned list can still be used directly:

$ erl +pc unicode
Erlang R16B (erts-5.10.1) [source] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.10.1 (abort with "G)

1> io lib:format("~ts~n", ["FtoVvikovt"]).
["Tovvikovt","\n"]

2> io:put chars(io lib:format("~ts~n", ["ltovOvikovt"])).
Iovvikovt

ok

The Unicode string is returned as a Unicode list, which is recognized as such, as the Erlang shell uses the Unicode
encoding (and is started with all Unicode characters considered printable). The Unicode list is valid input to function
i 0: put _char s/ 2, so data can be output on any Unicode-capable device. If the device isaterminal, characters are
output in format \ x{ H...} if encodingis| ati n1. Otherwisein UTF-8 (for the non-interactive terminal: "oldshell"
or "noshell") or whatever is suitable to show the character properly (for an interactive terminal: the regular shell).

So, you can always send Unicode datato thest andar d_i o device. Files, however, accept only Unicode code points
beyond ISO Latin-1if encodi ng isset to something elsethan| at i nl.

Heuristic Identification of UTF-8

Whileit is strongly encouraged that the encoding of charactersin binary datais known before processing, that is not
always possible. On atypical Linux system, thereisamix of UTF-8 and 1SO Latin-1 text files, and there are seldom
any BOMs in the filesto identify them.

Ericsson AB. All Rights Reserved.: STDLIB | 27

1.3 Using Unicode in Erlang

UTF-8isdesigned so that SO Latin-1 characters with numbers beyond the 7-bit ASCII range are seldom considered
valid when decoded as UTF-8. Therefore one can usually use heuristics to determine if a file isin UTF-8 or if it
is encoded in SO Latin-1 (one byte per character). The uni code module can be used to determine if data can be
interpreted as UTF-8:

heuristic _encoding bin(Bin) when is binary(Bin) ->
case unicode:characters to binary(Bin,utf8,utf8) of
Bin ->
utf8;
7—>
latinl
end.

If you do not have a complete binary of the file content, you can instead chunk through
the file and check part by part. The return-tuple {i nconpl ete, Decoded, Rest} from function
uni code: characters_to_binary/ 1, 2, 3 comesinhandy. Theincomplete rest from one chunk of data read
fromthefileis prepended to the next chunk and we therefore avoid the problem of character boundaries when reading
chunks of bytesin UTF-8 encoding:

heuristic encoding file(FileName) ->
{ok,F} = file:open(FileName, [read,binary]),
loop_through file(F,<<>>,file:read(F,1024)).

loop_through file(,<<>>,eof) ->
utfs;
loop through file(, ,eof) ->
latinl;
loop_through file(F,Acc,{ok,Bin}) when is binary(Bin) ->
case unicode:characters to binary([Acc,Bin]) of
{error, , } ->
latinl;
{incomplete, ,Rest} ->
loop_through file(F,Rest,file:read(F,1024));
Res when is binary(Res) ->
loop_through file(F,<<>>,file:read(F,1024))
end.

Another option isto try to read the whole filein UTF-8 encoding and seeif it fails. Here we need to read thefile using
functioni o: get _char s/ 3, aswe have to read characters with a code point > 255:

heuristic _encoding file2(FileName) ->
{ok,F} = file:open(FileName, [read,binary, {encoding,utf8}1),
loop through file2(F,io:get chars(F,"'',1024)).

loop through file2(,eof) ->
utfs;

loop through file2(,{error, Err}) ->
latinl;

loop through file2(F,Bin) when is binary(Bin) ->
loop through file2(F,io:get chars(F,"'',1024)).

Lists of UTF-8 Bytes

For variousreasons, you can sometimes have alist of UTF-8 bytes. Thisisnot aregular string of Unicode characters, as
each list element does not contain one character. Instead you get the "raw" UTF-8 encoding that you havein binaries.
Thisiseasily converted to a proper Unicode string by first converting byte per byte into abinary, and then converting
the binary of UTF-8 encoded characters back to a Unicode string:

utf8 list to string(StrangelList) ->
unicode:characters to list(list to binary(StrangelList)).

28 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

Double UTF-8 Encoding

When working with binaries, you can get the horrible "double UTF-8 encoding", where strange characters are encoded
in your binaries or files. In other words, you can get a UTF-8 encoded binary that for the second time is encoded
as UTF-8. A common situation is where you read a file, byte by byte, but the content is already UTF-8. If you then
convert the bytes to UTF-8, using, for example, the uni code module, or by writing to a file opened with option
{encodi ng, ut f 8}, you have each byte in the input file encoded as UTF-8, not each character of the original text
(one character can have been encoded in many bytes). Thereis no real remedy for this other than to be sure of which
data is encoded in which format, and never convert UTF-8 data (possibly read byte by byte from afile) into UTF-8
again.

By far the most common situation where this occurs, iswhen you get lists of UTF-8 instead of proper Unicode strings,
and then convert them to UTF-8 in abinary or on afile:

wrong thing to do() ->
{ok,Bin} = file:read file("an utf8 encoded file.txt"),
MyList = binary to list(Bin), %% Wrong! It is an utf8 binary!
{ok,C} = file:open("catastrophe.txt", [write,{encoding,utf8}]),
io:put chars(C,MyList), %% Expects a Unicode string, but get UTF-8
%% bytes in a list!
file:close(C). %% The file catastrophe.txt contains more or less unreadable
%% garbage!

Ensure you know what a binary contains before converting it to a string. If no other option exists, try heuristics:

if you can not know() ->
{ok,Bin} = file:read file("maybe utf8 encoded file.txt"),
MyList = case unicode:characters to list(Bin) of
L when is list(L) ->
L;
_ ->
binary to list(Bin) %% The file was bytewise encoded
end,
%% Now we know that the list is a Unicode string, not a list of UTF-8 bytes
{ok,G} = file:open("greatness.txt", [write,{encoding,utf8}]),
io:put_chars(G,MyList), %% Expects a Unicode string, which is what it gets!
file:close(G). %% The file contains valid UTF-8 encoded Unicode characters!

Ericsson AB. All Rights Reserved.: STDLIB | 29

1.3 Using Unicode in Erlang

2 Reference Manual

30 | Ericsson AB. All Rights Reserved.: STDLIB

STDLIB

STDLIB

Application

The STDLIB application is mandatory in the sense that the minimal system based on Erlang/OTP consists of Kernel
and STDLIB. The STDLIB application contains no services.
Configuration

The following configuration parameters are defined for the STDLIB application. For more information about
configuration parameters, seethe app(4) modulein Kernel.

shell _esc = icl | abort
Can be used to change the behavior of the Erlang shell when ~G is pressed.
restricted_shell = nodul e()

Can be used to run the Erlang shell in restricted mode.
shel | _catch_exception = bool ean()

Can be used to set the exception handling of the evaluator process of Erlang shell.
shell _history length = integer() >= 0

Can be used to determine how many commands are saved by the Erlang shell.
shel | _pronpt _func = {Md, Func} | default

where

e Md = atom()

e Func = atom()

Can be used to set a customized Erlang shell prompt function.
shel | _saved_results = integer() >= 0

Can be used to determine how many results are saved by the Erlang shell.
shel | _strings = bool ean()

Can be used to determine how the Erlang shell outputs lists of integers.

See Also
app(4),application(3),shdl(3)

Ericsson AB. All Rights Reserved.: STDLIB | 31

array

array

Erlang module

Functional, extendible arrays. Arrays can have fixed size, or can grow automatically as needed. A default valueis used
for entries that have not been explicitly set.

Arrays uses zer 0-based indexing. This is a deliberate design choice and differs from other Erlang data structures, for
example, tuples.

Unless specified by the user when the array is created, the default value is the atom undef i ned. There is no
difference between an unset entry and an entry that has been explicitly set to the same value asthe default one (compare
reset/ 2). If you need to differentiate between unset and set entries, ensure that the default value cannot be confused
with the values of set entries.

The array never shrinks automatically. If anindex | has been used to set an entry successfully, al indicesin therange
[0,] stay accessible unlessthe array size is explicitly changed by callingr esi ze/ 2.

Examples:
Create afixed-size array with entries 0-9 set to undef i ned:

AO
10

array:new(10).
array:size(A0).

Create an extendible array and set entry 17 tot r ue, causing the array to grow automatically:

Al = array:set(17, true, array:new()).
18 = array:size(Al).
Read back a stored value:

true = array:get(17, Al).

Accessing an unset entry returns default value:

undefined = array:get(3, Al)

Accessing an entry beyond the last set entry also returns the default value, if the array does not have fixed size:

undefined = array:get(18, Al).
"Sparse" functions ignore default-valued entries:
A2 = array:set(4, false, Al).
[{4, false}, {17, true}] = array:sparse to orddict(A2).

An extendible array can be made fixed-size later:

A3 = array:fix(A2).

A fixed-size array does not grow automatically and does not allow accesses beyond the last set entry:

32| Ericsson AB. All Rights Reserved.: STDLIB

array

{'EXIT',{badarg, }}
{'EXIT',{badarg, }}

(catch array:set(18, true, A3)).
(catch array:get(18, A3)).

Data Types

array(Type)

A functional, extendible array. The representation is not documented and is subject to change without notice. Notice
that arrays cannot be directly compared for equality.

array() = array(term())

array _indx() = integer() >= 0

array opts() = array_opt() | [array_opt()]

array opt() =
{fixed, boolean()} |

fixed |
{default, Type :: term()} |
{size, N :: integer() >= 0} |

(N :: integer() >= 0)
indx_pairs(Type) = [i ndx_pair (Type)]l
indx_pair(Type) = {Index :: array_indx(), Type}

Exports

default(Array :: array(Type)) -> Value :: Type
Getsthe value used for uninitialized entries.
Seealso new 2.

fix(Array :: array(Type)) -> array(Type)
Fixesthe array size. This prevents it from growing automatically upon insertion.
Seedsoset/ 3 andrel ax/ 1.

foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)
Folds the array elements using the specified function and initial accumulator value. The elements are visited in order
from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

Seeasofol dr/ 3, map/ 2,sparse_fol dl /3.

foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types:
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements right-to-left using the specified function and initial accumulator value. The elements are
visited in order from the highest index to thelowest. If Funct i on isnot afunction, the call failswith reasonbadar g.

Ericsson AB. All Rights Reserved.: STDLIB | 33

array

Seeasofol dl /3, map/ 2.

from list(List :: [Value :: Typel) -> array(Type)
Equivalenttof rom | i st (Li st, undefi ned).

from list(List :: [Value :: Type], Default :: term()) ->
array (Type)

Convertsalist to an extendible array. Def aul t is used as the value for uninitialized entries of the array. If Li st is
not a proper list, the call fails with reason badar g.

Seealsonew 2,to_list/1.

from orddict(Orddict :: indx_pairs(Value :: Type)) -> array(Type)
Equivalenttof r om or ddi ct (Orddi ct, undefined).

from orddict(Orddict :: indx_pairs(Value :: Type),
Default :: Type) ->
array (Type)

Converts an ordered list of pairs{ | ndex, Val ue} to acorresponding extendible array. Def aul t isused asthe
value for uninitialized entries of the array. If Or ddi ct isnot aproper, ordered list of pairs whose first elements are
non-negative integers, the call failswith reason badar g.

Seedsonew 2,to_orddict/ 1.

get(I :: array_indx(), Array :: array(Type)) -> Value :: Type

Gets the value of entry | . If | is not a non-negative integer, or if the array has fixed size and | is larger than the
maximum index, the call fails with reason badar g.

If the array does not have fixed size, the default value for any index | greater than si ze(Arr ay) - 1 isreturned.
Seedsoset/ 3.

is array(X :: term()) -> boolean()

Returnst r ue if Xisan array, otherwise f al se. Natice that the check is only shallow, as there is no guarantee that
Xisawell-formed array representation even if thisfunction returnst r ue.

is fix(Array :: array()) -> boolean()
Checksif the array hasfixed size. Returnst r ue if the array isfixed, otherwisef al se.
Seedsofi x/ 1.

map (Function, Array :: array(Typel)) -> array(Type2)
Types:
Function = fun((Index :: array_indx(), Typel) -> Type2)

Maps the specified function onto each array element. The elements are visited in order from the lowest index to the
highest. If Funct i on isnot afunction, the call fails with reason badar g.

Seeasofoldl/3,foldr/3,sparse_nap/ 2.

34 | Ericsson AB. All Rights Reserved.: STDLIB

array

new() -> array()
Creates anew, extendible array with initial size zero.
Seedsonew 1, new 2.

new(Options :: array_opts()) -> array()

Creates a new array according to the specified otions. By default, the array is extendible and has initia size zero.
Array indices start at 0.

Opt i ons isasingleterm or alist of terms, selected from the following:
N::integer() >= Oor{size, N :integer() >= 0}

Specifies the initial array size; thisalso implies{fi xed, true}. If Nisnot anon-negative integer, the call
failswith reason badar g.

fixedor{fixed, true}
Creates afixed-sizearray. Seeadsofi x/ 1.
{fixed, false}
Creates an extendible (non-fixed-size) array.
{default, Value}
Sets the default value for the array to Val ue.
Options are processed in the order they occur inthelist, that is, later options have higher precedence.
The default value is used as the value of uninitialized entries, and cannot be changed once the array has been created.
Examples:

array:new(100)

creates a fixed-size array of size 100.

array:new({default,0})

creates an empty, extendible array whose default value is 0.

array:new([{size,10},{fixed, false}, {default,-1}])

creates an extendible array with initial size 10 whose default valueis- 1.
Seedsofix/1,fromlist/2,get/2,new 0,new 2,set/ 3.

new(Size :: integer() >= 0, Options :: array opts()) -> array()

Creates a new array according to the specified size and options. If Si ze is not a non-negative integer, the call fails
with reason badar g. By default, the array has fixed size. Notice that any size specificationsin Opt i ons override
parameter Si ze.

If Options isaligt, thisisequivalent to new([{si ze, Size} | Options], otherwiseit is equivaent to
new([{size, Size} | [Options]].However, using thisfunction directly is more efficient.

Example:

Ericsson AB. All Rights Reserved.: STDLIB | 35

array

array:new(100, {default,0})

creates afixed-size array of size 100, whose default valueis 0.
Seeasonew 1.

relax(Array :: array(Type)) -> array(Type)
Makes the array resizable. (Reversesthe effectsof fi x/ 1.)
Seeadsofix/ 1.

reset(I :: array_indx(), Array :: array(Type)) -> array(Type)

Resets entry | to the default value for the array. If the value of entry | is the default value, the array is returned
unchanged. Reset never changes the array size. Shrinking can be done explicitly by callingr esi ze/ 2.

If I isnot anon-negative integer, or if the array hasfixed sizeand | islarger than the maximum index, the call fails
with reason badar g; compareset / 3

Seeasonew 2,set/ 3.

resize(Array :: array(Type)) -> array(Type)

Changes the array size to that reported by spar se_si ze/ 1. If the specified array has fixed size, also the resulting
array hasfixed size.

Seealsoresi zel 2,sparse_si ze/ 1.

resize(Size :: integer() >= 0, Array :: array(Type)) ->
array (Type)

Changethearray size. If Si ze isnot anon-negative integer, the call fails with reason badar g. If the specified array
has fixed size, also the resulting array has fixed size.

set(I :: array_indx(), Value :: Type, Array :: array(Type)) ->
array (Type)

Setsentry | of thearray to Val ue. If | isnot anon-negative integer, or if the array hasfixed sizeand | islarger than
the maximum index, the call fails with reason badar g.

If the array does not have fixed size, and | isgreater thansi ze(Array) - 1, thearray growsto sizel +1.
Seeasoget/2,reset/ 2.

size(Array :: array()) -> integer() >= 0

Gets the number of entries in the array. Entries are numbered from O to si ze(Arr ay) - 1. Hence, thisis aso the
index of thefirst entry that is guaranteed to not have been previously set.

Seeasoset/ 3,sparse_size/ 1.
sparse_foldl(Function, InitialAcc :: A, Array :: array(Type)) -> B

Types:
Function =

36 | Ericsson AB. All Rights Reserved.: STDLIB

array

fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements using the specified function and initial accumulator value, skipping default-valued entries.
The elements are visited in order from the lowest index to the highest. If Funct i on isnot afunction, the call fails
with reason badar g.

Seeasofol dl /3,sparse_fol dr/3.

sparse foldr(Function, InitialAcc :: A, Array :: array(Type)) -> B
Types.
Function =
fun((Index :: array_indx(), Value :: Type, Acc :: A) -> B)

Folds the array elements right-to-left using the specified function and initial accumulator value, skipping default-
valued entries. The elements are visited in order from the highest index to the lowest. If Funct i on isnot afunction,
the call fails with reason badar g.

Seeasofol dr/ 3,sparse_fol dl/3.

sparse map(Function, Array :: array(Typel)) -> array(Type2)
Types:
Function = fun((Index :: array_indx(), Typel) -> Type2)

M aps the specified function onto each array element, skipping default-valued entries. The elementsare visited in order
from the lowest index to the highest. If Funct i on isnot afunction, the call fails with reason badar g.

See also map/ 2.

sparse_size(Array :: array()) -> integer() >= 0

Gets the number of entriesin the array up until the last non-default-valued entry. That is, returns| +1 if | isthe last
non-default-valued entry in the array, or zero if no such entry exists.

Seedsoresi zel/ 1,si zel 1.

sparse to list(Array :: array(Type)) -> [Value :: Typel
Convertsthe array to alist, skipping default-valued entries.
Seeasoto_list/1.

sparse_to orddict(Array :: array(Type)) ->
i ndx_pairs(Value :: Type)

Convertsthe array to an ordered list of pairs{ | ndex, Val ue}, skipping default-valued entries.
Seeasoto_orddict/1.

to list(Array :: array(Type)) -> [Value :: Type]
Convertsthe array to alist.
Seealsofromlist/2,sparse to list/1.

to orddict(Array :: array(Type)) -> indx_pairs(Value :: Type)
Convertsthe array to an ordered list of pairs{ | ndex, Val ue}.
Seealsofrom orddi ct/2,sparse_to_orddict/1.

Ericsson AB. All Rights Reserved.: STDLIB | 37

assert.hrl

assert.hrl

Name

Theincludefileassert . hrl provides macrosfor inserting assertionsin your program code.
Include the following directive in the module from which the function is called:

-include lib("stdlib/include/assert.hrl").

When an assertion succeeds, the assert macro yieldsthe atom ok . When an assertion fails, an exception of typeer r or

is generated. The associated error term has the form { Macr o, | nf 0o} . Macr o is the macro name, for example,
assert Equal . I nf o isalist of tagged values, such as[{nodul e, M, {line, L}, ...],whichgives
more information about the location and cause of the exception. All entriesin the | nf o list are optional; do not rely
programmatically on any of them being present.

Each assert macro has a corresponding version with an extra argument, for adding comments to assertions. These
can for example be printed as part of error reports, to clarify the meaning of the check that failed. For example, ?
assert Equal (0, fib(0), "Fibonacci is defined for zero").Thecomment text can be any
character data (string, UTF8-binary, or deep list of such data), and will be included in the error term as{ corment ,
Text}.

If the macro NOASSERT isdefined whenassert . hr | isread by the compiler, the macros are defined as equivalent
to the atom ok. The test will not be performed and there is no cost at runtime.

For example, using er | ¢ to compile your modules, the following disables all assertions:
erlc -DNOASSERT=true *.erl

(The value of NOASSERT does not matter, only the fact that it is defined.)
A few other macros also have effect on the enabling or disabling of assertions:

« If NODEBUGIs defined, it implies NOASSERT (unless DEBUG s a so defined, which overrides NODEBUG).
* |f ASSERT isdefined, it overrides NOASSERT, that is, the assertions remain enabled.

If you prefer, you can thus use only DEBUG/NODEBUG as the main flags to control the behavior of the assertions
(which is useful if you have other compiler conditionals or debugging macros controlled by those flags), or you can
use ASSERT/NQASSERT to control only the assert macros.

Macros

assert (Bool Expr)
assert (Bool Expr, Comment)

Teststhat Bool Expr completes normally returningt r ue.

assert Not (Bool Expr)
assert Not (Bool Expr, Conment)

Teststhat Bool Expr completes normally returning f al se.

assert Mat ch(Guar dedPatt ern, Expr)
assert Mat ch(Guar dedPat tern, Expr, Conment)

Teststhat Expr completes normally yielding avalue that matches Guar dedPat t er n, for example:
?assertMatch({bork, }, f())

Noticethat aguardwhen . .. can beincluded:

38| Ericsson AB. All Rights Reserved.: STDLIB

assert.hrl

?assertMatch({bork, X} when X > 0, f())

assert Not Mat ch(Guar dedPattern, Expr)
assert Not Mat ch(Guar dedPattern, Expr, Conment)

Teststhat Expr completes normally yielding a value that does not match Guar dedPat t er n.
Asinassert Mat ch, Guar dedPat t er n can have awhen part.

assert Equal (Expect edVal ue, Expr)
assert Equal (Expect edVal ue, Expr, Conment)

Teststhat Expr completes normally yielding avalue that is exactly equal to Expect edVal ue.

assert Not Equal (Expect edVal ue, Expr)
assert Not Equal (Expect edVal ue, Expr, Conment)

Teststhat Expr completes normally yielding avalue that is not exactly equal to Expect edVal ue.

assert Exception(C ass, Term Expr)
assert Exception(C ass, Term Expr, Coment)

Tests that Expr completes abnormally with an exception of type Cl ass and with the associated Ter m The
assertion failsif Expr raises adifferent exception or if it completes normally returning any value.

Notice that both Cl ass and Ter mcan be guarded patterns, asin asser t Mat ch.

assert Not Exception(C ass, Term Expr)
assert Not Exception(C ass, Term Expr, Comment)

Tests that Expr does not evaluate abnormally with an exception of type Cl ass and with the associated Ter m
The assertion succeeds if Expr raises adifferent exception or if it completes normally returning any value.

Asinassert Excepti on, both O ass and Ter mcan be guarded patterns.

assertError(Term Expr)
assertError(Term Expr, Conment)

Equivalentto assert Excepti on(error, Term Expr)

assertExit(Term Expr)
assertExit(Term Expr, Conment)

Equivalenttoassert Exception(exit, Term Expr)

assert Throw Term Expr)
assert Throwm Term Expr, Conment)

Equivalenttoassert Excepti on(throw, Term Expr)

See Also
conpil e(3),erl c(3)

Ericsson AB. All Rights Reserved.: STDLIB | 39

base64

base64

Erlang module

Provides base64 encode and decode, see RFC 2045.

Data Types

ascii string() [1..255]

ascii_binary() = binary()

A bi nary() with ASCII charactersin therange 1 to 255.

Exports

decode(Base64) -> Data
decode to string(Base64) -> DataString
mime decode(Base64) -> Data
mime decode to string(Base64) -> DataString
Types:
Base64 = ascii_string() | ascii_binary()
Data = ascii_binary()
DataString = ascii_string()
Decodes a base64-encoded string to plain ASCII. See RFC 4648.

m nme_decode/ 1 and mi ne_decode_to_string/1 strip away illegal characters, while decode/ 1 and
decode_t o_string/ 1 only strip away whitespace characters.

encode(Data) -> Baseb64
encode to string(Data) -> Baseb64String
Types:

Data = ascii_string() | ascii_binary()

Base64 = ascii_binary()

Base64String = ascii_string()

Encodes aplain ASCI| string into base64. The result is 33% larger than the data

40 | Ericsson AB. All Rights Reserved.: STDLIB

href
href

beam_lib

beam_lib

Erlang module

Thismodule provides an interface to files created by the BEAM Compiler ("BEAM files"). Theformat used, avariant
of "EA IFF 1985" Standard for Interchange Format Files, divides datainto chunks.

Chunk data can be returned as binaries or as compound terms. Compound terms are returned when chunks are
referenced by names (atoms) rather than identifiers (strings). The recognized names and the corresponding identifiers
are asfollows:

e atons ("Atont)

e attributes ("Attr")

e conpile_info ("CInf")

 debug_info ("Dbgi")

e exports ("ExpT")

e inports ("I nmpT")

e indexed_ inports ("InpT")

« |abeled exports ("ExpT")

e labeled locals ("LocT")

e locals ("LocT")

Debug Information/Abstract Code

Optiondebug_i nf o canbe specified tothe Compiler (seeconpi | e(3)) to have debug information, such asErlang
Abstract Format, stored inthedebug_i nf o chunk. Tools such as Debugger and Xref require the debug information
to beincluded.

Source code can be reconstructed from the debug information. To prevent this, use encrypted debug information
(see below).

The debug information can aso be removed from BEAM files using strip/ 1, strip_files/1, and/or
strip_rel ease/ 1.

Reconstruct Source Code

The following example shows how to reconstruct Erlang source code from the debug information in a BEAM file
Beam

{ok,{ ,[{abstract code,{ ,AC}}]1}} = beam lib:chunks(Beam, [abstract code]).
io:fwrite("~s~n", [erl prettypr:format(erl syntax:form list(AC))]).

Encrypted Debug Information

The debug information can be encrypted to keep the source code secret, but till be able to use tools such as Debugger
or Xref.

To use encrypted debug information, a key must be provided to the compiler and beam | i b. The key is specified
asastring. It isrecommended that the string contains at least 32 characters and that both upper and lower case letters
aswell as digits and special characters are used.

Ericsson AB. All Rights Reserved.: STDLIB | 41

beam_lib

The default type (and currently the only type) of crypto algorithmisdes3_cbc, three rounds of DES. The key string
isscrambled using er | ang: md5/ 1 to generate the keys used for des3_cbc.

Asfar as we know by the time of writing, it isinfeasible to break des3_cbc encryption without any knowledge
of the key. Therefore, as long as the key is kept safe and is unguessable, the encrypted debug information should
be safe from intruders.

The key can be provided in the following two ways:

* Use Compiler option { debug_i nf o_key, Key}, seeconpi | e(3) and functioncrypt o_key_fun/ 1 to
register afun that returns the key whenever beam | i b must decrypt the debug information.

If no such funisregistered, beam | i b instead searchesfor an. er | ang. crypt file, see the next section.
« Storethekey inatext filenamed. er| ang. crypt .

In this case, Compiler option encr ypt _debug_i nf o can be used, seeconpi | e(3).

.erlang.crypt

beam | i b searchesfor. er | ang. cr ypt inthecurrent directory and then the home directory for the current user.
If thefileisfound and contains akey, beam | i b implicitly creates a crypto key fun and registersit.

File. erl ang. crypt isto contain asinglelist of tuples:
{debug info, Mode, Module, Key}

Mode is the type of crypto agorithm; currently, the only alowed value is des3_cbc. Modul e is either an atom,
in which case Key is only used for the module Modul e, or [], in which case Key is used for al modules. Key is
the non-empty key string.

Key in the first tuple where both Mode and Modul e match is used.
Thefollowingisan exampleof an. er | ang. cr ypt filethat returns the same key for all modules:
[{debug_info, des3 cbc, [1, "%>7}|pc/DM6Cga*68$Mw]L#& Gejr1G "}].

The following is aslightly more complicated example of an . er | ang. cr ypt providing one key for modulet and
another key for all other modules:

[{debug info, des3 cbc, t, "My KEY"},
{debug_info, des3 cbc, [], "%>7}|pc/DM6Cga*68$Mw]L#& Gejr]G"}].

Do not use any of the keys in these examples. Use your own keys. |

Data Types
beam() = file:filenane() | binary()
Each of the functions described below accept either thefilename (asastring) or abinary containingthe BEAM module.

chunkdata() =
{chunkid(), dataB()} |
{abstract code, abst_code()} |
{debug info, debug_info()} |

42 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

{attributes, [attrib_entry()]1} |
{compile info, [conpinfo_entry()1} |
{exports, [{atom(), arity()}1} |
{labeled exports, [labeled_entry()1} |
{imports, [mfa()]} |
{indexed imports,
[{i ndex(), module(), Function :: atom(), arity()}1} |
{locals, [{atom(), arity()}1} |
{labeled locals, [labeled_entry()1} |
{atoms, [{integer(), atom()}1}

Thelist of attributesissortedon Attri bute (inattri b_entry()) and each attribute name occurs once in the
list. The attribute values occur in the same order asin the file. The lists of functions are also sorted.

chunkid() = nonempty string()
"Attr" |"Clnf" | "Dbgi" | "ExpT" | "ImpT" | "LocT" | "AtU8"
dataB() = binary()

debug info() =
{DbgiVersion :: atom(), Backend :: module(), Data :: term()} |
no_debug info

The format stored in the debug_i nf o chunk. To retrieve particular code representation from the backend,
Backend: debug_i nfo(Format, Mdul e, Data, Opts) must beinvoked. For mat isan atom, such as
er | ang_v1 for the Erlang Abstract Format or cor e_v 1 for Core Erlang. Modul e isthe module represented by the
beamfileand Dat a isthe value stored in the debug info chunk. Opt s isany list of values supported by the Backend.
Backend: debug_i nf o/ 4 must return{ ok, Code} or{error, Tern}

Developersmust alwaysinvokethedebug i nf o/ 4 functionand never rely ontheDat a storedinthedebug_i nf o
chunk, as it is opague and may change at any moment. no_debug_i nf o means that chunk " Dbgi " is present,
but empty.
abst code() =

{AbstVersion :: atom(), forms()} | no abstract code

It is not checked that the forms conform to the abstract format indicated by Abst Ver si on.no_abstract _code
means that chunk " Abst " is present, but empty.

For modules compiled with OTP 20 onwards, the abst _code chunk is automatically computed from the
debug_i nf o chunk.
forms() = [erl _parse:abstract_forn() | erl_parse:form.info()]
compinfo entry() = {InfoKey :: atom(), term()}
attrib entry() =

{Attribute :: atom(), [AttributeValue :: term()]}
labeled entry() = {Function :: atom(), arity(), label ()}
index() = integer() >= 0
label() = integer()
chunkref() = chunknane() | chunkid()
chunkname () =

abstract code |

debug info |

attributes |

compile info |

exports |

Ericsson AB. All Rights Reserved.: STDLIB | 43

beam_lib

labeled exports |
imports |

indexed imports |
locals |

labeled locals |
atoms

chnk_rsn() =
{unknown chunk, file:filenanme(), atom()} |
{key missing or invalid,
file:filenane(),
abstract code | debug info} |
info_rsn()
info rsn() =
{chunk_too_big,
file:filenane(),

chunki d() ,
ChunkSize :: integer() >= 0,
FileSize :: integer() >= 0} |

{invalid beam file,
file:filenane(),

Position :: integer() >= 0} |
{invalid chunk, file:filename(), chunkid()} |
{missing chunk, file:filename(), chunkid()} |
{not_a beam file, file:filename()} |
{file error, file:filenanme(), file:posix()}

Exports

all chunks(File :: bean()) ->
{ok, beam lib, [{chunkid(), dataB()}1} |
{error, beam lib, info_rsn()}

Reads chunk data for all chunks.

build module(Chunks) -> {ok, Binary}

Types:
Chunks = [{chunkid(), dataB()}]
Binary = binary()

Builds aBEAM module (as a binary) from alist of chunks.

chunks(Beam, ChunkRefs) ->
{ok, {module(), [chunkdata()]}} |
{error, beam 1lib, chnk_rsn()}

Types.
Beam = beam()
ChunkRefs = [chunkref ()]

Reads chunk data for selected chunks references. The order of the returned list of chunk data is determined by the
order of thelist of chunks references.

44 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

chunks (Beam, ChunkRefs, Options) ->
{ok, {module(), [ChunkResult]}} |
{error, beam 1lib, chnk_rsn()}

Types.
Beam = beam()
ChunkRefs = [chunkref ()]
Options = [allow missing chunks]
ChunkResult =
chunkdata() | {ChunkRef :: chunkref(), missing chunk}

Reads chunk data for selected chunks references. The order of the returned list of chunk data is determined by the
order of thelist of chunks references.

By default, if any requested chunk is missing in Beam an error tuple is returned. However, if option
al | ow_m ssi ng_chunks isspecified, aresult isreturned even if chunksare missing. Intheresult list, any missing
chunksare represented as{ ChunkRef , m ssi ng_chunk} . Notice however that if chunk " At o' ismissing, that
isconsidered afatal error and the return valueisan er r or tuple.

clear crypto key fun() -> undefined | {ok, Result}
Types:
Result = undefined | term()
Unregisters the crypto key fun and terminates the process holding it, started by cr ypt o_key_fun/ 1.

Returns either { ok, undef i ned} if no crypto key funisregistered, or { ok, Ter n}, where Ter misthe return
value from Cr ypt oKeyFun(cl ear) ,seecrypt o_key_fun/ 1.

cmp(Beaml, Beam2) -> ok | {error, beam lib, cnmp_rsn()}

Types:
Beaml = Beam2 = bean()
cmp_rsn() =

{modules different, module(), module()} |
{chunks _different, chunkid()} |

different chunks |

info_rsn()

Comparesthe contents of two BEAM files. If themodule names are the same, and all chunksexcept for chunk " CI nf "
(the chunk containing the compilation information that is returned by Modul e: modul e_i nf o(conpi | €)) have
the same contents in both files, ok isreturned. Otherwise an error message is returned.

cmp dirs(Dirl, Dir2) ->
{Onlyl, Only2, Different} | {error, beam lib, Reason}

Types:
Dirl = Dir2 = atom() | file:filenane()
Onlyl = Only2 = [file:filename()]
Different =
[{Filenamel :: file:filename(), Filename2 :: file:filenane()}]
Reason = {not a directory, term()} | info_rsn()

Compares the BEAM files in two directories. Only files with extension " . beam' are compared. BEAM files that
exist only in directory Di r 1 (Di r 2) are returned in Onl y1 (Onl y2). BEAM files that exist in both directories

Ericsson AB. All Rights Reserved.: STDLIB | 45

beam_lib

but are considered different by cnp/ 2 are returned as pairs {Fi | enanel, Fi | enane2}, where Fi | enanel
(Fi I enane2) existsindirectory Di r 1 (Di r 2).

crypto_key fun(CryptoKeyFun) -> ok | {error, Reason}
Types:
CryptoKeyFun = crypto_fun()
Reason = badfun | exists | term()
crypto fun() = fun((crypto_fun_arg()) -> term())
crypto _fun arg() =
init | clear | {debug info, mode(), module(), file:filename()}
mode() = des3 chc

Registers an unary fun that is called if beam | i b must read an debug_i nf o chunk that has been encrypted. The
funisheld in aprocessthat is started by the function.

If afunisalready registered when attempting to register afun, { er r or, exi st s} isreturned.
The fun must handl e the following arguments:
CryptoKeyFun(init) -> ok | {ok, NewCryptoKeyFun} | {error, Term}

Called when the fun is registered, in the process that holds the fun. Here the crypto key fun can do any
necessary initializations. If { ok, NewCr ypt oKeyFun} is returned, NewCr ypt oKeyFun is registered instead
of Crypt oKeyFun. If {error, Tern} isreturned, the registration is aborted and cr ypt o_key_fun/ 1 also
returns{error, Tern}.

CryptoKeyFun({debug info, Mode, Module, Filename}) -> Key

Called whenthekey isneeded for moduleModul e inthefilenamedFi | enane. Mode isthetypeof crypto agorithm;
currently, the only possible valueisdes3_cbc. Thecal isto fail (raise an exception) if no key is available.

CryptoKeyFun(clear) -> term()

Called beforethefunisunregistered. Here any cleaning up can bedone. Thereturn valueisnot important, but is passed
back to the caller of cl ear _crypt o_key_fun/ 0 aspart of itsreturn value.

diff dirs(Dirl, Dir2) -> ok | {error, beam lib, Reason}

Types:
Dirl = Dir2 = atom() | file:filenane()
Reason = {not a directory, term()} | info_rsn()

Comparesthe BEAM filesin two directoriesascnp_di r s/ 2, but the names of filesthat exist in only one directory
or are different are presented on standard output.

format_error(Reason) -> io_lib:chars()
Types:
Reason = term()

For a specified error returned by any function in this module, this function returns a descriptive string of the error in
English. For file errors, functionfi | e: f or mat _err or (Posi x) isto be caled.

info(Beam) -> [InfoPair] | {error, beam lib, info_rsn()}
Types:

46 | Ericsson AB. All Rights Reserved.: STDLIB

beam_lib

Beam = beam()
InfoPair =
{file, Filename :: file:filenane()} |

{binary, Binary :: binary()} |
{module, Module :: module()} |

{chunks,
[{ChunkId :: chunkid(),
Pos :: integer() >= 0,

Size :: integer() >= 0}1}

Returns alist containing some information about a BEAM fileastuples{ It em | nf o}:
{file, Filenane} | {binary, Binary}

The name (string) of the BEAM file, or the binary from which the information was extracted.
{odul e, Modul e}

The name (atom) of the module.
{chunks, [{Chunkld, Pos, Size}]}

For each chunk, the identifier (string) and the position and size of the chunk data, in bytes.

md5(Beam) -> {ok, {module(), MD5}} | {error, beam lib, chnk_rsn()}
Types:

Beam = beamn()

MD5 = binary()

Calculates an MD5 redundancy check for the code of the module (compilation date and other attributes are not
included).

strip(Beaml) ->
{ok, {module(), Beam2}} | {error, beam lib, info_rsn()}

Types:
Beaml = Beam2 = bean()

Removesall chunksfrom aBEAM file except those needed by the loader. In particular, the debug information (chunk
debug i nfo andabst ract code) isremoved.

strip files(Files) ->
{ok, [{module(), Beam}]} |
{error, beam lib, info_rsn()}

Types.
Files = [beam()]
Beam = beam()
Removes all chunks except those needed by the loader from BEAM files. In particular, the debug information (chunk

debug_i nfoandabst ract _code)isremoved. Thereturned list containsoneelement for each specified filename,
inthe same order asinFi | es.

strip release(Dir) ->
{ok, [{module(), file:filename()}1} |

Ericsson AB. All Rights Reserved.: STDLIB | 47

beam_lib

{error, beam lib, Reason}

Types:
Dir = atom() | file:filename()
Reason = {not a directory, term()} | info_rsn()

Removes all chunks except those needed by the loader from the BEAM files of a release. Dir is to
be the ingtalation root directory. For example, the current OTP release can be stripped with the cal
beam |ib:strip_rel ease(code:root _dir()).

version(Beam) ->
{ok, {module(), [Version :: term()1}} |
{error, beam 1lib, chnk_rsn()}

Types:
Beam = beam()

Returns the module version or versions. A version is defined by module attribute - vsn(Vsn) . If this attribute is
not specified, the version defaults to the checksum of the module. Notice that if version Vsn isnot aligt, it is made
into one, that is{ ok, { Modul e, [Vsn] } } isreturned. If there are many - vsn module attributes, the result is the
concatenated list of versions.

Examples:

1> beam lib:version(a). % -vsn(1l).

{ok,{a, [1]}}

2> beam lib:version(b). % -vsn([1]).

{ok,{b, [1]1}}

3> beam lib:version(c). % -vsn([1]). -vsn(2).
{ok,{c,[1,21}}

4> beam lib:version(d). % no -vsn attribute

{ok, {d, [275613208176997377698094100858909383631] }}

48 | Ericsson AB. All Rights Reserved.: STDLIB

binary

binary

Erlang module

This module contains functions for manipulating byte-oriented binaries. Although the majority of functions could be
provided using bit-syntax, the functions in this library are highly optimized and are expected to either execute faster
or consume less memory, or both, than a counterpart written in pure Erlang.

The module is provided according to Erlang Enhancement Proposal (EEP) 31.

Thelibrary handles byte-oriented data. For bitstrings that are not binaries (does not contain whole octets of bits) a
badar g exception is thrown from any of the functions in this module.

Data Types

cp()

Opaque data type representing a compiled search pattern. Guaranteed to be a t upl e() to allow programs to
distinguish it from non-precompiled search patterns.

part() = {Start :: integer() >= 0, Length :: integer()}

A representaion of apart (or range) in abinary. St art is azero-based offset into abi nary() and Lengt h isthe
length of that part. Asinput to functions in this module, a reverse part specification is allowed, constructed with a
negative Lengt h, so that the part of the binary beginsat St art + Lengt h and is-Lengt h long. This is useful
for referencing the last N bytes of abinary as{si ze(Bi nary), -N}.Thefunctionsin thismodule always return
part () swith positive Lengt h.

Exports

at(Subject, Pos) -> byte()
Types.
Subject = binary()
Pos = integer() >= 0
Returnsthe byte at position Pos (zero-based) inbinary Subj ect asaninteger. If Pos >=byt e_si ze(Subj ect),
abadar g exceptionisraised.

bin to list(Subject) -> [byte()]
Types:
Subject = binary()
Sameasbin_to |ist(Subject, {0, byte size(Subject)}).

bin to list(Subject, PosLen) -> [byte()]
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 49

binary

Subject = binary()
PosLen = part()

Converts Subj ect to alist of byt e() s, each representing the value of one byte. par t () denotes which part of
thebi nar y() to convert.

Example:
1> binary:bin to list(<<"erlang">>, {1,3}).

n r'LaII
%% or [114,108,97] in list notation.

If PosLen in any way references outside the binary, abadar g exception israised.

bin to list(Subject, Pos, Len) -> [byte()]
Types:

Subject = binary()

Pos integer() >= 0

Len = integer()
Sameas bin_to_list(Subject, {Pos, Len}).

compile pattern(Pattern) -> cp()
Types:
Pattern = binary() | [binary()]
Builds an internal structure representing a compilation of a search pattern, later to be used in functions mat ch/ 3,

mat ches/ 3,split/3,orreplace/ 4. Thecp() returned isguaranteed to beat upl e() to allow programsto
distinguish it from non-precompiled search patterns.

When a list of bhinaries is specified, it denotes a set of alternative binaries to search for. For
example, if [<<"functional ">>, <<"progranmi ng">>] is specified as Patt ern, this means either
<<"functional ">> or <<" programi ng" >>". The pattern is a set of aternatives; when only a single binary
is specified, the set has only one element. The order of alternativesin a pattern is not significant.

Thelist of binaries used for search alternatives must be flat and proper.
If Pat t er nisnot abinary or aflat proper list of binarieswith length > 0, abadar g exception is raised.

copy(Subject) -> binary()
Types:

Subject = binary()
Sameascopy(Subj ect, 1).

copy(Subject, N) -> binary()
Types:
Subject = binary()
N = integer() >= 0
Creates abinary with the content of Subj ect duplicated N times.

This function always createsanew binary, evenif N = 1. By using copy/ 1 on abinary referencing alarger binary,
one can free up the larger binary for garbage collection.

50 | Ericsson AB. All Rights Reserved.: STDLIB

binary

By deliberately copying a single binary to avoid referencing a larger binary, one can, instead of freeing up the
larger binary for later garbage collection, create much more binary data than needed. Sharing binary datais usually
good. Only in specia cases, when small parts reference large binaries and the large binaries are no longer used in
any process, deliberate copying can be a good idea.

If N< O, abadar g exception israised.

decode unsigned(Subject) -> Unsigned
Types:

Subject = binary()

Unsigned = integer() >= 0
Sameasdecode_unsi gned(Subj ect, big).

decode unsigned(Subject, Endianness) -> Unsigned
Types:
Subject = binary()
Endianness = big | little
Unsigned = integer() >= 0
Converts the binary digit representation, in big endian or little endian, of a positive integer in Subj ect to an Erlang
i nteger().
Example:

1> binary:decode unsigned(<<169,138,199>>,big).
11111111

encode _unsigned(Unsigned) -> binary()
Types:

Unsigned = integer() >= 0
Sameasencode_unsi gned(Unsi gned, big).

encode unsigned(Unsigned, Endianness) -> binary()
Types:

Unsigned = integer() >= 0

Endianness = big | little

Converts a positive integer to the smallest possible representation in a binary digit representation, either big endian
or little endian.

Example:

1> binary:encode unsigned(11111111, big).
<<169,138,199>>

first(Subject) -> byte()
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 51

binary

Subject = binary()

Returnsthefirst byte of binary Subj ect asaninteger. If thesize of Subj ect iszero, abadar g exceptionisraised.

last(Subject) -> byte()
Types:
Subject = binary()
Returnsthelast byte of binary Subj ect asaninteger. If thesize of Subj ect iszero, abadar g exceptionisraised.

list to bin(BytelList) -> binary()
Types:
BytelList = iodata()
Worksexactly aserl ang: | i st _to_bi nary/ 1, added for completeness.

longest common prefix(Binaries) -> integer() >= 0
Types:
Binaries = [binary()]
Returns the length of the longest common prefix of the binariesin list Bi nar i es.

Example:

1> binary:longest common prefix([<<"erlang">>, <<"ergonomy">>]).
2

2> binary:longest common prefix([<<"erlang">>, <<"perl">>]).

0

If Bi nari es isnot aflat list of binaries, abadar g exception israised.

longest common suffix(Binaries) -> integer() >= 0
Types.
Binaries = [binary()]
Returns the length of the longest common suffix of the binariesinlist Bi nari es.

Example:
1> binary:longest_common_suffix([<<"erlang">>, <<"fang">>]).
3
2> binary:longest common suffix([<<"erlang">>, <<"perl">>]).
0

If Bi nari es isnot aflat list of binaries, abadar g exception is raised.

match(Subject, Pattern) -> Found | nomatch

Types.
Subject = binary()
Pattern = binary() | [binary()] | cp()

Found = part()
Sameasmat ch(Subj ect, Pattern, []).

52 | Ericsson AB. All Rights Reserved.: STDLIB

binary

match(Subject, Pattern, Options) -> Found | nomatch

Types.
Subject = binary()
Pattern = binary() | [binary()] | cp()

Found = part()

Options = [Option]

Option = {scope, part()}

part() = {Start :: integer() >= 0, Length :: integer()}
Searches for the first occurrence of Pat t er n in Subj ect and returns the position and length.
Thefunctionreturns{ Pos, Lengt h} for the binary in Pat t er n, starting at the lowest position in Subj ect .

Example:

1> binary:match(<<"abcde">>, [<<"bcde">>, <<"cd">>1,[]).
{1,4}

Even though <<" cd" >> ends before <<" bcde" >>, <<" bcde" >> begins first and is therefore the first match. If
two overlapping matches begin at the same position, the longest is returned.

Summary of the options:

{scope, { Start, Length}}
Only the specified part is searched. Return values still have offsets from the beginning of Subj ect . A negative
Lengt h isalowed as described in section Data Types in this manual.

If none of the stringsin Pat t er n isfound, the atom nomat ch isreturned.

For adescription of Pat t er n, seefunction conpi | e_pattern/ 1.

If {scope, {Start, Length}} is specified in the options such that St art > size of Subj ect, Start +
Length<OorStart +Lengt h >sizeof Subj ect,abadar g exception israised.

matches(Subject, Pattern) -> Found

Types.
Subject binary()
Pattern = binary() | [binary()] | cp()
Found = [part ()]

Sameasmat ches(Subj ect, Pattern, []).

matches(Subject, Pattern, Options) -> Found
Types.
Subject binary()
Pattern = binary() | [binary()] | cp()
Found = [part ()]
Options = [Option]
Option = {scope, part()}
part() = {Start :: integer() >= 0, Length :: integer()}

Asmat ch/ 2, but Subj ect is searched until exhausted and alist of all non-overlapping parts matching Pat t er n
isreturned (in order).

Thefirst and longest match is preferred to a shorter, which isillustrated by the following example:

Ericsson AB. All Rights Reserved.: STDLIB | 53

binary

1> binary:matches(<<"abcde">>,
[<<"bcde">>,<<"bc">>,<<"de">>]1,[1).

[{1,4}]

Theresult showsthat <<"bcde">> is selected instead of the shorter match <<"bc">> (which would have givenraiseto
one more match, <<"de">>). This corresponds to the behavior of POSIX regular expressions (and programs like awk),
but is not consistent with alternative matches in r e (and Perl), where instead lexical ordering in the search pattern
selects which string matches.

If none of the strings in a pattern is found, an empty list is returned.

For adescription of Pat t er n, seeconpi | e_patt er n/ 1. For adescription of available options, see mat ch/ 3.

If {scope, {Start, Length}} isspecifiedin the options such that St art > size of Subj ect, Start +
Length<QorStart + Lengthis>sizeof Subj ect,abadar g exceptionisraised.

part(Subject, PosLen) -> binary()
Types:
Subject = binary()
PosLen = part ()
Extracts the part of binary Subj ect described by PosLen.

A negative length can be used to extract bytes at the end of a binary:
1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.

2> binary:part(Bin, {byte size(Bin), -5}).
<<6,7,8,9,10>>

part/2 and part/3 are aso available in the erl ang module under the names bi nary part/2 and
bi nary_part/ 3. Those BlFs are allowed in guard tests.

If PosLen in any way references outside the binary, abadar g exception is raised.

part(Subject, Pos, Len) -> binary()
Types:

Subject = binary()

Pos = integer() >= 0

Len = integer()
Sameaspart (Subj ect, {Pos, Len}).

referenced byte size(Binary) -> integer() >= 0
Types:
Binary = binary()
If a binary references a larger binary (often described as being a subbinary), it can be useful to get the size of the

referenced binary. This function can be used in aprogram to trigger the use of copy/ 1. By copying abinary, one can
dereference the original, possibly large, binary that a smaller binary is areference to.

Example:

54 | Ericsson AB. All Rights Reserved.: STDLIB

binary

store(Binary, GBSet) ->
NewBin =
case binary:referenced byte size(Binary) of
Large when Large > 2 * byte size(Binary) ->
binary:copy(Binary);
->
Binary
end,
gb sets:insert(NewBin, GBSet).

In this example, we chose to copy the binary content beforeinsertingitingb_set s: set () if it referencesabinary
more than twice the data size we want to keep. Of course, different rules apply when copying to different programs.

Binary sharing occurs whenever binaries are taken apart. This is the fundamenta reason why binaries are fast,
decomposition can aways be done with O(1) complexity. In rare circumstances this data sharing is however
undesirable, why this function together with copy/ 1 can be useful when optimizing for memory use.

Example of binary sharing:

1> A = binary:copy(<<1l>>, 100).
<<1,1,1,1,1 ...

2> byte size(A).

100

3> binary:referenced byte size(A)
100

4> << :10/binary,B:10/binary, /binary>> = A.
<<1,1,1,1,1 ...

5> byte size(B).

10

6> binary:referenced byte size(B)
100

Binary data is shared among processes. |f another process still references the larger binary, copying the part this
process uses only consumes more memory and does not free up the larger binary for garbage collection. Use this
kind of intrusive functions with extreme care and only if areal problem is detected.

replace(Subject, Pattern, Replacement) -> Result

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()

Replacement = Result = binary()

Sameasr epl ace(Subj ect, Pattern, Replacenent,[]).

replace(Subject, Pattern, Replacement, Options) -> Result
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 55

binary

Subject binary()

Pattern binary() | [binary()] | cp()

Replacement = binary()

Options = [Option]

Option = global | {scope, part()} | {insert replaced, InsPos}
InsPos = OnePos | [OnePos]

OnePos = integer() >= 0

An integer() =< byte_size(Replacement)

Result = binary()

Constructsanew binary by replacing the partsin Subj ect matching Pat t er n with the content of Repl acenent .

If the matching subpart of Subj ect giving raise to the replacement is to be inserted in the result, option
{insert_replaced, |nsPos} insertsthe matching part into Repl acenment at the specified position (or
positions) before inserting Repl acenent into Subj ect .

Example:

1> binary:replace(<<"abcde">>,<<"b">>,<<"[]">>, [{insert replaced,b1}]).

<<"a[b]cde">>

2> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[]">>, [global, {insert replaced,1}]).
<<"al[blc[d]e">>

3> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[]">>, [global, {insert replaced,[1,1]}]).
<<"a[bblc[dd]e">>

4> binary:replace(<<"abcde">>, [<<"b">>,<<"d">>],<<"[-]">>, [global, {insert replaced, [1,2]}]).
<<"a[b-b]lc[d-d]e">>

If any position specified in | nsPos > size of the replacement binary, abadar g exception israised.
Options gl obal and{scope, part ()} workasforsplit/ 3. Thereturntypeisawaysabi nary().
For adescription of Pat t er n, seeconpi |l e_pattern/1

split(Subject, Pattern) -> Parts

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()
Parts = [binary()]

Sameasspl it (Subject, Pattern, []).

split(Subject, Pattern, Options) -> Parts

Types:
Subject = binary()
Pattern = binary() | [binary()] | cp()
Options = [Option]

Option = {scope, part()} | trim | global | trim all
Parts = [binary()]

SplitsSubj ect intoalist of binariesbased on Pat t er n. If option gl obal isnot specified, only thefirst occurrence
of Patt erninSubj ect givesriseto asplit.

The parts of Pat t er n found in Subj ect arenot included in the result.
Example:

56 | Ericsson AB. All Rights Reserved.: STDLIB

binary

1> binary:split(<<1,255,4,0,0,0,2,3>>, [<<0,0,0>>,<<2>>],[]).
[<<1,255,4>>, <<2,3>>]

2> binary:split(<<0,1,0,0,4,255,255,9>>, [<<0,0>>, <<255,255>>],[global]).
[<<0, 1>>,<<4>>,<<9>>]

Summary of options:

{scope, part()}

Works as in mat ch/ 3 and mat ches/ 3. Notice that this only defines the scope of the search for matching

strings, it does not cut the binary before splitting. The bytes before and after the scope are kept in the result. See
the example below.

trim

Removes trailing empty parts of the result (asdoest ri minre: split/ 3.
trim_all

Removes all empty parts of the resullt.
global

Repeats the split until Subj ect is exhausted. Conceptually option gl obal makes split work on the positions
returned by mat ches/ 3, whileit normally works on the position returned by mat ch/ 3.

Example of the difference between a scope and taking the binary apart before splitting:

1> binary:split(<<"banana">>, [<<"a">>],[{scope,{2,3}}]).
[<<Ilbanll>>'<<llnall>>]
2> binary:split(binary:part(<<"banana">>,{2,3}), [<<"a">>],[]).

[<<"n">>,<<"n">>]

Thereturntypeisawaysalist of binariesthat are al referencing Subj ect . This meansthat the datain Subj ect is
not copied to new binaries, and that Subj ect cannot be garbage collected until the results of the split are no longer
referenced.

For adescription of Pat t er n, seeconpi | e_pattern/ 1.

Ericsson AB. All Rights Reserved.: STDLIB | 57

C

Erlang module

This module enables users to enter the short form of some commonly used commands.

| These functions are intended for interactive use in the Erlang shell only. The module prefix can be omitted. |

Exports

bt(Pid) -> ok | undefined
Types:
Pid = pid()
Stack backtrace for a process. Equivalent to er | ang: pr ocess_di spl ay(Pi d, backtrace).

c(Module) -> {ok, ModuleName} | error
c(Module, Options) -> {ok, ModuleName} | error
c(Module, Options, Filter) -> {ok, ModuleName} | error
Types.
Module = atom()
Options = [conpile:option()]
Filter = fun((conpile:option()) -> boolean())
ModuleName = module()

Compiles and then purges and loads the code for a module. Mbdul e can be either a module name or a source file
path, with or without . er | extension. Opt i ons defaultsto[] .

If Modul e isan atom and is not the path of a sourcefile, then the code path is searched to locate the object file for the
module and extract its original compiler options and source path. If the sourcefileis not found in the original location,
filelib:find_source/1isusedtosearchfor it relative to the directory of the object file.

The source file is compiled with the the original options appended to the given Opt i ons, the output replacing the
old object fileif and only if compilation succeeds. A function Fi | t er can be specified for removing elements from
from the original compiler options before the new options are added.

Noticethat purging the code meansthat any processes lingering in old code for the module are killed without warning.
For moreinformation, seecode/ 3.

cd(Dir) -> ok
Types.
Dir = file: name()

Changes working directory to Di r, which can be a relative name, and then prints the name of the new working
directory.

Example:

58 | Ericsson AB. All Rights Reserved.: STDLIB

2> cd("../erlang").
/home/ron/erlang

erlangrc(PathList) -> {ok, file:filename()} | {error, term()}
Types.

PathList = [Dir :: file:name()]
Search Pat hLi st andload . er | ang resourcefileif found.

flush() -> ok
Flushes any messages sent to the shell.

help() -> ok
Displays help information: al valid shell internal commands, and commands in this module.

i() -> ok
ni() -> ok

i / 0 displays system information, listing information about all processes. ni / 0 does the same, but for all nodes the
network.

i(X, Y, Z) -> [{atom(), term()}]
Types:
X =Y =Z = integer() >= 0

Displaysinformation about a process, Equivalent to pr ocess_i nfo(pi d(X, Y, Z)), butlocation transparent.

1(Module) -> code:load ret()
Types:
Module = module()

Purges and loads, or reloads, a module by caling code: purge(Mdul e) followed by
code: | oad_fil e(Modul e).

Notice that purging the code meansthat any processes lingering in old code for the module are killed without warning.
For moreinformation, see code/ 3.

lc(Files) -> ok

Types:
Files = [File]
File

Compiles alist of filesby calingconpile:file(File, [report_errors, report_warnings]) for
eachFileinFil es.

For information about Fi | e, seefil e: fil ename().

Ericsson AB. All Rights Reserved.: STDLIB | 59

Im() -> [code:load ret()]

Reloads all currently loaded modules that have changed on disk (see m()). Returns the list of results from calling
I (M for each suchM

1s() -> ok
Listsfilesin the current directory.

1s(Dir) -> ok
Types:
Dir = fil e:name()
Listsfilesindirectory Di r or, if Di r isafile, only listsit.

m() -> ok
Displays information about the loaded modules, including the files from which they have been loaded.

m(Module) -> ok
Types.

Module = module()
Displaysinformation about Mbdul e.

mm() -> [module()]
Lists all modified modules. Shorthand for code: nodi fi ed_nodul es/ 0.

memory() -> [{Type, Size}]

Types:
Type = atom()
Size = integer() >= 0

Memory allocation information. Equivalent to er | ang: nenor y/ 0.

memory(Type) -> Size
memory(Types) -> [{Type, Size}]
Types:
Types = [Type]
Type = atom()
Size = integer() >= 0
Memory allocation information. Equivalentto er | ang: menory/ 1.

nc(File) -> {ok, Module} | error

nc(File, Options) -> {ok, Module} | error
Types:

60 | Ericsson AB. All Rights Reserved.: STDLIB

File = fil e: name()
Options = [Option] | Option
Option = conpil e: option()
Module = module()
Compiles and then loads the code for afile on all nodes. Opt i ons defaultsto[] . Compilation is equivalent to:

compile:file(File, Options ++ [report errors, report warnings])

nl(Module) -> abcast | error
Types.

Module = module()
Loads Modul e on al nodes.

pid(X, Y, Z) -> pid()
Types.
X =Y =1Z = integer() >= 0

Converts X, Y, Z to pid <X. Y. Z>. Thisfunction is only to be used when debugging.

pwd() -> ok
Prints the name of the working directory.

q() -> no _return()
Thisfunction is shorthand fori ni t : st op() , that is, it causes the node to stop in a controlled fashion.

regs() -> ok
nregs() -> ok
r egs/ 0 displaysinformation about all registered processes. nr egs/ 0 doesthe same, but for all nodesin the network.

uptime() -> ok
Prints the node uptime (as specified by er | ang: st ati sti cs(wal | _cl ock)) in human-readable form.

xm(ModSpec) -> void()

Types:
ModSpec = Mbdul e | Fil enane
Modul e = atom()

Fil ename = string()
Finds undefined functions, unused functions, and calls to deprecated functionsin amodule by calling xr ef : n1 1.

y(File) -> YeccRet
Types:
File = name()
YeccRet

Ericsson AB. All Rights Reserved.: STDLIB | 61

Generates an LALR-1 parser. Equivalent to:
yecc:file(File)
For information about File = nane(), see fil ename(3). For information about YeccRet, see

yecc: filel2.

y(File, Options) -> YeccRet
Types.
File = nanme()
Options, YeccRet
Generates an LALR-1 parser. Equivalent to:
yecc:file(File, Options)
For information about Fi | e = name(), seefil enanme(3) . For information about Opt i ons and YeccRet ,
seeyecc: filel2.
See Also
filenane(3),conpile(3),erlang(3),yecc(3),xref(3)

62 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

calendar

Erlang module

This module provides computation of local and universal time, day of the week, and many time conversion functions.

Timeisloca whenit isadjusted in accordance with the current time zone and daylight saving. Timeisuniversal when
it reflects the time at longitude zero, without any adjustment for daylight saving. Universal Coordinated Time (UTC)
timeis also called Greenwich Mean Time (GMT).

The time functions | ocal _ti ne/ 0 and uni ver sal _ti nme/ 0 in this module both return date and time. The is
because separate functions for date and time can result in a date/time combination that is displaced by 24 hours. This
occursif one of the functionsis called before midnight, and the other after midnight. This problem also appliesto the
Erlang BIFsdat e/ 0 andt i ne/ 0, and their useis strongly discouraged if areliable date/time stamp is required.

All dates conform to the Gregorian calendar. This calendar was introduced by Pope Gregory XlII in 1582 and was
used in all Catholic countries from this year. Protestant parts of Germany and the Netherlands adopted it in 1698,
England followed in 1752, and Russia in 1918 (the October revolution of 1917 took place in November according
to the Gregorian calendar).

The Gregorian calendar in this module is extended back to year 0. For agiven date, the gregorian days is the number
of days up to and including the date specified. Similarly, the gregorian seconds for a specified date and time is the
number of seconds up to and including the specified date and time.

For computing differences between epochsin time, use the functions counting gregorian days or seconds. If epochsare
specified aslocal time, they must be converted to universal time to get the correct value of the elapsed time between
epochs. Use of functiont i ne_di f f er ence/ 2 isdiscouraged.

Different definitionsexist for theweek of theyear. Thismodule containsaweek of theyear implementation conforming
to the 1SO 8601 standard. As the week number for a specified date can fall on the previous, the current, or on the
next year, it is important to specify both the year and the week number. Functions i so_week _nunber/ 0 and
i so_week_nunber/ 1 return atuple of the year and the week number.

Data Types

datetime() = {date(), tinme()}

datetimel970() = {{year1970(), nonth(), day()}, tinme()}
date() {year (), nonth(), day()}

year() integer() >= 0

Y ear cannot be abbreviated. For example, 93 denotes year 93, not 1993. The valid range depends on the underlying
operating system. The date tuple must denote avalid date.

Ericsson AB. All Rights Reserved.: STDLIB | 63

calendar

yearl970() = 1970..10000

month() = 1..12

day() = 1..31

time() = {bhour(), mnute(), second()}
hour() = 0..23

minute() = 0..59

second() = 0..59

daynum() = 1..7

ldom() = 28 | 29 | 30 | 31

yearweeknum() = {year(), weeknun()}
weeknum() = 1..53

Exports

date to gregorian days(Date) -> Days
date to gregorian days(Year, Month, Day) -> Days
Types.
Date = date()
Year = year()
Month = nont h()
Day = day()
Computes the number of gregorian days starting with year 0 and ending at the specified date.

datetime to gregorian seconds(DateTime) -> Seconds
Types:

DateTime = datetime()

Seconds = integer() >= 0

Computes the number of gregorian seconds starting with year 0 and ending at the specified date and time.

day of the week(Date) -> daynum()
day of the week(Year, Month, Day) -> daynum()

Types:
Date = date()
Year = year ()
Month = nont h()
Day = day()

Computesthe day of the week from the specified Year , Mont h, and Day . Returnsthe day of theweek as 1: Monday,
2: Tuesday, and so on.

gregorian days to date(Days) -> date()
Types:

Days = integer() >= 0
Computes the date from the specified number of gregorian days.

64 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

gregorian seconds to datetime(Seconds) -> datetime()
Types:

Seconds = integer() >= 0
Computes the date and time from the specified number of gregorian seconds.

is leap year(Year) -> boolean()
Types:

Year = year()
Checksif the specified year isaleap year.

iso week number() -> yearweeknun{)

Returnstuple { Year, WeekNun} representing the ISO week number for the actua date. To determine the actual
date, usefunction| ocal _ti me/ 0.

iso week number(Date) -> yearweeknun()
Types:
Date = date()
Returnstuple{ Year, WeekNumn} representing the SO week number for the specified date.

last_day of the month(Year, Month) -> LastDay
Types:

Year = year()

Month = nont h()

LastDay = | dom()

Computes the number of daysin amonth.

local time() -> datetime()
Returns the local time reported by the underlying operating system.

local time to universal time(DateTimel) -> DateTime2
Types:
DateTimel = DateTime2 = dateti nel970()

Converts from local time to Universal Coordinated Time (UTC). Dat eTi mel must refer to alocal date after Jan
1, 1970.

This function is deprecated. Use | ocal _tine_to_universal tine_dst/1 instead, as it gives a more
correct and complete result. Especially for the period that does not exist, as it is skipped during the switch to
daylight saving time, this function still returns aresult.

local time to universal time dst(DateTimel) -> [DateTime]
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 65

calendar

DateTimel = DateTime = dateti nel1970()

Converts from local time to Universal Coordinated Time (UTC). Dat eTi mel must refer to alocal date after Jan
1, 1970.

Thereturn valueisalist of 0, 1, or 2 possible UTC times:

[]

For alocal { Dat el, Ti mel} during the period that is skipped when switching to daylight saving time, there
isno corresponding UTC, asthelocal timeisillegal (it has never occured).

[Dst Dat eTi neUTC, Dat eTi neUT(C]

For alocal { Dat el, Ti mel} during the period that is repeated when switching from daylight saving time,
two corresponding UTCs exist; one for the first instance of the period when daylight saving time is still active,
and one for the second instance.

[Dat eTi neUT(C]
For all other local times only one corresponding UTC exists.

now to datetime(Now) -> dateti mel1970()
Types:
Now = erlang:tinestanp()
Returns Universal Coordinated Time (UTC) converted from thereturn valuefromer | ang: t i mest anp/ 0.

now_to local time(Now) -> datetinmel970()
Types:
Now = erl ang:ti nmestanp()
Returnslocal date and time converted from the return valuefrom er | ang: ti nest anp/ 0.

now_to universal time(Now) -> datetinel970()
Types:
Now = erl ang:tinestanmp()
Returns Universal Coordinated Time (UTC) converted from the return valuefromer | ang: ti mest anp/ 0.

rfc3339 to system time(DateTimeString) -> integer()
rfc3339 to system time(DateTimeString, Options) -> integer()
Types:

DateTimeString = rfc3339_string()

Options = [Option]

Option = {unit, rfc3339 tine unit()}

rfc3339 string() = [byte(), ...]

rfc3339 time unit() =

microsecond | millisecond | nanosecond | second

Converts an RFC 3339 timestamp into system time. The data format of RFC 3339 timestamps is described by RFC
3339.

Valid option:

66 | Ericsson AB. All Rights Reserved.: STDLIB

href
href

calendar

{unit, Unit}

The time unit of the return value. The default issecond.

1> calendar:rfc3339 to system time("2018-02-01T16:17:58+01:00").

1517498278

2> calendar:rfc3339 to system time("2018-02-01 15:18:02.0882",
[{unit, nanosecond}]).

1517498282088000000

seconds to daystime(Seconds) -> {Days, Time}
Types.

Seconds = Days = integer()

Time = time()

Converts a specified number of seconds into days, hours, minutes, and seconds. Ti e is always non-negative, but
Days isnegative if argument Seconds is.

seconds _to time(Seconds) -> tinme()
Types.
Seconds = secs_per_day()
secs_per_day() = 0..86400

Computes the time from the specified number of seconds. Seconds must be less than the number of seconds per
day (86400).

system time to local time(Time, TimeUnit) -> datetine()
Types:

Time = integer()

TimeUnit = erlang:tinme_unit()
Converts a specified system timeinto local date and time.

system time to rfc3339(Time) -> DateTimeString
system time to rfc3339(Time, Options) -> DateTimeString
Types:
Time = integer()
Options = [Option]
Option =
{offset, offset()} |
{time designator, byte()} |
{unit, rfc3339 tine _unit()}
DateTimeString = rfc3339_string()
offset() = [byte()] | (Time :: integer())
rfc3339 string() = [byte(), ...]
rfc3339 time unit() =
microsecond | millisecond | nanosecond | second

Converts a system time into an RFC 3339 timestamp. The data format of RFC 3339 timestamps is described by RFC
3339. The data format of offsetsis aso described by RFC 3339.

Ericsson AB. All Rights Reserved.: STDLIB | 67

href
href

calendar

Valid options:
{offset, Ofset}

The offset, either a string or an integer, to be included in the formatted string. An empty string, which is the
default, isinterpreted aslocal time. A non-empty string isincluded as is. The time unit of the integer is the same
astheoneof Ti ne.

{tinme_designator, Character}
The character used as time designator, that is, the date and time separator. The default is $T.
{unit, Unit}

Thetime unit of Ti me. The default issecond. If some other unitisgiven (mi | |1 i second, ni cr osecond,
or nanosecond), the formatted string includes a fraction of a second. The number of fractional second digits
isthree, six, or nine depending on what time unit is chosen. Notice that trailing zeros are not removed from the
fraction.

1> calendar:system time to rfc3339(erlang:system time(second)).

"2018-04-23T14:56:28+02:00"

2> calendar:system time to rfc3339(erlang:system time(second),
[{offset, "-02:00"}]).

"2018-04-23T10:56:52-02:00"

3> calendar:system time to rfc3339(erlang:system time(second),
[{offset, -7200}]).

"2018-04-23T10:57:05-02:00"

4> calendar:system time to rfc3339(erlang:system time(millisecond),
[{unit, millisecond}, {time designator, $\s}, {offset, "Z"}1]).

"2018-04-23 12:57:20.482Z"

system_time to universal time(Time, TimeUnit) -> datetinme()
Types:

Time = integer()

TimeUnit = erlang:tinme_unit()
Converts a specified system time into universal date and time.

time difference(T1l, T2) -> {Days, Time}
Types:
Tl = T2 = datetinme()
Days = integer()
Time = time()
Returns the difference betweentwo { Dat e, Ti ne} tuples. T2 isto refer to an epoch later than T1.

‘ Thisfunction is obsolete. Use the conversion functions for gregorian days and seconds instead. ‘

time to seconds(Time) -> secs_per_day()
Types:

68 | Ericsson AB. All Rights Reserved.: STDLIB

calendar

Time = time()
secs _per_day() = 0..86400
Returns the number of seconds since midnight up to the specified time.

universal time() -> datetine()

Returns the Universal Coordinated Time (UTC) reported by the underlying operating system. Returns local time if
universal timeis unavailable.

universal time to local time(DateTime) -> datetime()
Types:
DateTime = dateti mel970()
Converts from Universal Coordinated Time (UTC) to local time. Dat eTi me must refer to a date after Jan 1, 1970.

valid date(Date) -> boolean()
valid date(Year, Month, Day) -> boolean()
Types:

Date dat e()

Year = Month = Day = integer()

This function checks if adateisavalid.

Leap Years

The notion that every fourth year is aleap year is not completely true. By the Gregorian rule, ayear Y is aleap year
if one of the following rulesisvalid:

e Y isdivisible by 4, but not by 100.

* Y isdivisible by 400.

Hence, 1996 isaleap year, 1900 is not, but 2000 is.

Date and Time Source

Local time is obtained from the Erlang BIF | ocal ti me/ 0. Universal time is computed from the BIF
uni versal tine/0.

The following fapply:

e Thereare 86400 secondsin a day.

e Thereare 365 daysin an ordinary year.

* Thereare 366 daysin aleap year.

e Thereare 1461 daysin a4 year period.

e Thereare 36524 daysin a 100 year period.

e Thereare 146097 daysin a 400 year period.

e Thereare 719528 days between Jan 1, 0 and Jan 1, 1970.

Ericsson AB. All Rights Reserved.: STDLIB | 69

dets

dets

Erlang module

This module provides aterm storage on file. The stored terms, in this module called objects, are tuples such that one
element isdefined to bethekey. A Detstableisacollection of objectswith thekey at the same position stored on afile.

Thismoduleis used by the Mnesiaapplication, and is provided "asis" for userswho are interested in efficient storage
of Erlang terms on disk only. Many applications only need to store some terms in a file. Mnesia adds transactions,
queries, and distribution. The size of Dets files cannot exceed 2 GB. If larger tables are needed, table fragmentation
in Mnesia can be used.

Three types of Dets tables exist:

e set. A table of thistype has at most one object with a given key. If an object with akey aready present in the
table isinserted, the existing object is overwritten by the new object.

* bag. A table of thistype has zero or more different objects with a given key.

e duplicate_bag. A table of thistype has zero or more possibly matching objects with a given key.

Dets tables must be opened before they can be updated or read, and when finished they must be properly closed. If a

table is not properly closed, Dets automatically repairs the table. This can take a substantial time if the tableis large.

A Detstableis closed when the process which opened the table terminates. If many Erlang processes (users) open the

same Dets table, they share the table. The table is properly closed when all users have either terminated or closed the
table. Dets tables are not properly closed if the Erlang runtime system terminates abnormally.

A ~C command abnormally terminates an Erlang runtime system in a Unix environment with a break-handler.

As al operations performed by Dets are disk operations, it is important to realize that a single look-up operation
involvesaseriesof disk seek and read operations. The Detsfunctions are therefore much slower than the corresponding
et s(3) functions, although Dets exports a similar interface.

Dets organizes dataas alinear hash list and the hash list grows gracefully as more dataisinserted into the table. Space
management on the file is performed by what is called a buddy system. The current implementation keeps the entire
buddy system in RAM, which implies that if the table gets heavily fragmented, quite some memory can be used up.
The only way to defragment atable isto close it and then open it again with option r epai r settof or ce.

Notice that type or der ed_set in Etsis not yet provided by Dets, neither is the limited support for concurrent
updates that makes a sequence of fi r st and next calls safe to use on fixed ETS tables. Both these features may
be provided by Detsin afuture release of Erlang/OTP. Until then, the Mnesia application (or some user-implemented
method for locking) must be used to implement safe concurrency. Currently, no Erlang/OTP library has support for
ordered disk-based term storage.

All Detsfunctionsreturn{ error, Reason} if anerror occurs(first/ 1 and next/ 2 are exceptions, they exit
the processwith the error tuple). If badly formed arguments are specified, al functions exit the processwith abadar g

message.

Data Types

access() = read | read write

auto save() = infinity | integer() >= 0
bindings cont()

Opaque continuation used by nat ch/ 1 and nat ch/ 3.

70 | Ericsson AB. All Rights Reserved.: STDLIB

dets

cont()

Opague continuation used by bchunk/ 2.
keypos() = integer() >=1
match spec() = ets:match_spec()

Match specifications, see section Match Specificationin Erlangin ERTS User's Guideand thenrs_t r ansf or n{ 3)
module.

no slots() = default | integer() >= 0

object() = tuple()

object cont()

Opaque continuation used by mat ch_obj ect/ 1 and mat ch_obj ect/ 3.
pattern() = atom() | tuple()

For a description of patterns, seeet s: mat ch/ 2.

select cont()

Opague continuation used by sel ect/ 1 and sel ect/ 3.

tab name() = term()
type() = bag | duplicate bag | set

Exports

all() -> [tab_nane()]
Returns alist of the names of all open tables on this node.

bchunk(Name, Continuation) ->
{Continuation2, Data} |
'$end of table' |
{error, Reason}
Types:
Name = tab_nane()
Continuation = start | cont()
Continuation2 = cont ()
Data = binary() | tuple()
Reason = term()
Returns a list of objects stored in a table. The exact representation of the returned objects is not public. The lists of
data can be used for initializing atable by specifying value bchunk to optionf or mat of functioni ni t _t abl e/ 3
The Mnesia application uses this function for copying open tables.

Unless the table is protected using saf e_fi xt abl e/ 2, calsto bchunk/ 2 do possibly not work as expected if
concurrent updates are made to the table.

Thefirst timebchunk/ 2 iscalled, an initial continuation, the atom st ar t , must be provided.

bchunk/ 2 returns atuple { Cont i nuati on2, Dat a}, where Dat a isalist of objects. Conti nuati on2 is
another continuation that is to be passed on to a subsequent call to bchunk/ 2. With a series of callsto bchunk/ 2,
all table objects can be extracted.

bchunk/ 2 returns' $end_of _t abl e' when al objectsarereturned, or { error, Reason} if anerror occurs.

Ericsson AB. All Rights Reserved.: STDLIB | 71

dets

close(Name) -> ok | {error, Reason}
Types.
Name = tab_nane()
Reason = term()
Closes atable. Only processes that have opened atable are allowed to close it.

All open tables must be closed before the system is stopped. If an attempt is made to open atable that is not properly
closed, Dets automatically triesto repair it.

delete(Name, Key) -> ok | {error, Reason}
Types:

Name = tab_name()

Key = Reason = term()

Deletes al objects with key Key from table Nane.

delete all objects(Name) -> ok | {error, Reason}
Types:

Name = tab_name()

Reason = term()

Deletes all objectsfrom atablein amost constant time. However, if thetableif fixed, del et e_al | _obj ect s(T)
isequivalenttomat ch_del ete(T, ' _').

delete object(Name, Object) -> ok | {error, Reason}
Types.

Name = tab_nane()

Object = object()

Reason = term()

Deletes all instances of a specified object from atable. If atableis of type bag or dupl i cat e_bag, this function
can be used to delete only some of the objects with a specified key.

first(Name) -> Key | '$end of table'

Types:
Name = tab_nane()
Key = term()

Returns the first key stored in table Nane according to the internal order of thetable, or * $end_of t abl e' if the
tableis empty.

Unless the table is protected using saf e_fi xt abl e/ 2, subsequent calls to next /2 do possibly not work as
expected if concurrent updates are made to the table.

If an error occurs, the process is exited with an error tuple { error, Reason}. The error tupleis not returned, as
it cannot be distinguished from a key.

Therearetwo reasonswhy f i r st/ 1 and next / 2 are not to be used: they are not efficient, and they prevent the use
of key ' $end_of _t abl e' , asthisatom is used to indicate the end of the table. If possible, use functions mat ch,
mat ch_obj ect ,and sel ect for traversing tables.

72 | Ericsson AB. All Rights Reserved.: STDLIB

dets

foldl(Function, AccO, Name) -> Acc | {error, Reason}
foldr(Function, AccO, Name) -> Acc | {error, Reason}
Types:

Name = tab_name()

Function = fun((Object :: object(), AccIn) -> AccOut)

AccO = Acc = AccIn = AccOut = Reason = term()

CdlsFunct i on on successive elements of table Nane together with an extraargument Accl n. Thetable elements
are traversed in unspecified order. Funct i on must return a new accumulator that is passed to the next call. Acc0
isreturned if the table is empty.

from ets(Name, EtsTab) -> ok | {error, Reason}

Types:
Name = tab_name()
EtsTab = ets:tab()
Reason = term()

Deletes all objects of table Nare and then inserts all the objects of the ETS table Et sTab. The objects are inserted
in unspecified order. Aset s: saf e_fi xt abl e/ 2 iscalled, the ETS table must be public or owned by the calling
process.

info(Name) -> InfolList | undefined
Types:

Name = tab_name()

InfoList = [InfoTuple]

InfoTuple =
{file size, integer() >= 0} |
{filename, file:nane()} |

{keypos, keypos()} |
{size, integer() >= 0} |

{type, type()}
Returns information about table Nane asalist of tuples:
o {file_size, integer() >= 0}} - Thefilesize, in bytes.
e {filename, file:name()} - Thename of thefile where objects are stored
« {keypos, keypos()} - Thekey position.
e {size, integer() >= 0} - Thenumber of objects stored in the table.
« {type, type()} - Thetabletype.

info(Name, Item) -> Value | undefined

Types:

Name = tab_name()

Item =
access |
auto save |
bchunk format |
hash |
file size |

Ericsson AB. All Rights Reserved.: STDLIB | 73

dets

filename |
keypos |
memory |
no_keys |
no objects |
no_slots |
owner |
ram_file |
safe fixed |
safe fixed monotonic_time |
size |
type

Value = term()

Returns the information associated with | t emfor table Nane. In addition tothe {1 tem Val ue} pairs defined
fori nf o/ 1, the following items are allowed:

{access, access()} - Theaccess mode.
{auto_save, auto_save()} - Theautosaveinterval.

{bchunk_format, binary()} - An opague binary describing the format of the objects returned by
bchunk/ 2. The binary can be used asargumenttoi s_conpati bl e_chunk_f ormat/ 2.

{hash, Hash} - Describes which BIF is used to calculate the hash values of the objects stored in the Dets
table. Possible values of Hash:

e phash - Impliesthat theer | ang: phash/ 2 BIF isused.

e phash2 - Impliesthat theer | ang: phash2/ 1 BIF isused.

{menory, integer() >= 0} - Thefilesize, inbytes. The samevalueisassociated withitemfi | e_si ze.
{no_keys, integer >= 0()} - Thenumber of different keys stored in the table.

{no_objects, integer >= 0()} - Thenumber of objects stored in the table.

{no_slots, {Mn, Used, Max}} - The number of slots of the table. M n is the minimum number of
slots, Used isthe number of currently used slots, and Max is the maximum number of slots.

{owner, pid()} - Thepid of the process that handles requests to the Dets table.

{ramfile, boolean()} - Whetherthetableiskeptin RAM.

{safe fixed nonotonic_tine, SafeFixed} - If the table is fixed, Saf eFi xed is a tuple
{Fi xedAt Tine, [{Pid, RefCount}]}.Fi xedAt Ti ne is the time when the table was first fixed, and

Pi d isthe pid of the process that fixes the table Ref Count times. There can be any number of processesin the
list. If thetableis not fixed, Saf eFi xed istheatom f al se.

Fi xedAt Ti me corresponds to the result returned by er | ang: monot oni ¢_ti me/ 0 at the time of fixation.
Theuseof saf e_fi xed_nonot oni c_ti neis timewarp safe.

{safe_fixed, SafeFixed}-Thesameas{safe_fi xed_nonotonic_tine, SafeFi xed} except
the format and value of Fi xedAt Ti ne.

Fi xedAt Ti ne correspondsto the result returned by er | ang: t i nest anp/ 0 at the time of fixation. Notice
that when the system uses single or multi time warp modes, this can produce strange results. This is because the
useof saf e_fi xed isnot timewarp safe. Timewarp safe code must usesaf e_fi xed_nonotonic_tine
instead.

init table(Name, InitFun) -> ok | {error, Reason}
init table(Name, InitFun, Options) -> ok | {error, Reason}
Types:

74 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Name = tab_name()
InitFun = fun((Arg) -> Res)
Arg = read | close
Res =
end of input |
{[object()], InitFun} |
{Data, InitFun} |
term()
Options = Option | [Option]
Option = {min no slots, no_slots()} | {format, term | bchunk}
Reason = term()
Data = binary() | tuple()
Replaces the existing objects of table Nare with objects created by calling the input function | ni t Fun, see below.

The reason for using this function rather than calling i nser t / 2 isthat of efficiency. Notice that the input functions
are called by the process that handles requests to the Dets table, not by the calling process.

When called with argument r ead, function | ni t Fun isassumed to returnend_of _i nput when thereisno more
input, or { Obj ects, Fun},where Obj ect s isalist of objects and Fun isanew input function. Any other value
Val ue isreturned asanerror {error, {init_fun, Value}}.Eachinputfunctioniscalled exactly once, and
if an error occurs, the last function is called with argument ¢l ose, the reply of which isignored.

If the table type is set and more than one object exists with a given key, one of the objects is chosen. This is not
necessarily thelast object with the given key in the sequence of objectsreturned by theinput functions. Avoid duplicate
keys, otherwise the file becomes unnecessarily fragmented. This holds also for duplicated objects stored in tables of
typebag.

It is important that the table has a sufficient number of dlots for the objects. If not, the hash list starts to grow when
i nit_tabl e/ 2 returns, which significantly slows down access to the table for a period of time. The minimum
number of dotsisset by theopen _fil e/ 2 optionni n_no_sl ot s andreturned by thei nf o/ 2 itemno_sl ot s.
Seeasooptionni n_no_sl ot s below.

Argument Opt i ons isalist of { Key, Val} tuples, wherethe following values are alowed:

e {mn_no_slots, no_slots()} - Specifiesthe estimated number of different keysto be storedin thetable.
Theopen_fi | e/ 2 optionwith the same nameisignored, unlessthe tableis created, in which case performance
can be enhanced by supplying an estimate when initializing the table.

« {format, Format} - Specifiestheformat of the objectsreturned by function| ni t Fun. If For mat ist erm
(the default), | ni t Fun is assumed to return a list of tuples. If For mat isbchunk, | ni t Fun is assumed to
return Dat a asreturned by bchunk/ 2. This option overridesoptionm n_no_sl ot s.

insert(Name, Objects) -> ok | {error, Reason}
Types:

Name = tab_name()

Objects = object() | [object()]

Reason = term()

Inserts one or more objects into the table Nane. If there already exists an object with a key matching the key of some
of the given objects and the table typeis set , the old object will be replaced.

insert new(Name, Objects) -> boolean() | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 75

dets

Name = tab_name()
Objects = object() | [object()]
Reason = term()
Inserts one or more objects into table Nane. If there already exists some object with a key matching the key of any

of the specified objects, the tableis not updated and f al se isreturned. Otherwise the objects areinserted and t r ue
returned.

is compatible bchunk format(Name, BchunkFormat) -> boolean()
Types:
Name = tab_name()
BchunkFormat = binary()
Returns true if it would be possible to initidize table Nanme, using i nit_table/3 with option

{format, bchunk}, with objects read with bchunk/2 from some table T, such that calling
i nfo(T, bchunk_format) returnsBchunkFor mat .

is dets file(Filename) -> boolean() | {error, Reason}
Types:

Filename = file: nane()

Reason = term()

Returnst r ue if fileFi | enane isaDetstable, otherwisef al se.

lookup (Name, Key) -> Objects | {error, Reason}

Types:
Name = tab_name()
Key = term()

Objects = [object()]
Reason = term()
Returnsalist of all objects with key Key stored in table Nane, for example:

2> dets:open_file(abc, [{type, bag}l).
{ok,abc}

3> dets:insert(abc, {1,2,3}).

ok

4> dets:insert(abc, {1,3,4}).

ok

5> dets:lookup(abc, 1).
[{1,2,3},{1,3,4}]

If thetabletypeisset , thefunction returns either the empty list or alist with one object, as there cannot be more than
oneobject withagivenkey. If thetabletypeisbag ordupl i cat e_bag, thefunctionreturnsalist of arbitrary length.

Notice that the order of objects returned is unspecified. In particular, the order in which objects were inserted is not
reflected

match(Continuation) ->
{[Match], Continuation2} |
'$end of table' |

76 | Ericsson AB. All Rights Reserved.: STDLIB

dets

{error, Reason}

Types.
Continuation =
Match = [term()

Reason = term()

Continuation2 = bindi ngs_cont ()
]

Matches some objects stored in a table and returns a non-empty list of the bindings matching a specified pattern
in some unspecified order. The table, the pattern, and the number of objects that are matched are al defined by
Cont i nuat i on, which has been returned by a previous call tomat ch/ 1 or mat ch/ 3.

When all table objects are matched, ' $end_of _t abl e' isreturned.

match(Name, Pattern) -> [Match] | {error, Reason}
Types:
Name = tab_name()
Pattern = pattern()
Match = [term()]
Reason = term()
Returns for each object of table Nane that matches Pat t er n alist of bindings in some unspecified order. For a

description of patterns, see et s: mat ch/ 2. If the keyposth element of Pat t er n is unbound, all table objects are
matched. If the keyposth element is bound, only the objects with the correct key are matched.

match(Name, Pattern, N) ->
{[Match], Continuation} |
'$end of table' |
{error, Reason}

Types:
Name = tab_name()
Pattern = pattern()
N = default | integer() >= 0
Continuation = bindi ngs_cont ()
Match = [term()]
Reason = term()

Matches some or all objects of table Nane and returns a non-empty list of the bindings that match Pat t er n in some
unspecified order. For adescription of patterns, seeet s: mat ch/ 2.

A tuple of the bindings and a continuation is returned, unless the table is empty, in which case' $end_of _t abl €'
isreturned. The continuation is to be used when matching further objects by calling mat ch/ 1.

If the keyposth element of Pat t er n is bound, all table objects are matched. If the keyposth element is unbound,
all table objects are matched, N objects at atime, until at least one object matches or the end of the table is reached.
The default, indicated by giving N the value def aul t , isto let the number of objects vary depending on the sizes
of the objects. All objects with the same key are always matched at the same time, which implies that more than N
objects can sometimes be matched.

Thetableis alwaysto be protected using saf e_f i xt abl e/ 2 before calling mat ch/ 3, otherwise errors can occur
when calling mat ch/ 1.

match delete(Name, Pattern) -> ok | {error, Reason}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 77

dets

Name = tab_name()
Pattern = pattern()
Reason = term()

Deletes all objects that match Pat t er n from table Narnre. For a description of patterns, seeet s: mat ch/ 2.
If the keyposth element of Pat t er n isbound, only the objects with the correct key are matched.

match object(Continuation) ->
{Objects, Continuation2} |
'$end of table' |
{error, Reason}
Types:
Continuation = Continuation2 = object_cont()
Objects = [object()]
Reason = term()
Returns a non-empty list of some objects stored in a table that match a given pattern in some unspecified order. The
table, the pattern, and the number of objects that are matched are al defined by Cont i nuat i on, which has been
returned by a previous call tomat ch_obj ect/ 1 or mat ch_obj ect/ 3.

When all table objects are matched, ' $end_of _t abl e' isreturned.

match _object(Name, Pattern) -> Objects | {error, Reason}
Types:

Name = tab_name()

Pattern = pattern()

Objects = [object()]

Reason = term()

Returnsalist of all objectsof table Nane that match Pat t er n in some unspecified order. For adescription of patterns,
seeet s: match/ 2.

If the keyposth element of Pat t er n isunbound, all table objects are matched. If the keyposth element of Pat t er n
is bound, only the objects with the correct key are matched.

Using the mat ch_obj ect functions for traversing all table objects is more efficient than calling fi rst/ 1 and
next/2orslot/2

match object(Name, Pattern, N) ->
{Objects, Continuation} |
‘$end of table' |
{error, Reason}

Types:

78 | Ericsson AB. All Rights Reserved.: STDLIB

dets

Name = tab_name()

Pattern = pattern()

N = default | integer() >= 0
Continuation = object _cont()
Objects = [object ()]

Reason = term()

Matches some or all objects stored in table Nane and returns a non-empty list of the objects that match Pat t er n in
some unspecified order. For a description of patterns, seeet s: mat ch/ 2.

A list of objects and a continuation is returned, unless the table is empty, in which case ' $end_of _t abl e' is
returned. The continuation is to be used when matching further objects by calling mat ch_obj ect/ 1.

If the keyposth element of Pat t er n is bound, all table objects are matched. If the keyposth element is unbound,
all table objects are matched, N objects at atime, until at least one object matches or the end of the table is reached.
The default, indicated by giving Nthe value def aul t , isto let the number of objects vary depending on the sizes of
the objects. All matching objects with the same key are always returned in the same reply, which implies that more
than N objects can sometimes be returned.

Thetableisawaysto be protected using saf e _fi xt abl e/ 2 before calling mat ch_obj ect / 3, otherwise errors
can occur when calling mat ch_obj ect/ 1.

member(Name, Key) -> boolean() | {error, Reason}
Types.

Name = tab_nane()

Key = Reason = term()

Works like | ookup/ 2, but does not return the objects. Returnst r ue if one or more table elements has key Key,
otherwisef al se.

next(Name, Keyl) -> Key2 | '$end of table'
Types.

Name = tab_nane()

Keyl = Key2 = term()

Returns either the key following Keyl in table Nane according to the internal order of the table, or
" $end_of _t abl e' if thereisno next key.

If an error occurs, the processis exited with an error tuple{ er r or, Reason}.
To find thefirst key in thetable, usefi rst/ 1.

open file(Filename) -> {ok, Reference} | {error, Reason}
Types:

Filename = fil e: nane()

Reference = reference()

Reason = term()

Opens an existing table. If the table is not properly closed, it is repaired. The returned reference is to be used as the
table name. This function is most useful for debugging purposes.

Ericsson AB. All Rights Reserved.: STDLIB | 79

dets

ope

n file(Name, Args) -> {ok, Name} | {error, Reason}

Types.

Name = tab_nane()

Args [OpenArg]

OpenArg =
{access, access()} |
{auto_save, auto_save()} |
{estimated no objects, integer() >= 0} |
{file, file:name()} |
{max_no_slots, no_slots()} |
{min_no_slots, no_slots()} |
{keypos, keypos()} |
{ram_file, boolean()} |
{repair, boolean() | force} |
{type, type()}

Reason = term()

Opens atable. An empty Detstableis created if no file exists.

The

atom Nane is the table name. The table name must be provided in all subsequent operations on the table. The

name can be used by other processes as well, and many processes can share one table.

If two processes open the same table by giving the same name and arguments, the table has two users. If one user
closes the table, it remains open until the second user closesiit.

Argument Ar gs isalist of { Key, Val} tuples, wherethe following values are allowed:

80 |

{access, access()} - Existing tables can be opened in read-only mode. A table that is opened in read-
only mode is not subjected to the automatic file reparation algorithm if it is later opened after a crash. Defaults
toread wite.

{aut o_save, auto_save()} - Theautosaveinterval. If theinterval isaninteger Ti ne, thetableisflushed
to disk whenever it is not accessed for Ti me milliseconds. A table that has been flushed requires no reparation
when reopened after an uncontrolled emulator halt. If the interval isthe atom i nf i ni t y, autosave is disabled.
Defaults to 180000 (3 minutes).

{estimated_no_objects, no_slots()} -Equivaenttooptionm n_no_sl ot s.
{file, file:nanme()} - Thenameof thefileto be opened. Defaults to the table name.

{max_no_slots, no_slots()} - Themaximum number of sotsto be used. Defaultsto 32 M, whichisthe
maximal value. Notice that a higher value can increase the table fragmentation, and a smaller value can decrease
the fragmentation, at the expense of execution time.

{m n_no_slots, no_slots()} -Application performance can be enhanced with this flag by specifying,
when the table is created, the estimated number of different keysto be stored in the table. Defaults to 256, which
is the minimum value.

{keypos, keypos()} - The position of the element of each object to be used as key. Defaults to 1. The
ability to explicitly state the key position is most convenient when we want to store Erlang records in which the
first position of the record is the name of the record type.

{ramfile, boolean()} - Whether thetableisto be keptin RAM. Keeping the table in RAM can sound
like an anomaly, but can enhance the performance of applications that open atable, insert a set of objects, and
then close the table. When the table is closed, its contents are written to the disk file. Defaultstof al se.
{repair, Value} -Val ue canbeeither abool ean() or theatom f or ce. The flag specifiesif the Dets
server isto invoke the automatic file reparation algorithm. Defaultsto t r ue. If f al se is specified, no attempt
is made to repair the file, and { error, {needs_repair, FileNane}} isreturnedif the table must be
repaired.

Ericsson AB. All Rights Reserved.: STDLIB

dets

Valuef or ce meansthat areparation ismade even if thetableis properly closed. Thisisaseldom needed option.

Optionr epai r isignored if the tableis already open.
« {type, type()} - Thetabletype. Defaultstoset .

pid2name(Pid) -> {ok, Name} | undefined
Types:

Pid = pid()

Name = tab_name()

Returns the table name given the pid of a process that handles requests to atable, or undef i ned if thereis no such
table.

This function is meant to be used for debugging only.

repair _continuation(Continuation, MatchSpec) -> Continuation2
Types:

Continuation = Continuation2 = sel ect _cont()

MatchSpec = mat ch_spec()

Thisfunction can be used to restore an opaque continuation returned by sel ect / 3 or sel ect / 1 if the continuation
has passed through external term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specifications and therefore are
invalidated if converted to external term format. Given that the origina match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent sel ect / 1 calls even though it has
been stored on disk or on another node.

For more information and examples, seetheet s(3) module.

This function is rarely needed in application code. It is used by application Mnesia to provide distributed
sel ect/ 3 andsel ect/ 1 sequences. A normal application would either use Mnesia or keep the continuation
from being converted to external format.

The reason for not having an external representation of compiled match specifications is performance. It can be
subject to change in future releases, while this interface remains for backward compatibility.

safe fixtable(Name, Fix) -> ok
Types:

Name = tab_name()

Fix = boolean()

If Fi x istrue, table Nane is fixed (once more) by the calling process, otherwise the table isreleased. The tableis
also released when a fixing process terminates.

If many processes fix atable, the table remains fixed until all processes have released it or terminated. A reference
counter is kept on a per process basis, and N consecutive fixes require N releases to release the table.

Itisnot guaranteed that callstof i r st/ 1, next / 2, or select and match functionswork as expected even if the table
is fixed; the limited support for concurrency provided by the et s(3) module is not yet provided by Dets. Fixing a
table currently only disables resizing of the hash list of the table.

Ericsson AB. All Rights Reserved.: STDLIB | 81

dets

If objects have been added while the table was fixed, the hash list starts to grow when the table is released, which
significantly slows down access to the table for a period of time.

select(Continuation) ->
{Selection, Continuation2} |
'$end of table' |
{error, Reason}
Types:
Continuation = Continuation2 = sel ect _cont ()
Selection = [term()]
Reason = term()
Applies a match specification to some objects stored in atable and returns a non-empty list of the results. The table,
the match specification, and the number of objects that are matched are al defined by Cont i nuat i on, which is
returned by apreviouscall tosel ect/ 1 orsel ect/ 3.

When all objects of the table have been matched, ' $end_of _t abl e' isreturned.

select(Name, MatchSpec) -> Selection | {error, Reason}

Types:
Name = tab_nanme()
MatchSpec = mat ch_spec()
Selection = [term()]

Reason = term()

Returns the results of applying match specification Mat chSpec to all or some objects stored in table Nane. The
order of the objects is not specified. For a description of match specifications, see the ERTS User's Guide.

If the keyposth element of Mat chSpec is unbound, the match specification is applied to all objects of the table. If
the keyposth element is bound, the match specification is applied to the objects with the correct key(s) only.

Usingthesel ect functionsfor traversing all objects of atableis more efficient than callingf i r st/ 1 andnext/ 2
orslot/2.

select(Name, MatchSpec, N) ->
{Selection, Continuation} |
'$end of table' |
{error, Reason}
Types.
Name = tab_nane()
MatchSpec = mat ch_spec()
N = default | integer() >= 0
Continuation = sel ect_cont()
Selection = [term()]
Reason = term()

Returns the results of applying match specification Mat chSpec to some or al objects stored in table Nane. The
order of the objects is not specified. For a description of match specifications, see the ERTS User's Guide.

A tuple of the results of applying the match specification and a continuation is returned, unless the table is empty, in
which case' $end_of _t abl e' isreturned. The continuation is to be used when matching more objects by calling
sel ect/ 1.

82 | Ericsson AB. All Rights Reserved.: STDLIB

dets

If the keyposth element of Mat chSpec isbound, the match specification is applied to al objects of the table with the
correct key(s). If the keyposth element of Mat chSpec isunbound, the match specification is applied to all objects of
the table, N objects at atime, until at least one object matches or the end of the table is reached. The default, indicated
by giving Nthevalue def aul t , isto let the number of objects vary depending on the sizes of the objects. All objects
with the same key are always handled at the same time, which implies that the match specification can be applied
to more than N objects.

Thetableisalwaysto be protected using saf e_f i xt abl e/ 2 beforecallingsel ect / 3, otherwise errors can occur
when calling sel ect/ 1.

select delete(Name, MatchSpec) -> N | {error, Reason}
Types:

Name = tab_name()

MatchSpec = mat ch_spec()

N = integer() >= 0

Reason = term()
Deletes each object from table Nane such that applying match specification Mat chSpec to the object returns value
t r ue. For adescription of match specifications, see the ERTS User's Guide. Returns the number of deleted objects.
If the keyposth element of Mat chSpec is bound, the match specification is applied to the objects with the correct
key(s) only.

slot(Name, I) -> '$end of table' | Objects | {error, Reason}
Types:

Name = tab_name()

I = integer() >= 0

Objects = [object()]

Reason = term()

The objects of atable are distributed among dlots, starting with slot 0 and ending with slot n. Returnsthe list of objects
associated with slot | . If | >n,' $end_of tabl e' isreturned.

sync(Name) -> ok | {error, Reason}
Types.

Name = tab_nanme()

Reason = term()

Ensuresthat all updates made to table Nane are written to disk. Thisalso appliesto tables that have been opened with
flagram fil e settotr ue. Inthiscase, the contents of the RAM file are flushed to disk.

Notice that the space management data structures kept in RAM, the buddy system, is also written to the disk. This
can take sometimeif the table is fragmented.

table(Name) -> QueryHandle
table(Name, Options) -> QueryHandle
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 83

dets

Name = tab_name()
Options = Option | [Option]
Option = {n objects, Limit} | {traverse, TraverseMethod}
Limit = default | integer() >=1
TraverseMethod = first next | select | {select, match_spec()}
QueryHandle = gl c: query_handl e()
Returns a Query List Comprehension (QLC) query handle. The gl ¢(3) module provides a query language aimed

mainly for Mnesia, but ETS tables, Dets tables, and lists are also recognized by ql ¢ as sources of data. Calling
det s: tabl e/ 1, 2 isthe means to make Dets table Nare usableto gl c.

When there are only simple restrictions on the key position, gl ¢ usesdet s: | ookup/ 2 to look up the keys. When
that is not possible, the whole table istraversed. Optiont r aver se determines how thisis done:

« first_next - Thetableistraversed onekey at atimeby callingdet s: first/1anddets: next/ 2.

 select - Thetableis traversed by caling det s: sel ect/ 3 and det s: sel ect/ 1. Option n_obj ect s
determines the number of objects returned (the third argument of sel ect / 3). The match specification (the
second argument of sel ect / 3) isassembled by gl c:

« Simplefiltersare trandated into egquivalent match specifications.

« More complicated filters must be applied to al objects returned by sel ect / 3 given a match specification
that matches all objects.

« {select, match_spec()} - As for sel ect, the table is traversed by calling det s: sel ect/ 3 and
det s: sel ect/ 1. The difference is that the match specification is specified explicitly. This is how to state
match specifications that cannot easily be expressed within the syntax provided by gl c.

The following example uses an explicit match specification to traverse the table:

1> dets:open file(t, []),

ok dets:insert(t, [{1,a},{2,b},{3,c},{4,d}]),

MS ets:fun2ms(fun({X,Y}) when (X > 1) or (X <5) -> {Y} end),
QH1 = dets:table(t, [{traverse, {select, MS}}]).

An example with implicit match specification:

2> QH2 = qlc:q([{Y} || {X,Y} <- dets:table(t), (X > 1) or (X <5)]).

The latter example is equivalent to the former, which can be verified using function gl c: i nf o/ 1:

3> glc:info(QH1) =:= qlc:info(QH2).
true

gl c: i nfo/ 1 returns information about a query handle. In this case identical information is returned for the two
query handles.

to ets(Name, EtsTab) -> EtsTab | {error, Reason}
Types:

Name = tab_name()

EtsTab = ets:tab()

Reason = term()

Inserts the objects of the Dets table Narre into the ETS table Et sTab. The order in which the objects areinserted is
not specified. The existing objects of the ETS table are kept unless overwritten.

84 | Ericsson AB. All Rights Reserved.: STDLIB

dets

traverse(Name, Fun) -> Return | {error, Reason}
Types.
Name = tab_name()
Fun = fun((Object) -> FunReturn)
Object = object ()
FunReturn =
continue | {continue, Val} | {done, Value} | OtherValue

Return = [term()] | OtherValue
Val = Value = OtherValue = Reason = term()

Applies Fun to each object stored in table Nane in some unspecified order. Different actions are taken depending on
the return value of Fun. The following Fun return values are allowed:

conti nue

Continueto perform thetraversal. For example, the following function can be used to print the contents of atable:

fun(X) -> io:format("~p~n", [X]), continue end.

{continue, Val}
Continue the traversal and accumulate Val . The following function is supplied to collect all objects of atable

inalist:
fun(X) -> {continue, X} end.
{done, Val ue}

Terminate the traversal and return [Val ue | Acc] .
Any other value &t her Val ue returned by Fun terminates the traversal and is returned immediately.

update counter(Name, Key, Increment) -> Result

Types.
Name = tab_nane()
Key = term()
Increment = {Pos, Incr} | Incr

Pos = Incr = Result = integer()

Updates the object with key Key stored in table Name of type set by adding | ncr to the element at the Pos:th
position. The new counter value is returned. If no position is specified, the element directly following the key is
updated.

This functions provides a way of updating a counter, without having to look up an object, update the object by
incrementing an element, and insert the resulting object into the table again.

See Also
ets(3),mesia(3),qlc(3)

Ericsson AB. All Rights Reserved.: STDLIB | 85

dict

dict

Erlang module

Thismodule provides aKey-Val ue dictionary. The representation of adictionary is not defined.

This module provides the same interface as the or ddi ct (3) module. One difference is that while this module
considers two keys as different if they do not match (=: =), or ddi ct considers two keys as different if and only if
they do not compare equal (==).

Data Types

dict(Key, Value)

Dictionary as returned by new/ 0.
dict() = dict (term(), term())

Exports

append(Key, Value, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)
Appends anew Val ue to the current list of values associated with Key .
See also section Notes.

append list(Key, VallList, Dictl) -> Dict2
Types.
Dictl = Dict2 = dict (Key, Value)
ValList = [Value]

Appendsalist of values Val Li st to the current list of values associated with Key. An exception is generated if the
initial value associated with Key isnot alist of values.

See also section Notes.

erase(Key, Dictl) -> Dict2
Types.
Dictl = Dict2 = dict (Key, Value)

Erases all items with a given key from adictionary.

fetch(Key, Dict) -> Value
Types:
Dict = dict (Key, Value)

Returns the value associated with Key in dictionary Di ct . This function assumes that Key is present in dictionary
Di ct, and an exception is generated if Key isnot in the dictionary.

See also section Notes.

86 | Ericsson AB. All Rights Reserved.: STDLIB

dict

fetch keys(Dict) -> Keys

Types.
Dict = dict (Key, Value :: term())
Keys = [Key]

Returnsalist of all keysin dictionary Di ct .

take(Key, Dict) -> {Value, Dictl} | error
Types:

Dict = Dictl = dict (Key, Value)

Key = Value = term()

This function returns value from dictionary and a new dictionary without this value. Returnser r or if thekey is not
present in the dictionary.

filter(Pred, Dictl) -> Dict2

Types.
Pred = fun((Key, Value) -> boolean())
Dictl = Dict2 = dict (Key, Value)

Di ct 2 isadictionary of al keysand valuesin Di ct 1 for which Pr ed(Key, Val ue) istrue.

find(Key, Dict) -> {ok, Value} | error
Types:
Dict = dict (Key, Value)
Searches for akey indictionary Di ct . Returns{ ok, Val ue}, where Val ue isthe value associated with Key, or
error if thekey isnot present in the dictionary.

See aso section Notes.

fold(Fun, AccO, Dict) -> Accl
Types.
Fun = fun((Key, Value, AccIn) -> AccOut)
Dict = dict (Key, Value)
AccO = Accl = AccIn = AccOut = Acc
Calls Fun on successive keys and values of dictionary Di ct together with an extra argument Acc (short for

accumulator). Fun must return a new accumulator that is passed to the next call. AccO is returned if the dictionary
is empty. The evaluation order is undefined.

from list(List) -> Dict
Types:
Dict di ct (Key, Value)
List = [{Key, Value}]
Convertsthe Key-Val ue list Li st todictionary Di ct .

is empty(Dict) -> boolean()
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 87

dict

Dict = dict()

Returnst r ue if dictionary Di ct has no elements, otherwisef al se.

is key(Key, Dict) -> boolean()
Types:

Dict = dict (Key, Value :: term())
Testsif Key iscontained in dictionary Di ct .

map (Fun, Dictl) -> Dict2

Types:
Fun = fun((Key, Valuel) -> Value2)
Dictl = dict (Key, Valuel)
Dict2 = dict (Key, Value2)

Calls Fun on successive keys and values of dictionary Di ct 1 to return a new value for each key. The evauation
order is undefined.

merge(Fun, Dictl, Dict2) -> Dict3
Types:
Fun = fun((Key, Valuel, Value2) -> Value)
Dictl = dict (Key, Valuel)
Dict2 = dict (Key, Value2)
Dict3 di ct (Key, Value)
Merges two dictionaries, Di ct 1 and Di ct 2, to create a new dictionary. All the Key-Val ue pairs from both

dictionaries are included in the new dictionary. If a key occurs in both dictionaries, Fun is called with the key and
both values to return a new value. mer ge can be defined as follows, but is faster:

merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->
update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

new() -> dict()
Creates anew dictionary.

size(Dict) -> integer() >= 0
Types:
Dict = dict()
Returns the number of elementsin dictionary Di ct .

store(Key, Value, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)

Stores aKey-Val ue pair indictionary Di ct 2. If Key aready existsin Di ct 1, the associated value is replaced by
Val ue.

88 | Ericsson AB. All Rights Reserved.: STDLIB

dict

to list(Dict) -> List

Types.
Dict = dict (Key, Value)
List = [{Key, Value}]

Convertsdictionary Di ct to alist representation.

update(Key, Fun, Dictl) -> Dict2
Types:
Dictl = Dict2 = dict (Key, Value)
Fun = fun((Valuel :: Value) -> Value2 :: Value)

Updates avaue in adictionary by calling Fun on the value to get a new value. An exception is generated if Key is
not present in the dictionary.

update(Key, Fun, Initial, Dictl) -> Dict2

Types:
Dictl = Dict2 = dict (Key, Value)
Fun = fun((Valuel :: Value) -> Value2 :: Value)
Initial = Value

Updates avauein adictionary by calling Fun on the value to get anew value. If Key isnot present in the dictionary,
Initial isstored asthefirst value. For example, append/ 3 can be defined as:

append(Key, Val, D) ->
update(Key, fun (0ld) -> Old ++ [Val] end, [Val], D).

update counter(Key, Increment, Dictl) -> Dict2
Types.

Dictl = Dict2 = dict (Key, Value)

Increment = number()

Adds | ncr enrent to the value associated with Key and stores this value. If Key is not present in the dictionary,
| ncr enent isstored asthefirst value.

This can be defined as follows, but is faster:

update counter(Key, Incr, D) ->
update(Key, fun (0ld) -> 0ld + Incr end, Incr, D).
Notes

Functions append and append_| i st are included so that keyed values can be stored in alist accumulator, for
example:

> DO = dict:new(),
D1 = dict:store(files, [], DO),
D2 = dict:append(files, f1l, D1),
D3 = dict:append(files, f2, D2),
D4 = dict:append(files, f3, D3),

dict:fetch(files, D4).
[f1,f2,f3]

Ericsson AB. All Rights Reserved.: STDLIB | 89

dict

This saves the trouble of first fetching a keyed value, appending a new value to the list of stored values, and storing
the result.

Function f et ch isto be used if the key is known to be in the dictionary, otherwise function f i nd.

See Also
gb_trees(3),orddict(3)

90 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

digraph

Erlang module

This module provides aversion of labeled directed graphs. What makes the graphs provided here non-proper directed
graphs is that multiple edges between vertices are allowed. However, the customary definition of directed graphsis
used here.

A directed graph (or just "digraph”) isapair (V, E) of afinite set V of vertices and afinite set E of directed
edges (or just "edges'). The set of edges E isasubset of V x V (the Cartesian product of V with itself).

In this module, V is alowed to be empty. The so obtained unique digraph is called the empty digraph. Both
vertices and edges are represented by unique Erlang terms.

Digraphs can be annotated with more information. Such information can be attached to the vertices and to the
edges of the digraph. An annotated digraph is called alabeled digraph, and the information attached to a vertex
or an edgeiscalled alabel. Labels are Erlang terms.

An edge e = (v, w) issaid to emanate from vertex v and to be incident on vertex w.
The out-degr ee of avertex isthe number of edges emanating from that vertex.
Thein-degree of avertex isthe number of edges incident on that vertex.

If an edge is emanating from v and incident on w, then w is said to be an out-neighbor of v, and v is said to
be an in-neighbor of w.

A path Pfrom v[1] to v[K] in adigraph (V, E) is a non-empty sequence v[1], v[2], ..., V[K] of verticesin V such
that thereisan edge (v[i],v[i+1]) inEfor 1<=i < k.

Thelength of path Pisk-1.

Path Pissimpleif all vertices are distinct, except that the first and the last vertices can be the same.

Path Pisacycleif the length of Pisnot zero and v[1] = v[K].

A loop isacycle of length one.

A simple cycleisapath that is both a cycle and simple.

An acyclic digraph isadigraph without cycles.

Data Types

d type() = d_cyclicity() | d_protection()
d cyclicity() = acyclic | cyclic

d protection() = private | protected
graph()

A digraph asreturned by new 0, 1.

edge()

label() = term()

vertex()

Exports

add edge(G, V1, V2) -> edge() | {error, add_edge_err _rsn()}
add edge(G, V1, V2, Label) -> edge() | {error, add_edge_err_rsn()}
add edge(G, E, V1, V2, Label) ->

Ericsson AB. All Rights Reserved.: STDLIB | 91

digraph

edge() | {error, add_edge_err_rsn()}

Types.
G = graph()
E = edge()

V1 = V2 = vertex()
Label = | abel ()

add _edge err_rsn() =
{bad edge, Path :: [vertex()]} | {bad vertex, V :: vertex()}

add_edge/ 5 creates (or modifies) edge E of digraph G, using Label asthe (new) label of the edge. The edge is
emanating from V1 and incident on V2. Returns E.

add_edge(G V1, V2, Label) isequivalenttoadd edge(G E, V1, V2, Label),whereEisa
created edge. The created edgeisrepresented by teem [$e' | N, where Nisan integer >=0.
add_edge(G V1, V2) isequivdenttoadd edge(G V1, V2, []).

If the edge would create acyclein an acyclic digraph, { error, {bad_edge, Path}} isreturned. If Galready
has an edge with value E connecting adifferent pair of vertices, { error, {bad_edge, [V1, V2]}} isreturned.
If either of V1 or V2 isnot avertex of digraph G, { error, {bad_vertex, V}} isreturned,V =V1orV =V2.

add vertex(G) -> vertex()
add vertex(G, V) -> vertex()
add vertex(G, V, Label) -> vertex()
Types:
G = graph()
V = vertex()
Label = | abel ()

add_vert ex/ 3 creates(or modifies) vertex V of digraph G, using Label asthe (new) label of thevertex. ReturnsV.
add_vertex(G V) isequivdenttoadd _vertex(G V, []).

add_vert ex/ 1 creates a vertex using the empty list as label, and returns the created vertex. The created vertex is
represented by term [' $v' | N], where Nisan integer >= 0.

del edge(G, E) -> true

Types:
G = graph()
E = edge()
Deletes edge E from digraph G,

del edges(G, Edges) -> true
Types:

G = graph()

Edges = [edge()]
Deletesthe edgesin list Edges from digraph G

del path(G, V1, V2) -> true
Types:

92 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

G = graph()

V1 = V2 = vertex()
Deletes edges from digraph G until there are no paths from vertex V1 to vertex V2.
A sketch of the procedure employed:

e Find an arbitrary simple path v[1], v[2], ..., V[K] fromV1 toV2 in G
* Removeal edges of Gemanating from v[i] and incident to v[i+1] for 1 <=i <k (including multiple edges).
* Repeat until thereis no path between V1 and V2.

del vertex(G, V) -> true

Types:
G = graph()
V = vertex()

Deletes vertex V from digraph G. Any edges emanating from V or incident on V are also del eted.

del vertices(G, Vertices) -> true
Types:

G = graph()

Vertices = [vertex()]
Deletesthe verticesinlist Ver t i ces from digraph G

delete(G) -> true
Types:
G = graph()

Deletes digraph G. This call is important as digraphs are implemented with ETS. There is no garbage collection of
ETS tables. However, the digraph is deleted if the process that created the digraph terminates.

edge(G, E) -> {E, V1, V2, Label} | false

Types.
G = graph()
E = edge()

V1 = V2 = vertex()
Label = | abel ()

Returns{E, V1, V2, Label}, wherelLabel isthelabel of edge E emanating from V1 and incident on V2 of
digraph G. If no edge E of digraph Gexists, f al se isreturned.

edges(G) -> Edges
Types:
G = graph()
Edges = [edge()]
Returns alist of al edges of digraph G, in some unspecified order.

edges (G, V) -> Edges
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 93

digraph

G = graph()
V = vertex()
Edges = [edge()]
Returns alist of all edges emanating from or incident onV of digraph G, in some unspecified order.

get cycle(G, V) -> Vertices | false

Types:
G = graph()
V = vertex()
Vertices = [vertex(), ...]
If a simple cycle of length two or more exists through vertex V, the cycleisreturned asalist[V, ..., V] of

vertices. If aloop through V exists, theloop isreturned asalist [V] . If no cyclesthrough V exist, f al se isreturned.
get _pat h/ 3 isused for finding asimple cycle through V.

get path(G, V1, V2) -> Vertices | false

Types:
G = graph()
V1 = V2 = vertex()
Vertices = [vertex(), ...]
Triesto find asimple path from vertex V1 to vertex V2 of digraph G Returnsthe pathasalist[V1, ..., V2] of

vertices, or f al se if no simple path from V1 to V2 of length one or more exists.
Digraph Gistraversed in a depth-first manner, and the first found path is returned.

get short cycle(G, V) -> Vertices | false

Types:
G = graph()
V = vertex()
Vertices = [vertex(), ...]
Triestofind an asshort as possible simple cyclethrough vertex V of digraph G Returnsthecycleasalist[V, ..., V]

of vertices, or f al se if no simple cycle through V exists. Notice that aloop through Visreturned aslist[V, V].
get _short _pat h/ 3 isused for finding a simple cycle through V.

get short path(G, V1, V2) -> Vertices | false

Types:
G = graph()
V1 = V2 = vertex()
Vertices = [vertex(), ...]

Tries to find an as short as possible simple path from vertex V1 to vertex V2 of digraph G. Returns the path as alist
[V1, ..., V2] of vertices, or f al se if no simple path from V1 to V2 of length one or more exists.

Digraph Gistraversed in a breadth-first manner, and the first found path is returned.

in_degree(G, V) -> integer() >= 0
Types:

94 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

G
v

Returns the in-degree of vertex V of digraph G

graph()
vertex()

in edges(G, V) -> Edges
Types:
G = graph()
V = vertex()
Edges = [edge()]
Returnsalist of al edgesincident on V of digraph G, in some unspecified order.

in _neighbours(G, V) -> Vertex

Types:
G = graph()
V = vertex()

Vertex = [vertex()]
Returnsalist of all in-neighbors of V of digraph G, in some unspecified order.

info(G) -> Infolist

Types:
G = graph()
InfolList =
[{cyclicity, Cyclicity :: d_cyclicity()} |
{memory, NoWords :: integer() >= 0} |
{protection, Protection :: d_protection()}]

d cyclicity() = acyclic | cyclic
d protection() = private | protected
Returnsalist of { Tag, Val ue} pairsdescribing digraph G. The following pairs are returned:

e {cyclicity, Cyclicity},whereCyclicityiscyclicoracyclic, according tothe optionsgiven
to new.
« {nmenory, NoWbrds}, where NoWbr ds isthe number of words allocated to the ETS tables.

« {protection, Protection},whereProtectionisprotectedorprivat e, accordingtotheoptions
givento new.

new() -> graph()
Equivalenttonew([]) .

new(Type) -> graph()
Types.

Ericsson AB. All Rights Reserved.: STDLIB | 95

digraph

Type = [d_type()]
d type() = d_cyclicity() | d_protection()
d cyclicity() = acyclic | cyclic
d protection() = private | protected
Returns an empty digraph with properties according to the optionsin Ty pe:
cyclic
Allows cyclesin the digraph (default).
acyclic
The digraph isto be kept acyclic.
protected
Other processes can read the digraph (default).
private
The digraph can be read and modified by the creating process only.
If an unrecognized type option T is specified or Type isnot aproper list, abadar g exception is raised.

no _edges(G) -> integer() >= 0
Types:

G = graph()
Returns the number of edges of digraph G

no vertices(G) -> integer() >= 0
Types:

G = graph()
Returns the number of vertices of digraph G

out degree(G, V) -> integer() >= 0

Types:
G = graph()
V = vertex()

Returns the out-degree of vertex V of digraph G

out edges(G, V) -> Edges
Types.
G = graph()
V = vertex()
Edges = [edge()]
Returns alist of all edges emanating from V of digraph G, in some unspecified order.

out neighbours(G, V) -> Vertices
Types.

96 | Ericsson AB. All Rights Reserved.: STDLIB

digraph

G = graph()
V = vertex()
Vertices = [vertex()]

Returnsalist of all out-neighbors of V of digraph G, in some unspecified order.

vertex(G, V) -> {V, Label} | false

Types.
G = graph()
V = vertex()

Label = I abel ()

Returns{V, Label }, whereLabel isthelabel of the vertex V of digraph G, or f al se if no vertex V of digraph
Gexists.

vertices(G) -> Vertices
Types:
G = graph()
Vertices = [vertex()]
Returnsalist of all vertices of digraph G, in some unspecified order.

See Also
di graph_utils(3),ets(3)

Ericsson AB. All Rights Reserved.: STDLIB | 97

digraph_utils

digraph_utils

Erlang module

This module provides algorithms based on depth-first traversal of directed graphs. For basic functions on directed
graphs, seethedi gr aph(3) module.

A directed graph (or just "digraph™) isa pair (V, E) of afinite set V of vertices and afinite set E of directed
edges (or just "edges'). The set of edges E isasubset of V x V (the Cartesian product of V with itself).

Digraphs can be annotated with more information. Such information can be attached to the vertices and to the
edges of the digraph. An annotated digraph is called alabeled digraph, and the information attached to a vertex
or an edgeiscalled alabel.

An edge e = (v, w) issaid to emanate from vertex v and to be incident on vertex w.

If an edge is emanating from v and incident on w, then w is said to be an out-neighbor of v, and v is said to
be an in-neighbor of w.

A path P from v[1] to v[K] in adigraph (V, E) isanon-empty sequence v[1], v[2], ..., V[K] of verticesin V such
that thereisan edge (v[i],v[i+1]) inEfor 1<=i <k.

Thelength of path Pisk-1.

Path Pisacycleif the length of Pisnot zero and v[1] = v[K].

A loop isacycle of length one.

An acyclic digraph isadigraph without cycles.

A depth-first traversal of adirected digraph can be viewed as a process that visits all vertices of the digraph.
Initially, all verticesare marked asunvisited. Thetraversal startswith an arbitrarily chosen vertex, whichismarked
as visited, and follows an edge to an unmarked vertex, marking that vertex. The search then proceeds from that
vertex inthe samefashion, until thereisno edgeleading to an unvisited vertex. At that point the process backtracks,

and the traversal continues as long as there are unexamined edges. If unvisited vertices remain when all edges
from the first vertex have been examined, some so far unvisited vertex is chosen, and the process is repeated.

A partial ordering of aset Sisatransitive, antisymmetric, and reflexive relation between the objects of S.

The problem of topological sorting is to find a total ordering of Sthat is a superset of the partial ordering. A
digraph G = (V, E) is equivalent to arelation E on V (we neglect that the version of directed graphs provided
by the di gr aph module allows multiple edges between vertices). If the digraph has no cycles of length two or
more, the reflexive and transitive closure of E is apartia ordering.

A subgraph G' of G isadigraph whose vertices and edges form subsets of the vertices and edges of G.

G' is maximal with respect to a property P if all other subgraphs that include the vertices of G' do not have
property P.

A strongly connected component is amaximal subgraph such that there is a path between each pair of vertices.
A connected component isamaximal subgraph such that thereisapath between each pair of vertices, considering
all edges undirected.

An arborescenceis an acyclic digraph with avertex V, theroot, such that there is aunique path from V to every
other vertex of G.

A treeisan acyclic non-empty digraph such that thereis aunique path between every pair of vertices, considering
all edges undirected.

Exports

arborescence root(Digraph) -> no | {yes, Root}
Types:

98 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

Digraph = di graph: graph()
Root = di graph: vertex()
Returns{yes, Root} if Root istheroot of the arborescence Di gr aph, otherwise no.

components(Digraph) -> [Component]
Types:
Digraph = di graph: graph()
Component = [digraph: vertex()]

Returns alist of connected components.. Each component is represented by its vertices. The order of the vertices and
the order of the components are arbitrary. Each vertex of digraph Di gr aph occursin exactly one component.

condensation(Digraph) -> CondensedDigraph
Types:
Digraph = CondensedDigraph = di graph: graph()
Creates a digraph where the vertices are the strongly connected components of Di gr aph as returned by
strong_conponent s/ 1.If X and Y are two different strongly connected components, and vertices x and y exist

in X and Y, respectively, such that thereis an edge emanating from x and incident on y, then an edge emanating from
X andincidenton'Y iscreated.

The created digraph has the same type asDi gr aph. All vertices and edges have the default label [] .

Each cycleisincluded in some strongly connected component, which impliesthat atopological ordering of the created
digraph always exists.

cyclic strong components(Digraph) -> [StrongComponent]
Types:
Digraph = di graph: graph()
StrongComponent = [di graph: vertex()]
Returnsalist of strongly connected components. Each strongly component is represented by its vertices. The order of

the vertices and the order of the components are arbitrary. Only vertices that are included in some cyclein Di gr aph
are returned, otherwise the returned list is equal to that returned by st rong_conponent s/ 1.

is acyclic(Digraph) -> boolean()
Types:
Digraph = di graph: graph()
Returnst r ue if and only if digraph Di gr aph isacyclic.

is arborescence(Digraph) -> boolean()
Types:
Digraph = di graph: graph()
Returnst r ue if and only if digraph Di gr aph is an arborescence.

is tree(Digraph) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 99

digraph_utils

Digraph = di graph: graph()
Returnst r ue if and only if digraph Di gr aph isatree.

loop vertices(Digraph) -> Vertices
Types:
Digraph = di graph: graph()
Vertices = [digraph:vertex()]
Returnsalist of all verticesof Di gr aph that are included in some loop.

postorder(Digraph) -> Vertices
Types:
Digraph = di graph: graph()
Vertices = [di graph:vertex()]
Returns al vertices of digraph Di gr aph. The order is given by a depth-first traversal of the digraph, collecting

visited verticesin postorder. More precisely, the vertices visited while searching from an arbitrarily chosen vertex are
collected in postorder, and al those collected vertices are placed before the subsequently visited vertices.

preorder(Digraph) -> Vertices
Types:
Digraph = di graph: graph()
Vertices = [di graph:vertex()]

Returnsall verticesof digraph Di gr aph. Theorder isgiven by adepth-first traversal of the digraph, collecting visited
verticesin preorder.

reachable(Vertices, Digraph) -> Reachable

Types:
Digraph = di graph: graph()
Vertices = Reachable = [di graph: vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path in Di gr aph from
some vertex of Ver t i ces to the vertex. In particular, as paths can have length zero, the verticesof Verti ces are
included in the returned list.

reachable neighbours(Vertices, Digraph) -> Reachable
Types.

Digraph = di graph: graph()

Vertices = Reachable = [di graph: vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, thereisapath in Di gr aph of length
one or more from some vertex of Ver t i ces to the vertex. As a consequence, only those verticesof Ver t i ces that
are included in some cycle are returned.

reaching(Vertices, Digraph) -> Reaching
Types:

100 | Ericsson AB. All Rights Reserved.: STDLIB

digraph_utils

Digraph = di graph: graph()
Vertices = Reaching = [di graph: vertex()]
Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path from the vertex to

some vertex of Ver ti ces. In particular, as paths can have length zero, the vertices of Ver ti ces areincluded in
the returned list.

reaching neighbours(Vertices, Digraph) -> Reaching
Types.
Digraph = di graph: graph()
Vertices = Reaching = [di graph: vertex()]
Returns an unsorted list of digraph vertices such that for each vertex in the list, there is a path of length one or more

from the vertex to some vertex of Ver t i ces. Therefore only those verticesof Ver t i ces that areincluded in some
cycle are returned.

strong components(Digraph) -> [StrongComponent]
Types:
Digraph = di graph: graph()
StrongComponent = [digraph:vertex()]
Returns a list of strongly connected components. Each strongly component is represented by its vertices. The order

of the vertices and the order of the components are arbitrary. Each vertex of digraph Di gr aph occursin exactly one
strong component.

subgraph(Digraph, Vertices) -> SubGraph
subgraph(Digraph, Vertices, Options) -> SubGraph
Types:
Digraph = SubGraph = di graph: graph()
Vertices = [digraph:vertex()]
Options = [{type, SubgraphType} | {keep labels, boolean()}]
SubgraphType = inherit | [di graph:d_type()]
Creates a maximal subgraph of Di gr aph having as vertices those vertices of Di gr aph that are mentioned in
Verti ces.

If thevalue of optiont ype isi nheri t , whichisthe default, the type of Di gr aph isused for the subgraph as well.
Otherwise the option value of t ype isused asargument to di gr aph: new/ 1.

If thevalue of optionkeep_| abel s ist r ue, whichisthe default, the labels of verticesand edges of Di gr aph are
used for the subgraph aswell. If thevalueisf al se, defaultlabel [] isused for the vertices and edges of the subgroup.

subgraph(Di graph, Vertices) isequivaenttosubgraph(Di graph, Vertices, []).
If any of the arguments areinvalid, abadar g exception israised.

topsort(Digraph) -> Vertices | false
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 101

digraph_utils

Digraph = di graph: graph()
Vertices = [di graph:vertex()]

Returns atopological ordering of the vertices of digraph Di gr aph if such an ordering exists, otherwisef al se. For
each vertex in the returned list, no out-neighbors occur earlier in thelist.

See Also
di graph(3)

102 | Ericsson AB. All Rights Reserved.: STDLIB

epp

epp

Erlang module

The Erlang code preprocessor includes functions that are used by the conpi | e module to preprocess macros and
include files before the parsing takes place.

The Erlang source file encoding is selected by acomment in one of the first two lines of the sourcefile. Thefirst string
matching the regular expression codi ng\ s*[: =]\ s* ([- a- zA- Z0- 9]) + selects the encoding. If the matching
string is not a valid encoding, it is ignored. The valid encodings are Lat i n- 1 and UTF- 8, where the case of the
characters can be chosen freely.

Examples:

%% For this file we have chosen encoding = Latin-1

%% -*- coding: latin-1 -*-

Data Types

macros() = [atom() | {atom(), term()}]
epp_handle() = pid()

Handle to the epp server.
source encoding() = latinl | utf8

Exports

close(Epp) -> ok
Types:

Epp = epp_handl e()
Closes the preprocessing of afile.

default encoding() -> source_encodi ng()
Returns the default encoding of Erlang source files.

encoding to string(Encoding) -> string()
Types:
Encoding = source_encodi ng()

Returns a string representation of an encoding. The string is recognized by read_encoding/ 1, 2,
read_encodi ng_from binary/ 1, 2,andset _encodi ng/ 1, 2 asavalid encoding.

format error(ErrorDescriptor) -> io_lib:chars()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 103

epp

ErrorDescriptor = term()

TakesanEr r or Descri pt or and returnsastring that describesthe error or warning. Thisfunction isusually called
implicitly when processing an Er r or | nf o structure (see section Error Information).

open(Options) ->
{ok, Epp} | {ok, Epp, Extra} | {error, ErrorDescriptor}

Types:
Options =

[{default encoding, DefEncoding :: source_encoding()} |
{includes, IncludePath :: [DirectoryName :: file:nanme()1} |
{source name, SourceName :: file:name()} |
{macros, PredefMacros :: macros()} |
{name, FileName :: file:nanme()} |
extral

Epp = epp_handl e()
Extra = [{encoding, source_encodi ng() | none}]
ErrorDescriptor = term()

Opens afile for preprocessing.

If you want to change the file name of the implicit -file() attributes inserted during preprocessing, you can do with
{source_nane, SourceNane}.If unsetitwill default to the name of the opened file.

If extraisspecifiedin Opt i ons, thereturnvalueis{ ok, Epp, Extra} instead of { ok, Epp}.

open(FileName, IncludePath) ->
{ok, Epp} | {error, ErrorDescriptor}

Types:
FileName = fil e: nanme()
IncludePath = [DirectoryName :: file: name()]

Epp = epp_handl e()
ErrorDescriptor = term()

Equivalent to epp: open([{narme, FileNane}, {includes, |ncludePath}]).

open(FileName, IncludePath, PredefMacros) ->
{ok, Epp} | {error, ErrorDescriptor}

Types:
FileName = fil e: name()
IncludePath = [DirectoryName :: file:name()]

PredefMacros = macros()
Epp = epp_handl e()
ErrorDescriptor = term()

Equivalent to epp: open([{nane, Fi | eNane}, {i ncl udes, I ncl udePat h}, {macr os,
Pr edef Macros}]).

parse erl form(Epp) ->
{ok, AbsForm} |
{error, ErrorInfo} |

104 | Ericsson AB. All Rights Reserved.: STDLIB

epp

{warning, WarningInfo} |
{eof, Line}
Types.
Epp = epp_handl e()
AbsForm = erl parse:abstract_form()
Line = erl _anno:line()
ErrorInfo = erl _scan:error_info() | erl _parse:error_info()
WarningInfo = warni ng_i nfo()
warning info() = {erl _anno:location(), module(), term()}

Returns the next Erlang form from the opened Erlang sourcefile. Tuple{ eof , Li ne} isreturned at the end of the
file. Thefirst form corresponds to an implicit attribute-fi |l e(Fi | e, 1) . , whereFi | e isthefile name.

parse file(FileName, Options) ->
{ok, [Forml} |
{ok, [Form], Extra} |
{error, OpenError}

Types:

FileName = file: nane()

Options =
[{includes, IncludePath :: [DirectoryName :: file:name() 1} |
{source name, SourceName :: file:nane()} |
{macros, PredefMacros :: macros()} |
{default _encoding, DefEncoding :: source_encoding()} |
extra]

Form =

erl _parse:abstract_form() | {error, ErrorInfo} | {eof, Line}

Line = erl _anno:line()

ErrorInfo = erl _scan:error_info() | erl_parse:error_info()

Extra = [{encoding, source_encoding() | none}]

OpenError = file:posix() | badarg | system limit
Preprocesses and parses an Erlang source file. Notice that tuple { eof , Li ne} returned at the end of the file is
included asa"form".
If you want to change the file name of the implicit -file() attributes inserted during preprocessing, you can do with
{source_nane, Sour ceNane}. If unsetitwill default to the name of the opened file.

If ext raisspecifiedin Opti ons, thereturnvalueis{ ok, [Form , Extra} insteadof {ok, [Forni}.

parse file(FileName, IncludePath, PredefMacros) ->
{ok, [Form]} | {error, OpenError}

Types:
FileName = fil e: nane()
IncludePath = [DirectoryName :: file:name()]
Form =

Ericsson AB. All Rights Reserved.: STDLIB | 105

epp

erl _parse:abstract_form() | {error, ErrorInfo} | {eof, Line}
PredefMacros = macros()
Line = erl _anno:line()

ErrorInfo = erl _scan:error_info() | erl_parse:error_info()
OpenError = file:posix() | badarg | system limit
Equivalent to epp: parse_fil e(Fil eNane, [{incl udes, I ncl udePat h}, { macr os,

Pr edef Macr os}]).

read encoding(FileName) -> source_encoding() | none
read encoding(FileName, Options) -> source_encoding() | none
Types:
FileName = fil e: nanme()
Options = [Option]
Option = {in_comment only, boolean()}
Read the encoding from afile. Returns the read encoding, or none if no valid encoding is found.

Option i n_conment _onl y ist rue by default, which is correct for Erlang source files. If set to f al se, the
encoding string does not necessarily have to occur in a comment.

read encoding from binary(Binary) -> source_encodi ng() | none

read encoding from binary(Binary, Options) ->
sour ce_encodi ng() | none

Types:
Binary = binary()
Options = [Option]
Option = {in comment only, boolean()}
Read the encoding from a binary. Returns the read encoding, or none if no valid encoding is found.

Option i n_conment _onl y ist rue by default, which is correct for Erlang source files. If set to f al se, the
encoding string does not necessarily have to occur in a comment.

set _encoding(File) -> source_encoding() | none
Types:
File = io:device()
Reads the encoding from an 1/0 device and sets the encoding of the device accordingly. The position of the 1/O device

referenced by Fi | e is not affected. If no valid encoding can be read from the I/O device, the encoding of the I/O
deviceis set to the default encoding.

Returns the read encoding, or none if no valid encoding is found.

set encoding(File, Default) -> source_encoding() | none

Types:
Default = source_encodi ng()
File = i o:device()

Reads the encoding from an 1/0 device and sets the encoding of the device accordingly. The position of the 1/O device
referenced by Fi | e is not affected. If no valid encoding can be read from the I/O device, the encoding of the I/O
deviceis set to the encoding specified by Def aul t .

106 | Ericsson AB. All Rights Reserved.: STDLIB

epp

Returns the read encoding, or none if no valid encoding is found.

Error Information

Er r or I nf o isthe standard Er r or | nf o structure that is returned from all I/O modules. The format is as follows:
{ErrorLine, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

Module:format error(ErrorDescriptor)

See Also

erl _parse(3)

Ericsson AB. All Rights Reserved.: STDLIB | 107

erl_anno

erl_anno

Erlang module

This module provides an abstract type that is used by the Erlang Compiler and its helper modules for holding data
such as column, line number, and text. The datatypeis a collection of annotations as described in the following.

The Erlang Token Scanner returns tokens with a subset of the following annotations, depending on the options:
col um
The column where the token begins.
| ocation
The line and column where the token begins, or just the line if the column is unknown.
t ext
The token's text.
From this, the following annotation is derived:
l'ine
The line where the token begins.
This module & so supports the following annotations, which are used by various modules:

file
A filename.
gener at ed

A Boolean indicating if the abstract code is compiler-generated. The Erlang Compiler does not emit warnings
for such code.

record

A Boolean indicating if the origin of the abstract code is a record. Used by Dialyzer to assign types to tuple
elements.

The functionscol um(),end_I ocation(),line(),l ocation(),andtext() intheerl _scan module
can be used for inspecting annotations in tokens.

The functions anno_fromtern(), anno_to_tern(), fold_anno(), map_anno(),
mapf ol d_anno(), and new_anno(), intheer| _par se module can be used for manipulating annotations in
abstract code.

Data Types
anno()
A collection of annotations.

anno_term() = term()

The term representing a collection of annotations. It iseither al ocat i on() or alist of key-value pairs.

108 | Ericsson AB. All Rights Reserved.: STDLIB

erl_anno

column() = integer() >=1

line() = integer() >= 0

location() =1line() | {line(), colum()}
text() = string()

Exports

column(Anno) -> colum() | undefined
Types:

Anno = anno()

column() = integer() >=1
Returns the column of the annotations Anno.

end location(Anno) -> location() | undefined

Types.
Anno = anno()
location() = 1line() | {line(), colum()}

Returns the end location of the text of the annotations Anno. If thereis no text, undef i ned isreturned.

file(Anno) -> filenanme() | undefined
Types:

Anno = anno()

filename() = file:filenanme_all ()

Returns the filename of the annotations Anno. If thereis no filename, undef i ned isreturned.

from term(Term) -> Anno

Types:
Term = anno_term)
Anno = anno()

Returns annotations with representation Term.
Seealsoto_term().

generated(Anno) -> generated()
Types:

Anno = anno()

generated() = boolean()

Returnst r ue if annotations Anno is marked as generated. The default isto return f al se.

is anno(Term) -> boolean()
Types:
Term = any()
Returnst r ue if Termisacollection of annotations, otherwisef al se.

Ericsson AB. All Rights Reserved.: STDLIB | 109

erl_anno

line(Anno) -> line()
Types.

Anno = anno()

line() = integer() >= 0
Returns the line of the annotations Anno.

location(Anno) -> location()

Types:
Anno = anno()
location() =1line() | {line(), colum()}

Returns the location of the annotations Anno.

new(Location) -> anno()

Types.
Location = I ocation()
location() = line() | {line(), colum()}

Creates anew collection of annotations given alocation.

set file(File, Anno) -> Anno
Types:
File = fil ename()
Anno = anno()
filename() = file:filenanme_all ()

Modifies the filename of the annotations Anno.

set generated(Generated, Anno) -> Anno
Types:

Generated = generated()

Anno = anno()

generated() = boolean()

Modifies the generated marker of the annotations Anno.

set line(Line, Anno) -> Anno
Types:

Line = line()

Anno = anno()

line() = integer() >= 0
Modifies the line of the annotations Anno.

set location(Location, Anno) -> Anno
Types:

110 | Ericsson AB. All Rights Reserved.: STDLIB

erl_anno

Location = l ocation()
Anno = anno()
location() = 1line() | {line(), colum()}

Modifies the location of the annotations Anno.

set record(Record, Anno) -> Anno
Types.

Record = record()

Anno = anno()

record() = boolean()

Modifies the record marker of the annotations Anno.

set text(Text, Anno) -> Anno
Types.

Text = text()

Anno = anno()

text() = string()

Modifies the text of the annotations Anno.

text (Anno) -> text() | undefined
Types.

Anno = anno()

text() = string()

Returns the text of the annotations Anno. If thereis no text, undef i ned isreturned.

to term(Anno) -> anno_term()
Types:
Anno = anno()
Returns the term representing the annotations Anno.

See dso from_termy).

See Also

erl _parse(3),erl_scan(3)

Ericsson AB. All Rights Reserved.: STDLIB | 111

erl_eval

erl_eval

Erlang module

This module provides an interpreter for Erlang expressions. The expressions are in the abstract syntax as returned by
er| _par se, the Erlang parser, or i o.

Data Types

bindings() = [{name(), val ue() }]
binding struct() = orddict: orddict()

A binding structure.

expression() = erl _parse: abstract_expr()
expressions() = [erl| _parse: abstract_expr()]

Asreturned by er| _parse: parse_exprs/1or io:parse_erl_exprs/2.
expression list() = [expression()]
func spec() =

{Module :: module(), Function :: atom()} | function()
1fun_eval handler() =
fun((Name :: atom(),
Arguments :: expression_list(),
Bindings :: binding_struct()) ->
{value,
Value :: val ue(),

NewBindings :: binding_struct()})

1fun_value_handler() =
fun((Name :: atom(), Arguments :: [term()]) ->
Value :: value())

local function handler() =
{value, |fun_value_handler()} |
{eval, | fun_eval _handler()} |
none

Further described in section Local Function Handler in this module

name() = term()

nlfun_handler() =
fun((FuncSpec :: func_spec(), Arguments :: [term()]) -> term())

non_local function handler() = {value, nlfun_handler()} | none
Further described in section Non-Local Function Handler in this module.
value() = term()

Exports

add binding(Name, Value, BindingStruct) -> binding_struct()
Types.

112 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

Name = nane()
Value = val ue()
BindingStruct = bi ndi ng_struct ()

Adds binding Nane=Val ue to Bi ndi ngSt r uct . Returns an updated binding structure.

binding(Name, BindingStruct) -> {value, value()} | unbound
Types.

Name = nane()

BindingStruct = bi ndi ng_struct()

Returns the binding of Name in Bi ndi ngSt ruct .

bindings(BindingStruct :: binding_struct()) -> bindings()
Returnsthelist of bindings contained in the binding structure.

del binding(Name, BindingStruct) -> binding_struct()
Types.

Name = nane()

BindingStruct = bi ndi ng_struct()

Removes the binding of Narme in Bi ndi ngSt r uct . Returns an updated binding structure.

expr(Expression, Bindings) -> {value, Value, NewBindings}
expr(Expression, Bindings, LocalFunctionHandler) ->
{value, Value, NewBindings}
expr(Expression,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler) ->
{value, Value, NewBindings}
expr(Expression,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler,
ReturnFormat) ->
{value, Value, NewBindings} | Value

Types.
Expression = expression()
Bindings = bi ndi ng_struct ()
LocalFunctionHandler = | ocal _function_handl er ()
NonLocalFunctionHandler = non_l ocal _functi on_handl er ()
ReturnFormat = none | value
Value = val ue()
NewBindings = bi ndi ng_struct()
Evaluates Expressi on with the set of bindings Bi ndi ngs. Expression

is an expression

in

abstract syntax. For an explanation of when and how to use arguments Local Functi onHandl er and

Ericsson AB. All Rights Reserved.: STDLIB | 113

erl_eval

NonLocal Functi onHandl er, see sections Local Function Handler and Non-Local Function Handler in this
module.

Returns{ val ue, Val ue, NewBi ndi ngs} by default. If Ret ur nFor mat isval ue, only Val ue isreturned.

expr list(ExpressionList, Bindings) -> {ValuelList, NewBindings}
expr list(ExpressionList, Bindings, LocalFunctionHandler) ->
{ValuelList, NewBindings}
expr list(ExpressionlList,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler) ->
{ValuelList, NewBindings}

Types.
ExpressionList = expression_list()
Bindings = bi ndi ng_struct()
LocalFunctionHandler = | ocal _function_handl er ()
NonLocalFunctionHandler = non_Il ocal function_handl er ()
ValueList = [val ue()]
NewBindings = bi ndi ng_struct ()
Evaluates a list of expressionsin parallel, using the same initial bindings for each expression. Attempts are made to

merge the bindings returned from each evaluation. Thisfunctionisuseful inLocal Funct i onHandl er , seesection
Local Function Handler in this module.

Returns{ Val ueLi st, NewBi ndi ngs}.

exprs(Expressions, Bindings) -> {value, Value, NewBindings}

exprs(Expressions, Bindings, LocalFunctionHandler) ->
{value, Value, NewBindings}

exprs(Expressions,
Bindings,
LocalFunctionHandler,
NonLocalFunctionHandler) ->
{value, Value, NewBindings}

Types.

Expressions = expressions()

Bindings = bi ndi ng_struct ()

LocalFunctionHandler = | ocal _function_handl er ()

NonLocalFunctionHandler = non_l ocal _function_handl er ()

Value = val ue()

NewBindings = bi ndi ng_struct ()
Evaluates Expr essi ons with the set of bindings Bi ndi ngs, where Expr essi ons isa sequence of expressions
(in abstract syntax) of a type that can be returned by i o: parse_er| _exprs/ 2. For an explanation of when

and how to use arguments Local Funct i onHandl er and NonLocal Functi onHandl er, see sections Local
Function Handler and Non-Local Function Handler in this module.

Returns{ val ue, Val ue, NewBi ndi ngs}

114 | Ericsson AB. All Rights Reserved.: STDLIB

erl_eval

new bindings() -> binding_struct()
Returns an empty binding structure.

Local Function Handler

During evaluation of a function, no calls can be made to local functions. An undefined function error would be
generated. However, the optional argument Local Funct i onHandl er canbeusedtodefineafunctionthatiscalled
when thereisacall to alocal function. The argument can have the following formats:

{val ue, Func}
Thisdefines alocal function handler that is called with:

Func(Name, Arguments)

Nane is the name of the local function (an atom) and Ar gunent s is alist of the evaluated arguments. The
function handler returns the value of the local function. In this case, the current bindings cannot be accessed. To
signal an error, the function handler callsexi t / 1 with a suitable exit value.

{eval , Func}
Thisdefines alocal function handler that is called with:

Func(Name, Arguments, Bindings)

Nane is the name of the local function (an atom), Ar gunent s is alist of the unevaluated arguments, and
Bi ndi ngs arethe current variable bindings. The function handler returns:

{value,Value,NewBindings}

Val ue isthe value of thelocal function and NewBi ndi ngs are the updated variable bindings. In this case, the
function handler must itself evaluate al the function arguments and manage the bindings. To signal an error, the
function handler callsexi t / 1 with asuitable exit value.

none
Thereisno loca function handler.

Non-Local Function Handler

Theoptional argument NonLocal Funct i onHandl er canbeusedtodefineafunctionthatiscalledinthefollowing
Cases:

* A functional object (fun) is called.

e A built-in functionis called.

* Afunctioniscalled using the M F syntax, where Mand F are atoms or expressions.
* Anoperator Op/ Aiscaled (thisishandled asacall to functioner | ang: Op/ A).

Exceptionsarecallstoer | ang: appl y/ 2, 3; neither of thefunction handlersare called for such calls. The argument
can have the following formats:

{val ue, Func}
This defines anon-local function handler that is called with:

Func(FuncSpec, Arguments)

Func Spec is the name of the function on the form { Modul e, Functi on} or afun, and Ar gunent s isa
list of the evaluated arguments. The function handler returns the value of the function. To signal an error, the
function handler callsexi t / 1 with asuitable exit value.

Ericsson AB. All Rights Reserved.: STDLIB | 115

erl_eval

none

There is no non-local function handler.

For cals such as er | ang: appl y(Fun, Args) or erl ang: appl y(Mddul e, Function, Args),
the call of the non-local function handler corresponding to the cal to erl ang: apply/ 2, 3 itsef
(Func({erlang, apply}, [Fun, Args]) orFunc({erlang, apply}, [Mdule, Function,
Ar gs])) never takes place.

The non-local function handler is however caled with the evaluated arguments of the cal to
erl ang: appl y/ 2, 3: Func(Fun, Args) or Func({Mdul e, Function}, Args) (assuming that
{Modul e, Function} isnot{erlang, apply}).

Callstofunctionsdefined by evaluating fun expressions” f un . .. end" arealso hidden from non-local function
handlers.

The non-local function handler argument is probably not used as frequently as the local function handler argument. A
possible useisto cal exi t / 1 on callsto functions that for some reason are not allowed to be called.

Known Limitation

Undocumented functions in this module are not to be used.

116 | Ericsson AB. All Rights Reserved.: STDLIB

erl_expand_records

erl_expand_records

Erlang module

This module expands records in a module.

Exports

module(AbsForms, CompileOptions) -> AbsForms2

Types:
AbsForms = AbsForms2 = [erl| parse: abstract_forn()]
CompileOptions = [conpil e:option()]

Expands all records in a module to use explicit tuple operations and adds explicit module names to cals to BIFs and
imported functions. The returned module has no references to records, attributes, or code.

See Also
Section The Abstract Format in ERTS User's Guide.

Ericsson AB. All Rights Reserved.: STDLIB | 117

erl_id_trans

erl_id_trans

Erlang module

This module performs an identity parse transformation of Erlang code. It is included as an example for users who
wants to write their own parse transformers. If option { par se_t r ansf or m Modul e} is passed to the compiler,
auser-written function par se_t ransf or nf 2 is called by the compiler before the code is checked for errors.

Exports

parse transform(Forms, Options) -> Forms

Types:
Forms = [erl _parse:abstract_forn() | erl_parse:form.info()]
Options = [conpile:option()]

Performs an identity transformation on Erlang forms, as an example.

Parse Transformations

Parse transformations are used if a programmer wants to use Erlang syntax, but with different semantics. The original
Erlang code is then transformed into other Erlang code.

Programmers are strongly advised not to engage in parse transformations. No support is offered for problems
encountered.

See Also
erl _parse(3),conpile(3)

118 | Ericsson AB. All Rights Reserved.: STDLIB

erl_internal

erl_internal

Erlang module

This module defines Erlang BIFs, guard tests, and operators. This module is only of interest to programmers who
manipulate Erlang code.

Exports

add predefined functions(Forms) -> UpdatedForms

Types:
Forms = [erl _parse:abstract_form() | erl_parse:form.info()]
UpdatedForms =

[er] _parse:abstract_form() | erl_parse:forminfo()]

Addsto For ns the code for the standard pre-defined functions (such as modul e_i nf o/ 0) that are to be included
in every module.

arith op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isan arithmetic operator, otherwisef al se.

bif(Name, Arity) -> boolean()
Types:
Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isan Erlang BIF that is automatically recognized by the compiler, otherwisef al se.

bool op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isaBoolean operator, otherwisef al se.

comp _op(OpName, Arity) -> boolean()
Types:

OpName = atom()

Arity = arity()

Returnst r ue if OpNamne/ Ari t y isacomparison operator, otherwisef al se.

guard bif(Name, Arity) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 119

erl_internal

Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isan Erlang BIF that is allowed in guards, otherwisef al se.

list op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNamne/ Ari ty isalist operator, otherwisef al se.

op _type(OpName, Arity) -> Type
Types:
OpName = atom()
Arity = arity()
Type = arith | bool | comp | list | send
Returns the Type of operator that OpNane/ Ari t y belongs to, or generates af unct i on_cl ause error if it is
not an operator.

send op(OpName, Arity) -> boolean()
Types:
OpName = atom()
Arity = arity()
Returnst r ue if OpNane/ Ari t y isasend operator, otherwisef al se.

type test(Name, Arity) -> boolean()
Types:
Name = atom()
Arity = arity()
Returnst r ue if Nane/ Ari t y isavalid Erlang type test, otherwisef al se.

120 | Ericsson AB. All Rights Reserved.: STDLIB

erl_lint

erl_lint

Erlang module

This module is used to check Erlang code for illegal syntax and other bugs. It aso warns against coding practices
that are not recommended.

The errors detected include:

* Redefined and undefined functions

e Unbound and unsafe variables

e lllegal record use

The warnings detected include:

e Unused functions and imports

e Unused variables

* Variablesimported into matches

e Variablesexported fromi f /case/r ecei ve

* Variables shadowed in funs and list comprehensions
Some of the warnings are optional, and can be turned on by specifying the appropriate option, described below.

The functions in this module are invoked automatically by the Erlang compiler. There is no reason to invoke these
functions separately unless you have written your own Erlang compiler.

Data Types

error_info() = {erl _anno:line(), module(), error_description()}
error_description() = term()

Exports

format error(ErrorDescriptor) -> io_lib:chars()
Types:
ErrorDescriptor = error_description()

Takesan Er r or Descri pt or and returnsastring that describesthe error or warning. Thisfunctionisusually called
implicitly when processing an Er r or | nf o structure (see section Error Information).

is guard test(Expr) -> boolean()
Types:
Expr = erl _parse: abstract_expr()

Tests if Expr is alegal guard test. Expr is an Erlang term representing the abstract form for the expression.
erl _parse: parse_exprs(Tokens) can beusedto generate alist of Expr .

module(AbsForms) -> {ok, Warnings} | {error, Errors, Warnings}

module(AbsForms, FileName) ->
{ok, Warnings} | {error, Errors, Warnings}

module(AbsForms, FileName, CompileOptions) ->

Ericsson AB. All Rights Reserved.: STDLIB | 121

erl_lint

{ok, Warnings} | {error, Errors, Warnings}

Types:
AbsForms = [erl _parse:abstract_form() | erl_parse:form.info()]
FileName = atom() | string()

CompileOptions = [conpile:option()]

Warnings = [{file:filenane(), [ErrorInfo]}]

Errors = [{FileName2 :: file:filename(), [ErrorInfol}]
ErrorInfo = error_info()

Checks all the formsin amodule for errors. It returns:
{ ok, Var ni ngs}

There are no errorsin the module.
{error, Errors, Vr ni ngs}

There are errorsin the module.

Asthis moduleis of interest only to the maintainers of the compiler, and to avoid the same description in two places,
the elements of Opt i ons that control the warnings are only described in the conpi | e('3) module.

AbsFor ns of amodule, which comes from afile that is read through epp, the Erlang preprocessor, can come from
many files. This meansthat any referencesto errors must include the filename, seethe epp(3) module or parser (see
theer| _par se(3) module). The returned errors and warnings have the following format:

[{FileName2, [ErrorInfo]l}]

The errors and warnings are listed in the order in which they are encountered in the forms. The errors from one file
can therefore be split into different entriesin the list of errors.

Error Information

Er r or | nf o isthe standard Er r or | nf o structure that is returned from all 1/0 modules. The format is as follows:
{ErrorLine, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

Module:format error(ErrorDescriptor)

See Also
epp(3),erl _parse(3)

122 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

erl_parse

Erlang module

This module is the basic Erlang parser that converts tokens into the abstract form of either forms (that is, top-level
constructs), expressions, or terms. The Abstract Format is described in the ERTS User's Guide. Notice that atoken list
must end with the dot token to be acceptable to the parse functions (seethe er | _scan(3)) module.

Data Types

abstract clause()

Abstract form of an Erlang clause.
abstract expr()

Abstract form of an Erlang expression.
abstract form()

Abstract form of an Erlang form.
abstract type()

Abstract form of an Erlang type.

erl parse tree() =
abstract _cl ause() |
abstract _expr() |
abstract _fornm() |
abstract _type()

error _description() = term()
error_info() = {erl _anno:line(), module(), error_description()}

form_info() =
{eof, erl_anno:line()} |
{error, erl_scan:error_info() | error_info()} |
{warning, erl_scan:error_info() | error_info()}

Tuples{error, error_info()} and{warning, error_info()},dencting syntacticaly incorrect forms
andwarnings,and{ eof , |i ne() }, denoting an end-of-stream encountered before acompl eteform had been parsed.

token() = erl _scan:token()

Exports

abstract(Data) -> AbsTerm
Types:

Data = term()

AbsTerm = abstract_expr()

Converts the Erlang data structure Dat a into an abstract form of type AbsTer m This function is the inverse of
nornal i se/ 1.

erl _parse:abstract (T) isequivdenttoer| parse: abstract(T, 0).

Ericsson AB. All Rights Reserved.: STDLIB | 123

erl_parse

abstract(Data, Options) -> AbsTerm
Types.
Data = term()
Options = Line | [Option]
Option = {line, Line} | {encoding, Encoding}
Encoding = latinl | unicode | utf8 | none | encodi ng_func()
Line = erl _anno:line()
AbsTerm = abstract _expr()
encoding func() = fun((integer() >= 0) -> boolean())

Converts the Erlang data structure Dat a into an abstract form of type AbsTer m
Option Li ne isthelineto be assigned to each node of AbsTer m

Option Encodi ng isused for selecting whichinteger liststo be considered asstrings. Thedefault isto usethe encoding
returned by function epp: def aul t _encodi ng/ 0. Vaue none means that no integer lists are considered as
strings. encodi ng_f unc() is called with one integer of alist at atime; if it returnst r ue for every integer, the
list is considered a string.

anno_from term(Term) -> erl_parse_tree() | form.nfo()
Types:
Term = term()
Assumes that Ter mis a term with the same structure as a er | _par se tree, but with terms, say T, where a

er| _par se tree has collections of annotations. Returns aer | _par se tree where each term T is replaced by the
valuereturned by erl _anno: from tern(T). Theterm Ter mistraversed in a depth-first, left-to-right fashion.

anno_to term(Abstr) -> term()
Types:
Abstr = erl _parse_tree() | form.info()
Returns a term where each collection of annotations Anno of the nodes of theer | _par se tree Abst r isreplaced

by the term returned by erl _anno:to_tern{Anno). Theerl| parse treeistraversed in a depth-first, left-
to-right fashion.

fold anno(Fun, AccO, Abstr) -> Accl
Types:
Fun = fun((Anno, AccIn) -> AccOut)
Anno erl _anno: anno()

AccO = Accl = AccIn = AccOut = term()
Abstr = erl _parse_tree() | form.info()

Updates an accumulator by applying Fun on each collection of annotationsof theer | _par se tree Abst r . Thefirst
call to Fun has Accl n asargument, the returned accumulator AccQut is passed to the next call, and so on. Thefinal
value of the accumulator isreturned. Theer | _par se treeistraversed in adepth-first, left-to-right fashion.

format error(ErrorDescriptor) -> Chars
Types:
ErrorDescriptor = error_description()
Chars = [char() | Chars]

124 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

Usesan Er r or Descri pt or and returns a string that describes the error. This function is usually called implicitly
when an Er r or | nf o structure is processed (see section Error Information).

map_anno(Fun, Abstr) -> NewAbstr
Types:
Fun = fun((Anno) -> NewAnno)

)
Anno = NewAnno = erl| _anno: anno()
Abstr = NewAbstr = erl _parse_tree() | form.info()

Modifies the er | _par se tree Abst r by applying Fun on each collection of annotations of the nodes of the
erl _parsetree. Theer| _par se treeistraversed in adepth-first, left-to-right fashion.

mapfold anno(Fun, Acc@®, Abstr) -> {NewAbstr, Accl}
Types:
Fun = fun((Anno, AccIn) -> {NewAnno, AccOut})

Anno = NewAnno = erl| _anno: anno()
AccO = Accl = AccIn = AccOut = term()
Abstr = NewAbstr = erl _parse_tree() | form.info()

Modifies the er | _par se tree Abst r by applying Fun on each collection of annotations of the nodes of the
erl _par se tree, while at the same time updating an accumulator. The first call to Fun has Accl n as second
argument, the returned accumulator AccQut ispassed to the next call, and so on. Themodifieder | _par se treeand
thefinal value of the accumulator arereturned. Theer | _par se treeistraversed in adepth-first, left-to-right fashion.

new anno(Term) -> Abstr
Types:
Term = term()
Abstr = erl _parse_tree() | form.info()
Assumesthat Ter misaterm with the sasme structureasaer | _par se tree, but with locationswhereaer | _par se

tree has collections of annotations. Returnsaer | _par se treewhereeachlocation L isreplaced by the value returned
by er| _anno: new(L) . Theterm Ter mistraversed in a depth-first, left-to-right fashion.

normalise(AbsTerm) -> Data
Types.
AbsTerm = abstract _expr()
Data = term()

Convertsthe abstract form Abs Ter mof aterm into a conventional Erlang data structure (that is, the term itself). This
functionistheinverse of abstract/ 1.

parse_exprs(Tokens) -> {ok, ExprList} | {error, ErrorInfo}
Types:

Tokens = [token()]

ExprList = [abstract _expr()]

ErrorInfo = error_info()
Parses Tokens asif it was alist of expressions. Returns one of the following:

Ericsson AB. All Rights Reserved.: STDLIB | 125

erl_parse

{ok, ExprlList}

The parsing was successful. Expr Li st isalist of the abstract forms of the parsed expressions.
{error, Errorlnfo}

An error occurred.

parse form(Tokens) -> {ok, AbsForm} | {error, ErrorInfo}
Types.

Tokens = [token()]

AbsForm = abstract _form()

ErrorInfo = error_info()

Parses Tokens asif it was aform. Returns one of the following:
{ok, AbsForn}

The parsing was successful. Abs For mis the abstract form of the parsed form.
{error, Errorlnfo}

An error occurred.

parse term(Tokens) -> {ok, Term} | {error, ErrorInfo}
Types:

Tokens = [token()]

Term = term()

ErrorInfo = error_info()

Parses Tokens asif it was aterm. Returns one of the following:
{ok, Terni

The parsing was successful. Ter mis the Erlang term corresponding to the token list.
{error, Errorlnfo}

An error occurred.

tokens (AbsTerm) -> Tokens
tokens (AbsTerm, MoreTokens) -> Tokens
Types.
AbsTerm = abstract _expr()
MoreTokens = Tokens = [token()]

Generates a list of tokens representing the abstract form AbsTer mof an expression. Optionally, Mor eTokens is
appended.

Error Information

Err or | nf o isthe standard Er r or | nf o structure that is returned from all I/O modules. The format is as follows:
{ErrorLine, Module, ErrorDescriptor}
A string describing the error is obtained with the following call:

Module:format error(ErrorDescriptor)

126 | Ericsson AB. All Rights Reserved.: STDLIB

erl_parse

See Also
erl _anno(3),erl _scan(3),io(3), section The Abstract Format in the ERTS User's Guide

Ericsson AB. All Rights Reserved.: STDLIB | 127

erl_pp

erl_pp

Erlang module

The functions in this module are used to generate aesthetically attractive representations of abstract forms, which are
suitable for printing. All functions return (possibly deep) lists of characters and generate an error if the form iswrong.

All functions can have an optional argument, which specifies a hook that is called if an attempt is made to print an
unknown form.

Data Types
hook function() =
none |
fun((Expr :: erl _parse: abstract _expr(),
CurrentIndentation :: integer(),
CurrentPrecedence :: integer() >= 0,
Options :: options()) ->

io_lib:chars())

Optiona argument HookFunct i on, shown in the functions described in thismodule, definesafunction that iscalled
when an unknown form occurs where there is to be a valid expression. If HookFunct i on isequal to none, there
is no hook function.

The called hook function isto return a (possibly deep) list of characters. Function expr / 4 isuseful in a hook.
If Current | ndent at i on isnegative, there are no line breaks and only a space is used as a separator.
option() =

{hook, hook_function()} | {encoding, latinl | unicode | utf8}
options() = hook_function() | [option()]

Exports

attribute(Attribute) -> io_lib:chars()
attribute(Attribute, Options) -> io_lib:chars()
Types:
Attribute = erl _parse:abstract_form)
Options = options()
Sameasf orni 1, 2, but only for attribute At t r i but e.

expr(Expression) -> io_lib:chars()

expr(Expression, Options) -> io_lib:chars()

expr(Expression, Indent, Options) -> io_lib:chars()
expr(Expression, Indent, Precedence, Options) -> io_lib:chars()
Types:

128 | Ericsson AB. All Rights Reserved.: STDLIB

erl_pp

Expression = erl _parse: abstract _expr()
Indent = integer()
Precedence = integer() >= 0
Options = options()
Prints one expression. It is useful for implementing hooks (see section Known Limitations).

exprs(Expressions) -> io_lib:chars()
exprs(Expressions, Options) -> io_lib:chars()
exprs(Expressions, Indent, Options) -> io_lib:chars()
Types:

Expressions = [erl _parse: abstract_expr()]

Indent = integer()

Options = options()
Sameasf orni 1, 2, but only for the sequence of expressionsin Expr essi ons.

form(Form) -> io_lib:chars()
form(Form, Options) -> io_lib:chars()
Types:
Form = erl _parse:abstract_form() | erl_parse:form.info()
Options = options()
Pretty prints a For m which is an abstract form of atypethat isreturned by er| _par se: parse_form 1.

function(Function) -> io_lib:chars()
function(Function, Options) -> io_lib:chars()
Types:
Function = erl _parse: abstract _form()
Options = options()
Sameasf orni 1, 2, but only for function Funct i on.

guard(Guard) -> io_lib:chars()
guard(Guard, Options) -> io_lib:chars()

Types.
Guard = [erl_parse: abstract_expr()]
Options = options()

Sameasf orni 1, 2, but only for the guard test Guar d

Known Limitations

It is not possible to have hook functions for unknown forms at other places than expressions.

See Also
erl _eval (3),erl _parse(3),io(3)

Ericsson AB. All Rights Reserved.: STDLIB | 129

erl_scan

erl_scan

Erlang module

This module contains functions for tokenizing (scanning) characters into Erlang tokens.

Data Types

category() = atom()
error _description() = term()

error_info() =

{erl _anno:location(), module(), error_description()}
option() =

return |

return white spaces |

return_comments |

text |

{reserved word fun, resword_fun()}
options() = option() | [option()]
symbol() = atom() | float() | integer() | string()
resword fun() = fun((atom()) -> boolean())

token() =
{category(), Anno :: erl_anno:anno(), synbol ()} |
{category(), Anno :: erl_anno:anno()}

tokens() = [token()]
tokens result() =

{ok, Tokens :: tokens(), EndLocation :: erl_anno:location()} |
{eof, EndLocation :: erl_anno:location()} |
{error,
ErrorInfo :: error_info(),
EndLocation :: erl _anno:location()}
Exports

category(Token) -> category()
Types:

Token = token()
Returns the category of Token.

column(Token) -> erl_anno:colum() | undefined
Types.

Token = token()
Returns the column of Token's collection of annotations.

end location(Token) -> erl_anno:location() | undefined
Types:

130 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

Token = token()
Returns the end location of the text of Token's collection of annotations. If thereisno text, undef i ned isreturned.

format error(ErrorDescriptor) -> string()
Types:
ErrorDescriptor = error_description()

Usesan Err or Descri pt or and returns a string that describes the error or warning. This function isusually called
implicitly when an Er r or | nf o structureis processed (see section Error Information).

line(Token) -> erl _anno:line()
Types:
Token = token()
Returnsthe line of Token's collection of annotations.

location(Token) -> erl_anno: |l ocation()
Types:

Token = token()
Returns the location of Token's collection of annotations.

reserved word(Atom :: atom()) -> boolean()
Returnst r ue if At omisan Erlang reserved word, otherwisef al se.

string(String) -> Return
string(String, StartLocation) -> Return
string(String, StartLocation, Options) -> Return
Types.

String = string()

Options = options()

Return =
{ok, Tokens :: tokens(), EndLocation} |
{error, ErrorInfo :: error_info(), ErrorLocation}

StartLocation = EndLocation = ErrorLocation = erl _anno: | ocati on()

Takesthe list of characters St r i ng and tries to scan (tokenize) them. Returns one of the following:
{ok, Tokens, EndLocati on}

Tokens arethe Erlang tokensfrom St ri ng. EndLocat i on isthefirst location after the last token.
{error, Errorinfo, ErrorLocation}

An error occurred. Er r or Locat i on isthefirst location after the erroneous token.

string(String) isequivadenttostring(String, 1),andstring(String, StartLocation) is
equivalenttostring(String, StartlLocation, []).

Start Locati on indicates the initial location when scanning starts. If Start Locati on is a line, Anno,
EndLocati on,andError Locati on arelines. If St art Locat i on isapair of alineand acolumn, Anno takes
the form of an opague compound data type, and EndLocat i on and Err or Locat i on are pairs of aline and a
column. The token annotations contain information about the column and the line where the token begins, as well

Ericsson AB. All Rights Reserved.: STDLIB | 131

erl_scan

as the text of the token (if optiont ext is specified), al of which can be accessed by calling col um/ 1,1 i ne/ 1,
| ocation/1,andt ext/ 1.

A token is atuple containing information about syntactic category, the token annotations, and the terminal symbol.
For punctuation characters (such as; and|) and reserved words, the category and the symbol coincide, and the token
is represented by atwo-tuple. Three-tuples have one of the following forms:

« {atom Anno, atom()}

« {char, Anno, char()}

e {coment, Anno, string()}

« {float, Anno, float()}

e {integer, Anno, integer()}

e {var, Anno, atom()}

e {white_space, Anno, string()}

Valid options:

{reserved_word_fun, reserved_word_fun()}

A callback function that is called when the scanner has found an unquoted atom. If the function returnst r ue,
the unquoted atom itself becomes the category of the token. If the function returns f al se, at ombecomes the
category of the unquoted atom.

return_conments
Return comment tokens.
return_white spaces

Return white space tokens. By convention, a newline character, if present, is alwaysthe first character of the text
(there cannot be more than one newline in a white space token).

return
Short for [ret urn_conments, return_white_spaces].
t ext

Include the token text in the token annotation. The text is the part of the input corresponding to the token.

symbol(Token) -> synbol ()
Types:

Token = token()
Returns the symbol of Token.

text(Token) -> erl_anno:text() | undefined
Types.
Token = token()
Returns the text of Token's collection of annotations. If thereis no text, undef i ned isreturned.

tokens(Continuation, CharSpec, StartLocation) -> Return
tokens (Continuation, CharSpec, StartLocation, Options) -> Return
Types:

132 | Ericsson AB. All Rights Reserved.: STDLIB

erl_scan

Continuation = return_cont() | []
CharSpec = char_spec()
StartLocation = erl _anno: | ocation()
Options = options()
Return =
{done,
Result :: tokens_result(),
LeftOverChars :: char_spec()} |
{more, Continuationl :: return_cont()}

char _spec() = string() | eof
return_cont()
An opague continuation.

Thisisthere-entrant scanner, which scans charactersuntil either adot ('.' followed by awhite space) or eof isreached.
It returns:

{done, Result, LeftOverChars}
Indicates that there is sufficient input datato get aresult. Resul t is:
{ok, Tokens, EndLocati on}
The scanning was successful. Tokens isthelist of tokensincluding dot.
{eof, EndLocati on}
End of file was encountered before any more tokens.
{error, Errorlnfo, EndLocation}

An error occurred. Left Over Chars is the remaining characters of the input data, starting from
EndLocat i on.

{nore, Continuationl}

More data is required for building a term. Cont i nuat i on1 must be passed in a new call to t okens/ 3, 4
when more datais available.

The Char Spec eof signalsend of file. Lef t Over Char s then takes the value eof aswell.

t okens(Conti nuati on, CharSpec, StartlLocation) isequivalenttotokens(Conti nuati on,
Char Spec, StartlLocation, []).

For a description of the options, seest ri ng/ 3.

Error Information

Er r or | nf o isthe standard Er r or | nf o structure that is returned from all 1/0 modules. The format is as follows:
{ErrorLocation, Module, ErrorDescriptor}
A string describing the error is obtained with the following call:

Module:format error(ErrorDescriptor)

Notes

The continuation of thefirst call to the re-entrant input functions must be[] . For acomplete description of how there-
entrant input scheme works, see Armstrong, Virding and Williams. 'Concurrent Programming in Erlang’, Chapter 13.

Ericsson AB. All Rights Reserved.: STDLIB | 133

erl_scan

See Also

erl _anno(3),erl _parse(3),io(3)

134 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

erl_tar

Erlang module

This module archives and extract filesto and from atar file. This module supports reading most common tar formats,
namely v7, STAR, USTAR, and PAX, as well as some of GNU tar's extensions to the USTAR format (sparse files
most notably). It produces tar archives in USTAR format, unless the files being archived require PAX format due
to restrictions in USTAR (such as unicode metadata, filename length, and more). As such, er| _t ar supports tar
archives produced by most all modern tar utilities, and produces tarballs which should be similarly portable.

By convention, the name of atar fileistoendin". t ar ". To abide to the convention, add ". t ar " to the name.
Tar files can be created in one operation using function cr eat e/ 2 or cr eat e/ 3.
Alternatively, for more control, use functionsopen/ 2, add/ 3, 4, andcl ose/ 1.

To extract al filesfrom atar file, use function ext r act / 1. To extract only some files or to be able to specify some
more options, use function ext r act / 2.

Toreturn alist of thefilesin atar file, usefunctiont abl e/ 1 ort abl e/ 2. To print alist of filesto the Erlang shell,
usefunctiont/lortt/ 1.

To convert an error term returned from one of the functions above to a readable message, use function
format _error/ 1.

Unicode Support

If file:native_nane_encodi ng/ 0 returnsut f 8, path names are encoded in UTF-8 when creating tar files,
and path names are assumed to be encoded in UTF-8 when extracting tar files.

If file:native_nanme_encodi ng/ 0 returns| at i n1, no trandation of path namesisdone.
Unicode metadata stored in PAX headersis preserved

Other Storage Media

Thef t p module normally accessesthetar fileon disk usingthef i | e module. When other needs arise, you can define
your own low-level Erlang functions to perform the writing and reading on the storage media; use functioni ni t/ 3.

An example of thisis the SFTP support in ssh_sft p: open_t ar/ 3. This function opens a tar file on a remote
machine using an SFTP channel.

Limitations

e |f you must remain compatible with the USTAR tar format, you must ensure file paths being stored are less than
255 bytesin total, with a maximum filename component length of 100 bytes. USTAR uses a header field (prefix)
in addition to the name field, and splits file paths longer than 100 bytes into two parts. This split is done on a
directory boundary, and is done in such away to make the best use of the space available in those two fields, but
in practice thiswill often mean that you have lessthan 255 bytesfor apath. er | _t ar will automatically upgrade
the format to PAX to handle longer filenames, so thisis only an issue if you need to extract the archive with an
older implementation of er | _t ar ort ar which does not support PAX. In this case, the PAX headers will be
extracted as regular files, and you will need to apply them manually.

e Likethe above, if you must remain USTAR compatible, you must also ensure than paths for symbolic/hard links
are no more than 100 bytes, otherwise PAX headers will be used.

Ericsson AB. All Rights Reserved.: STDLIB | 135

erl_tar

Exports

add(TarDescriptor, Filename, Options) -> RetValue
Types.

Tar Descriptor = term()

Fi | enaneOr Bi n filenane()| binary()

Namel nAr chi ve filenane()

Filename = fil enane() | { Nanel nArchi ve, Fi | enameOr Bi n}

Options = [Option]

Option = dereference| verbose| { chunks, ChunkSi ze}

| {atine, non_neg_integer()}|{mine, non_neg_integer()}

| {ctime, non_neg_integer()}]|{uid, non_neg_integer()}

| {gid, non_neg_integer()}

ChunkSi ze = positive_integer()

Ret Val ue = ok|{error, {Fil enane, Reason}}

Reason = term()

Adds afileto atar file that has been opened for writing by open/ 1.

Narel nAr chi ve isthe name under which the file becomes stored in the tar file. The file gets this name when it
is extracted from the tar file.

Options:
der ef erence

By default, symbolic links are stored as symbolic links in the tar file. To override the default and store the file
that the symbolic link pointsto into the tar file, use option der ef er ence.

ver bose
Prints an informational message about the added file.
{chunks, ChunkSi ze}

Reads data in parts from the file. Thisis intended for memory-limited machines that, for example, builds a tar
file on aremote machine over SFTP, see ssh_sft p: open_tar/ 3.

{atime, non_neg_integer()}

Setsthelast time, as POS X time, when thefilewasread. Seedso fil e:read file_info/ 1.
{ntime, non_neg_integer()}

Setsthe last time, as POS X time, when the file was written. Seealso fil e:read_fil e_info/ 1.
{ctinme, non_neg_integer()}

Setsthetime, as POS X time, when the file was created. Seedso fil e:read_fil e i nfo/ 1.
{uid, non_neg_integer()}

Setsthefileowner. file:read file_info/1.
{gid, non_neg integer()}

Sets the group that the file owner belongsto. fil e:read file_info/ 1.

136 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

add(TarDescriptor, FilenameOrBin, NameInArchive, Options) -> RetValue
Types.

Tar Descriptor = term()

FilenameOrBin = fil ename()| binary()

Filename = fil ename()

Nanmel nArchive = fil enane()

Options = [Option]

Option = dereference|verbose

Ret Val ue = ok|{error, {Fi |l enane, Reason}}

Reason = term)

Addsafileto atar filethat has been opened for writing by open/ 2. Thisfunction acceptsthe same optionsasadd/ 3.

close(TarDescriptor)
Types:

Tar Descriptor = term()
Closes atar file opened by open/ 2.

create(Name, FilelList) ->RetValue
Types:
Nanme = fil enane()
Fil eLi st = [Fil enane| { Nanel nArchi ve, Fil enameOr Bi n}]
FilenameOrBin = filename()| binary()
Filename = fil ename()
Namel nArchive = fil enanme()
Ret Val ue = ok| {error, { Nane, Reason}}
Reason = term()

Creates atar file and archives the files whose names are specified in Fi | eLi st intoit. The files can either be read
from disk or be specified as binaries.

create(Name, FilelList, OptionList)
Types.
Name = fil enane()
Fi |l eLi st = [Fil enanme| { Nanel nArchi ve, Fil enameO Bi n}]
FilenameOrBin = fil ename()| binary()
Filename = fil enane()
Namel nArchive = fil ename()
OptionList = [Option]
Option = conpressed| cooked| der ef er ence| ver bose
Ret Val ue = ok| {error, { Nane, Reason}}
Reason = term()

Creates atar file and archives the files whose names are specified in Fi | eLi st into it. The files can either be read
from disk or be specified as binaries.

Theoptionsin Opt i onLi st modify the defaults as follows:

Ericsson AB. All Rights Reserved.: STDLIB | 137

erl_tar

conpr essed

Theentiretar fileis compressed, asif it has been run through the gzi p program. To abide to the convention that
acompressed tar fileistoend in™. t ar. gz" or". t gz", add the appropriate extension.

cooked

By default, function open/ 2 opensthetar fileinr awmode, which isfaster but does not allow aremote (Erlang)
file server to be used. Adding cooked to the mode list overrides the default and opensthe tar file without option
raw.

der ef erence

By default, symbolic links are stored as symbolic links in the tar file. To override the default and store the file
that the symbolic link pointsto into the tar file, use option der ef er ence.

ver bose

Prints an informational message about each added file.

extract(Name) -> RetValue
Types:
Name = filename() | {binary,binary()} | {file, Fd}
Fd = file_descriptor()
Ret Val ue = ok| {error, {Nane, Reason}}
Reason = term()

Extracts al filesfrom atar archive.
If argument Narmre is specified as{ bi nary, Bi nar y}, the contents of the binary is assumed to be atar archive.

If argument Name is specified as {fi |l e, Fd}, Fd is assumed to be a file descriptor returned from function
file:open/2.

Otherwise, Nane isto be afilename.

Leading slashesin tar member nameswill be removed before writing thefile. That is, absolute paths will be turned
into relative paths. There will be an info message written to the error logger when paths are changed in this way.

extract(Name, OptionList)

Types.
Name = filenane() | {binary,binary()} | {file, Fd}
Fd = file_descriptor()
OptionList = [Option]
Option = {cwd, Owd} | {files, FileList}|keep_old files|verbose| nenory
owd = [dirnanme()]
Fil eLi st [filenane()]
Ret Val ue = ok| Menor yRet Val ue| {error, { Nane, Reason}}
Mermor yRet Val ue = {ok, [{Nanel nArchive,binary()}]}
Narmel nArchive = fil enane()
Reason = term()

Extracts files from atar archive.

138 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

If argument Narre is specified as{ bi nary, Bi nar y}, the contents of the binary is assumed to be atar archive.

If argument Name is specified as {fi |l e, Fd}, Fd is assumed to be a file descriptor returned from function
file:open/2.

Otherwise, Nane isto be afilename.
The following options modify the defaults for the extraction as follows:
{cwd, Cwd}

Files with relative filenames are by default extracted to the current working directory. With this option, files are
instead extracted into directory Ond.

{files,FileList}

By default, al files are extracted from the tar file. With this option, only those files are extracted whose names
areincludedinFi | eLi st .

conpr essed
With this option, the fileis uncompressed while extracting. If thetar fileisnot compressed, thisoption isignored.
cooked

By default, function open/ 2 function opensthetar fileinr awmode, which isfaster but does not allow aremote
(Erlang) file server to be used. Adding cooked to the mode list overrides the default and opens the tar file
without option r aw.

menory

Instead of extracting to adirectory, thisoption givestheresult asalist of tuples{ Fi | enane, Bi nary},where
Bi nary isabinary containing the extracted data of the file named Fi | enane inthetar file.

keep_old files

By default, al existing files with the same name asfilesin the tar file are overwritten. With this option, existing
files are not overwriten.

ver bose

Prints an informational message for each extracted file.

format error(Reason) -> string()
Types:
Reason = term()

Converts an error reason term to a human-readable error message string.

init(UserPrivate, AccessMode, Fun) -> {ok,TarDescriptor} | {error,Reason}
Types:

UserPrivate = term()

AccesshWbde = [write] | [read]

Fun when AccessMde is [wite] = fun(wite, {UserPrivate, DataToWite})-

>...; (position,{UserPrivate,Position})->...; (close, UserPrivate)->...
end

Fun when AccessMde is [read] = fun(read2, {UserPrivate, Size})->...;
(position,{UserPrivate, Position})->...; (close, UserPrivate)->... end

Tar Descriptor = tern()
Reason = term)

Ericsson AB. All Rights Reserved.: STDLIB | 139

erl_tar

The Fun isthe definition of what to do when the different storage operations functions are to be called from the higher
tar handling functions (such asadd/ 3, add/ 4, and cl ose/ 1).

The Fun is called when the tar function wants to do alow-level operation, like writing a block to afile. The Fun is
cadledasFun(Op, {UserPrivate, Paraneters...}),whereQp isthe operation name, User Pri vat e is
the term passed as the first argument toi ni t / 1 and Par anmet er s. . . are the data added by the tar function to be
passed down to the storage handling function.

Parameter User Pri vat e is typically the result of opening a low-level structure like a file descriptor or an SFTP
channel id. The different Fun clauses operate on that very term.

The following are the fun clauses parameter lists:
(wite, {UserPrivate, DataToWite})
Writesterm Dat aToW i t e using User Pri vat e.
(close, UserPrivate)
Closes the access.
(read2, {UserPrivate, Size})

Reads using User Pri vat e but only Si ze bytes. Notice that there is only an arity-2 read function, not an
arity-1 function.

(position, {UserPrivate, Position})
Setsthe position of User Pri vat e as defined for filesin fil e: position/2
Example:

Thefollowing is a complete Fun parameter for reading and writing on filesusing thef i | e module:

ExampleFun =
fun(write, {Fd,Data}) -> file:write(Fd, Data);
(position, {Fd,Pos}) -> file:position(Fd, Pos);
(read2, {Fd,Size}) -> file:read(Fd, Size);
(close, Fd) -> file:close(Fd)
end

Here Fd was specified to functioni ni t / 3 as.

{ok,Fd} = file:open(Name, ...).
{ok,TarDesc} = erl tar:init(Fd, [write], ExampleFun),

Tar Desc isthen used:
erl tar:add(TarDesc, SomeValueIwantToAdd, FileNameInTarFile),
erl tar:close(TarDesc)

When the er | _t ar core wants to, for example, write a piece of Dat a, it would call Exanpl eFun(write,
{UserPrivate, Data}).

Thisexamplewith thef i | e module operations is not necessary to use directly, asthat is what function open/ 2
in principle does.

140 | Ericsson AB. All Rights Reserved.: STDLIB

erl_tar

The Tar Descri pt or termisnot afile descriptor. Y ou are advised not to rely on the specific contents of this
term, asit can change in future Erlang/OTP releases when more features are added to this module.

open(Name, OpenModelList) -> RetValue
Types:
Nane = fil enane()
OpenMbdeli st = [OpenMbde]
Mbde = write|conpressed| cooked
Ret Val ue = {ok, TarDescriptor}|{error, {Nane, Reason}}
Tar Descriptor = tern()
Reason = term()
Creates atar file for writing (any existing file with the same name is truncated).
By convention, the name of atar fileistoendin". t ar ". To abide to the convention, add ". t ar " to the name.
Except for thewr i t e atom, the following atoms can be added to OpenModeli st :
conpr essed

Theentiretar fileis compressed, asif it has been run through the gzi p program. To abide to the convention that
acompressed tar fileistoend in". tar. gz" or". t gz", add the appropriate extension.

cooked

By default, the tar fileis opened in r aw mode, which is faster but does not allow aremote (Erlang) file server to
be used. Adding cooked to the mode list overrides the default and opens the tar file without option r aw.

To add one file at the time into an opened tar file, use function add/ 3, 4. When you are finished adding files, use
function cl ose/ 1 to closethe tar file.

The Tar Descri pt or term is not a file descriptor. Y ou are advised not to rely on the specific contents of this
term, asit can change in future Erlang/OTP releases when more features are added to this module..

table(Name) -> RetValue

Types.
Name = filenane()|{binary, binary()}|{file,file descriptor()}
Ret Val ue = {ok,[string()]}|{error, {Nanme, Reason}}
Reason = term)

Retrieves the names of al filesin the tar file Nane.

table(Name, Options)
Types:

Name = filenane()|{binary, binary()}|{file,file _descriptor()}
Retrieves the names of all filesin the tar file Nane.

Ericsson AB. All Rights Reserved.: STDLIB | 141

erl_tar

t (Name)
Types:

Name = filenanme()|{binary,binary()}|{file,file_descriptor()}
Prints the names of all filesin the tar file Nane to the Erlang shell (smilarto "t ar t").

tt(Name)
Types.
Name = filenane()|{binary,binary()}|{file,file_descriptor()}

Prints names and information about all filesin the tar file Nane to the Erlang shell (smilarto "t ar t v").

142 | Ericsson AB. All Rights Reserved.: STDLIB

ets

ets

Erlang module

This module is an interface to the Erlang built-in term storage BIFs. These provide the ability to store very large
guantities of data in an Erlang runtime system, and to have constant access time to the data. (In the case of
order ed_set, seebelow, accesstimeis proportional to the logarithm of the number of stored objects.)

Data is organized as a set of dynamic tables, which can store tuples. Each table is created by a process. When the
process terminates, the table is automatically destroyed. Every table has access rights set at creation.

Tables are divided into four different types, set, ordered_set, bag, and dupl i cate_bag. A set or
or der ed_set tablecan only have one object associated with each key. A bag or dupl i cat e_bag table can have
many objects associated with each key.

The number of tables stored at one Erlang node used to be limited. Thisis no longer the case (except by memory
usage). The previous default limit was about 1400 tables and could be increased by setting the environment variable
ERL_MAX ETS TABLES or the command line option +e before starting the Erlang runtime system. This hard
limit has been removed, but it is currently useful to set the ERL_MAX _ETS TABLES anyway. It should be set
to an approximate of the maximum amount of tables used. This since an internal table for named tables is sized
using this value. If large amounts of named tables are used and ERL_ MAX_ETS_ TABLES hasn't been increased,
the performance of named table lookup will degrade.

Notice that there is no automatic garbage collection for tables. Even if there are no references to a table from any
process, it isnot automatically destroyed unlessthe owner processterminates. To destroy atable explicitly, usefunction
del et e/ 1. Thedefault owner isthe processthat created thetable. To transfer table ownership at processtermination,
useoption hei r or call gi ve_away/ 3.

Some implementation details:

* Inthe current implementation, every object insert and look-up operation resultsin a copy of the object.
« '"$end_of _tabl e' isnotto be used as a key, as this atom is used to mark the end of the table when using
functionsfi rst/ 1 and next/ 2.

Notice the subtle difference between matching and comparing equal, which is demonstrated by table typesset and
ordered_set:

* Two Erlang termsmat ch if they are of the same type and have the same value, so that 1 matches 1, but not 1. 0
(asl.0isafl oat () andnotani nt eger ()).

e Two Erlang terms compar e equal if they either are of the same type and value, or if both are numeric types and
extend to the same value, so that 1 compares equal to both 1 and 1. 0.

e Theordered_set works on the Erlang term order and no defined order exists between an i nt eger ()
and af | oat () that extends to the same value. Hence the key 1 and the key 1. O are regarded as equal in an
ordered_set table.

Failure

The functions in this module exits with reason badar g if any argument has the wrong format, if the table identifier
isinvalid, or if the operation is denied because of table access rights (protected or private).

Ericsson AB. All Rights Reserved.: STDLIB | 143

ets

Concurrency

This module provides some limited support for concurrent access. All updates to single objects are guaranteed to be
both atomic and isolated. This meansthat an updating operation to asingle object either succeeds or fails completely
without any effect (atomicity) and that no intermediate results of the update can be seen by other processes (isolation).
Some functionsthat update many objects state that they even guarantee atomicity and isolation for the entire operation.
In database terms the isolation level can be seen as"serializable”, asif al isolated operations are carried out serialy,
one after the other in a strict order.

Table traversal
There are different ways to traverse through the objects of atable.

e Single-step traversal onekey at at time, usingfi rst/ 1,next/ 2,1 ast/ 1 andprev/ 2.

e Search with simple match patterns, using nmatch/1/2/3, match delete/2 and
mat ch_obj ect/ 1/ 2/ 3.

e Search with more powerful match specifications, using sel ect/1/2/3, select_count/?2,
sel ect _del ete/ 2,sel ect _repl ace/ 2andsel ect _reverse/ 1/ 2/ 3.

e Tableconversions, usingt ab2fil e/ 2/ 3andtab2list/ 1.

None of these ways of table traversal will guarantee a consistent table snapshot if the table is also updated during the
traversal. Moreover, traversals not donein asafe way, on tableswhere keys are inserted or deleted during the traversal,
may yield the following undesired effects:

e Any key may be missed.

* Any key may be found more than once.

e Thetraversal may fail with badar g exception if keys are deleted.

A tabletraversal is safeif either

» thetableisof typeor dered_set.
* theentiretable traversal is done within one ETS function call.
« functionsaf e_fi xt abl e/ 2 isused to keep the table fixated during the entire traversal.

Traversals using mat ch and sel ect functions may not need to scan the entire table depending on how the key is
specified. A match pattern with a fully bound key (without any match variables) will optimize the operation to a
single key lookup without any table traversal at all. For or der ed_set apartially bound key will limit the traversal
to only scan a subset of the table based on term order. A partially bound key is either alist or a tuple with a prefix
that is fully bound. Example:

1> T = ets:new(t,[ordered set]), ets:insert(T, {"555-1234", "John Smith"}).
true

2> %% Efficient search of all with area code 555

2> ets:match(T,{[$5,%$5,$5,%- |'$1'],"'$2'}).

[["1234","John Smith"]]

Match Specifications

Some of the functions use a match specification, mat ch_spec. For a brief explanation, see sel ect/ 2. For a
detailed description, see section Match Specificationsin Erlang in ERTS User's Guide.

144 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Data Types

access() = public | protected | private
continuation()

Opaque continuation used by select/ 1, 3, sel ect _reverse/ 1, 3,
mat ch_obj ect/ 1, 3.

match spec() = [{match_pattern(), [term()], [term()]1}]
A match specification, see above.

comp_match spec()

A compiled match specification.

match pattern() = atom() | tuple()

tab() = atom() | tid()

tid()

A tableidentifier, asreturned by new/ 2.

type() = set | ordered set | bag | duplicate bag

Exports

all() -> [Tab]
Types:
Tab = tab()

match/ 1,3, and

Returns a list of all tables at the node. Named tables are specified by their names, unnamed tables are specified by

their table identifiers.

There is no guarantee of consistency in the returned list. Tables created or deleted by other processes "during” the
ets:all () cal ether areor are not included in the list. Only tables created/deleted beforeet s: al | () iscalled

are guaranteed to be included/excluded.

delete(Tab) -> true

Types:
Tab = tab()
Deletes the entire table Tab.

delete(Tab, Key) -> true

Types:
Tab = tab()
Key = term()

Deletes all objects with key Key from table Tab.

delete all objects(Tab) -> true
Types:
Tab = tab()

Delete all objectsin the ETS table Tab. The operation is guaranteed to be atomic and isolated.

Ericsson AB. All Rights Reserved.: STDLIB | 145

ets

delete object(Tab, Object) -> true
Types:

Tab = tab()

Object = tuple()

Delete the exact object Cbj ect from the ETS table, leaving objects with the same key but other differences (useful
for typebag). Inadupl i cat e_bag table, all instances of the object are deleted.

file2tab(Filename) -> {ok, Tab} | {error, Reason}

Types:
Filename = fil e: nane()
Tab = tab()

Reason = term()
Reads afile produced by t ab2fil e/ 2 ort ab2fi | e/ 3 and creates the corresponding table Tab.
Equivalenttofi |l e2t ab(Fi | enane, []).

file2tab(Filename, Options) -> {ok, Tab} | {error, Reason}

Types:
Filename = fil e: nanme()
Tab = tab()

Options = [Option]
Option = {verify, boolean()}
Reason = term()

Reads afileproduced by t ab2fil e/ 2 or t ab2fi | e/ 3 and creates the corresponding table Tab.

The only supported option is {verify, bool ean()}. If verification is turned on (by specifying
{verify, true}), thefunction uses whatever information is present in the file to assert that the information is not
damaged. How this is done depends on which ext ended_i nf o waswrittenusingt ab2fi | e/ 3.

If no ext ended_i nfoispresentinthefileand{verify, true} isspecified, the number of objects written is
compared to the size of the original table when the dump was started. This can make verification fail if the table was
publ i ¢ and objects were added or removed while the table was dumped to file. To avoid this problem, either do
not verify files dumped while updated simultaneously or use option { ext ended_i nfo, [object count]} to
t ab2fi | e/ 3, which extends the information in the file with the number of objects written.

If verification isturned on and the file was written with option { ext ended_i nf o, [nmd5sum }, reading thefile
is slower and consumes radically more CPU time than otherwise.

{verify,fal se} isthe default.

first(Tab) -> Key | '$end of table'

Types:
Tab = tab()
Key = term()

Returns the first key Key intable Tab. For an or der ed_set table, the first key in Erlang term order is returned.
For other table types, the first key according to the internal order of the table is returned. If the table is empty,
' $end_of _tabl e' isreturned.

To find subsequent keysin the table, use next / 2.

146 | Ericsson AB. All Rights Reserved.: STDLIB

ets

foldl(Function, AccO, Tab) -> Accl

Types.
Function = fun((Element :: term(), AccIn) -> AccOut)
Tab = tab()

AccO = Accl = AccIn = AccOut = term()

AccO isreturnedif thetableisempty. Thisfunctionissimilartol i st s: f ol dl / 3. Thetable elements are traversed
in an unspecified order, except for or der ed_set tables, where they are traversed first to last.

If Functi on inserts objects into the table, or another process inserts objects into the table, those objects can
(depending on key ordering) be included in the traversal.

foldr(Function, AccO, Tab) -> Accl

Types:
Function = fun((Element :: term(), AccIn) -> AccOut)
Tab = tab()

AccO = Accl = AccIn = AccOut = term()

AccO isreturnedif thetableisempty. Thisfunctionissimilartol i st s: f ol dr/ 3. Thetable elementsare traversed
in an unspecified order, except for or der ed_set tables, where they are traversed last to first.

If Functi on inserts objects into the table, or another process inserts objects into the table, those objects can
(depending on key ordering) be included in the traversal.

from dets(Tab, DetsTab) -> true
Types:

Tab = tab()

DetsTab = dets:tab_nane()

Fills an already created ETS table with the objects in the already opened Dets table Det sTab. Existing objects in
the ETS table are kept unless overwritten.

If any of the tables does not exist or the Dets table is hot open, abadar g exception is raised.

fun2ms (LiteralFun) -> MatchSpec
Types:
LiteralFun = function()
MatchSpec = mat ch_spec()
Pseudo function that by apar se_t r ansf or mtranslates Li t er al Fun typed as parameter in the function call to

amatch specification. With "literal" is meant that the fun must textually be written as the parameter of the function,
it cannot be held in avariable that in turn is passed to the function.

The parse transform is provided in the ns_transform module and the source must include file
ms_t ransform hrl in STDLIB for this pseudo function to work. Failing to include the hrl file in the source
results in a runtime error, not a compile time error. The include file is easiest included by adding line -
i nclude_lib("stdlib/include/ns_transformhrl"). tothesourcefile.

Thefunisvery restricted, it can take only asingle parameter (the object to match): asolevariableor atuple. It must use
thei s_ guard tests. Language constructs that have no representation in amatch specification (i f, case, r ecei ve,
and so on) are not allowed.

Thereturn value is the resulting match specification.

Ericsson AB. All Rights Reserved.: STDLIB | 147

ets

Example:

1> ets:fun2ms(fun({M,N}) when N > 3 -> M end).
[{{"$1","'$2"},[{'>","$2",3}],["'$1"1}]

Variables from the environment can be imported, so that the following works:

2> X=3.

3

3> ets:fun2ms(fun({M,N}) when N > X -> M end).
[{{'$1","'$2"},[{'>","$2",{const,3}}],['$1'1}]

The imported variables are replaced by match specification const expressions, which is consistent with the static
scoping for Erlang funs. However, local or global function calls cannot be in the guard or body of the fun. Calls to
built-in match specification functionsis of course allowed:

4> ets:fun2ms(fun({M,N}) when N > X, my fun(M) -> M end).
Error: fun containing local Erlang function calls

('my fun' called in guard) cannot be translated into match spec
{error,transform error}

5> ets:fun2ms(fun({M,N}) when N > X, is atom(M) -> M end).
[{{'$1","'$2"},[{'>","$2",{const,3}},{is_atom, '$1'}],['$1"']1}]

As shown by the example, the function can be called from the shell also. The fun must be literally in the call when
used from the shell aswell.

If the par se_t ransf or mis not applied to a module that calls this pseudo function, the call fails in runtime
(with a badar g). The et s module exports a function with this name, but it is never to be called except
when using the function in the shell. If the par se_t ransf or mis properly applied by including header file
ns_transform hrl , compiled code never callsthe function, but the function call isreplaced by aliteral match
specification.

For moreinformation, see ns_t r ansf or m(3) .

give away(Tab, Pid, GiftData) -> true

Types:
Tab = tab()
Pid = pid()

GiftData = term()

Make process Pid the new owner of table Tab. If successful, message {'ETS-
TRANSFER , Tab, FronPi d, G ft Dat a} issent tothe new owner.

The process Pi d must be alive, local, and not already the owner of the table. The calling process must be the table
owner.

Notice that this function does not affect option hei r of thetable. A table owner can, for example, set hei r toitself,
give the table away, and then get it back if the receiver terminates.

i() -> ok
Displaysinformation about all ETS tables on aterminal.

148 | Ericsson AB. All Rights Reserved.: STDLIB

ets

i(Tab) -> ok
Types.
Tab = tab()

Browsestable Tab on aterminal.

info(Tab) -> InfolList | undefined
Types:

Tab = tab()

InfolList = [InfoTuple]

InfoTuple =
{compressed, boolean()} |
{heir, pid() | none} |
{id, tidO} |
{keypos, integer() >= 1} |
{memory, integer() >= 0} |
{name, atom()} |
{named table, boolean()} |
{node, node()} |
{owner, pid()} |
{protection, access()} |
{size, integer() >= 0} |

{type, type()} |
{write concurrency, boolean()} |
{read _concurrency, boolean()}

Returns information about table Tab asalist of tuples. If Tab has the correct type for atable identifier, but does not
refer to an existing ETStable, undef i ned isreturned. If Tab isnot of the correct type, abadar g exceptionisraised.

{conpressed, bool ean()}

Indicatesif the table is compressed.
{heir, pid() | none}

The pid of the heir of the table, or none if no heir is set.
{id, tid()}

Thetable identifier.
{keypos, integer() >= 1}

The key position.
{menory, integer() >=0

The number of words allocated to the table.
{nane, atom()}

The table name.
{naned_t abl e, bool ean()}

Indicatesif the table is named.
{node, node()}

The node where the table is stored. Thisfield is no longer meaningful, as tables cannot be accessed from other
nodes.

Ericsson AB. All Rights Reserved.: STDLIB | 149

ets

{owner, pid()}
The pid of the owner of the table.
{protection, access()}
Thetable accessrights.
{size, integer() >=0
The number of objects inserted in the table.
{type, type()}
Thetable type.
{read_concurrency, bool ean()}
Indicates whether the table usesr ead_concur r ency or not.
{wite_concurrency, boolean()}
Indicates whether the table useswr i t e_concurr ency.

info(Tab, Item) -> Value | undefined
Types:
Tab = tab()

Item =
compressed |
fixed |
heir |
id |
keypos |
memory |
name |
named table |
node |
owner |
protection |
safe fixed |
safe fixed monotonic_time |
size |
stats |
type |
write concurrency |
read concurrency

Value = term()

Returnsthe information associated with | t emfor table Tab, or returnsundef i ned if Tab doesnot refer an existing
ETStable. If Tab isnot of the correct type, or if | t emisnot one of the allowed values, abadar g exception israised.

Inadditiontothe {1t em Val ue} pairsdefined fori nf o/ 1, thefollowing items are allowed:

« Iltenrfixed, Val ue=bool ean()

Indicatesif the tableis fixed by any process.

Itemrsaf e _fixed|safe_fixed_nonotonic_tine, Value={FixationTine,Info}|false

If the table has been fixed using saf e_f i xt abl e/ 2, the call returns a tuple where Fi xat i onTi e isthe
time when the table was first fixed by a process, which either is or is not one of the processesit is fixed by now.

150 | Ericsson AB. All Rights Reserved.: STDLIB

ets

The format and value of Fi xat i onTi ne dependsonl|tem
safe fixed

Fi xati onTi me corresponds to the result returned by er | ang: ti mest anp/ 0 at the time of fixation.
Notice that when the system uses single or multi time war p modes this can produce strange results, asthe use
of saf e_fi xedisnot timewarp safe. Timewarp safecodemust usesaf e_f i xed_nonot oni c_ti ne
instead.

safe_fixed nonotonic_tine

Fi xati onTi me corresponds to the result returned by er| ang: nonot oni c_ti ne/ 0 at the time of
fixation. Theuse of saf e_fi xed_nonotoni c_ti e is timewarp safe.

I nf o isapossibly empty lists of tuples { Pi d, Ref Count }, one tuple for every process the table is fixed by
now. Ref Count isthe value of the reference counter and it keeps track of how many times the table has been
fixed by the process.
If the table never has been fixed, the call returnsf al se.

e |tenrstats, Val ue=tuple()

Returnsinternal statisticsabout set , bag, and dupl i cat e_bag tableson an internal format used by OTP test
suites. Not for production use.

init table(Tab, InitFun) -> true
Types:
Tab = tab()
InitFun = fun((Arg) -> Res)
Arg = read | close
Res = end of input | {Objects :: [term()], InitFun} | term()
Replaces the existing objects of table Tab with objects created by calling the input function | ni t Fun, see below.

Thisfunction is provided for compatibility with thedet s module, it is not more efficient than filling atable by using
insert/2.

When called with argument r ead, the function | ni t Fun is assumed to return end_of _i nput when thereisno
moreinput, or { Obj ect's, Fun},where Obj ect s isalist of objects and Fun isanew input function. Any other
valueVal ueisreturnedasanerror{error, {init_fun, Val ue}}.Eachinputfunctioniscaledexactly once,
and if an error occur, the last function is called with argument cl ose, the reply of which isignored.

If the table type is set and more than one object exists with a given key, one of the objects is chosen. This is not
necessarily the last object with the given key in the sequence of objects returned by the input functions. This holds
also for duplicated objects stored in tables of type bag.

insert(Tab, ObjectOrObjects) -> true

Types.
Tab = tab()
ObjectOrObjects = tuple() | [tuple()]

Inserts the object or all of the objectsin list Cbj ect Or Cbj ect s into table Tab.

« If thetabletypeisset and the key of the inserted objects matches the key of any object in the table, the old
object is replaced.

« |Ifthetabletypeisor der ed_set and the key of the inserted object compar es equal to the key of any object
in the table, the old object is replaced.

Ericsson AB. All Rights Reserved.: STDLIB | 151

ets

« If thelist contains more than one object with matching keys and the table typeisset , oneisinserted, which one
isnot defined. The same holds for table type or der ed_set if the keys compare equal.

The entire operation is guaranteed to be atomic and isolated, even when alist of objectsisinserted.

insert new(Tab, ObjectOrObjects) -> boolean()
Types:
Tab = tab()
ObjectOrObjects = tuple() | [tuple()]
Same asi nsert/ 2 except that instead of overwriting objects with the same key (for set or or der ed_set) or
adding more objects with keys already existing in the table (for bag and dupl i cat e_bag), f al se isreturned.

If Ohj ect Or oj ect s isalist, the function checks every key before inserting anything. Nothing is inserted unless
all keys present in the list are absent from the table. Likei nser t / 2, the entire operation is guaranteed to be atomic
and isolated.

is compiled ms(Term) -> boolean()
Types:
Term = term()

Checks if aterm is a valid compiled match specification. The compiled match specification is an opaque datatype
that cannot be sent between Erlang nodes or be stored on disk. Any attempt to create an external representation of a
compiled match specification resultsin an empty binary (<<>>).

Examples:
Thefollowing expression yieldst r ue::

ets:is compiled ms(ets:match spec compile([{' ',[],[truel}])).

Thefollowing expressionsyieldf al se, asvariable Br oken contains acompiled match specification that has passed
through external representation:

MS = ets:match spec compile([{' ',[],[truel}l),
Broken = binary to term(term to binary(MS)),
ets:is compiled ms(Broken).

The reason for not having an external representation of compiled match specifications is performance. It can be
subject to change in future releases, while this interface remains for backward compatibility.

last(Tab) -> Key | '$end of table'

Types.
Tab = tab()
Key = term()

Returnsthe last key Key according to Erlang term order in table Tab of type or der ed_set . For other table types,
the function is synonymoustof i r st/ 1. If thetableisempty,' $end_of _t abl e' isreturned.

To find preceding keysin the table, use pr ev/ 2.

152 | Ericsson AB. All Rights Reserved.: STDLIB

ets

lookup(Tab, Key) -> [0Object]

Types.
Tab = tab()
Key = term()

Object = tuple()
Returns alist of all objects with key Key intable Tab.

e For tables of type set , bag, or dupl i cat e_bag, an object is returned only if the specified key matches the
key of the object in the table.

« For tables of type or der ed_set , an object is returned if the specified key compares equal to the key of an
object in the table.

The difference is the same as between =: = and ==.

Asan example, onecaninsert an object withi nt eger () 1 asakeyinanor der ed_set and get the object returned
asaresult of doingal ookup/ 2 withf | oat () 1. 0 asthekey to search for.

For tables of type set or or der ed_set , the function returns either the empty list or alist with one element, as
there cannot be more than one object with the same key. For tables of type bag or dupl i cat e_bag, the function
returns alist of arbitrary length.

Notice that the time order of object insertions is preserved; the first object inserted with the specified key is the first
in the resulting list, and so on.

Insert and lookup timesin tables of typeset , bag, and dupl i cat e_bag are constant, regardless of the table size.
For theor der ed_set datatype, timeis proportional to the (binary) logarithm of the number of objects.

lookup element(Tab, Key, Pos) -> Elem

Types:
Tab = tab()
Key = term()
Pos = integer() >=1

Elem = term() | [term()]
For atable Tab of typeset or or der ed_set , the function returns the Pos :th element of the object with key Key.

For tables of type bag or dupl i cat e_bag, the functions returns a list with the Pos:th element of every object
with key Key.

If no object with key Key exists, the function exits with reason badar g.

The difference between set , bag, and dupl i cat e_bag on onehand, and or der ed_set onthe other, regarding
thefact that or der ed_set view keys as equal when they compar e equal whereasthe other table types regard them
equal only when they match, holdsfor | ookup_el enent / 3.

match(Continuation) -> {[Match], Continuation} | '$end of table'
Types:

Match = [term()]

Continuation = continuation()

Continues amatch started with mat ch/ 3. The next chunk of the size specified in theinitial mat ch/ 3 call isreturned
together with anew Cont i nuat i on, which can be used in subsequent calls to this function.

When there are no more objectsin thetable, ' $end_of _t abl e' isreturned.

Ericsson AB. All Rights Reserved.: STDLIB | 153

ets

match(Tab, Pattern) -> [Match]
Types.
Tab = tab()
Pattern = natch_pattern()
Match = [term()]
Matches the objectsin table Tab against pattern Pat t er n.
A pattern is aterm that can contain:

» Bound parts (Erlang terms)

e ' ' that matches any Erlang term

* Patternvarigbles' $N' , where N=0,1,...

The function returns alist with one element for each matching object, where each element is an ordered list of pattern
variable bindings, for example:

6> ets:match(T, '$1'). % Matches every object in table
[[{rufsen,dog,7}], [{brunte,horse,5}], [{ludde,dog,5}]]
7> ets:match(T, {' ',dog,'$1'}).

[[71,[511]

8> ets:match(T, {' ',cow,'$1'}).

[]

If the key is specified in the pattern, the match is very efficient. If the key is not specified, that is, if it isavariable or
an underscore, the entire table must be searched. The search time can be substantial if the table is very large.
For tables of typeor der ed_set , theresult isin the same order asinafi r st /next traversal.

match(Tab, Pattern, Limit) ->
{[Match], Continuation} | '$end of table’

Types:
Tab = tab()
Pattern = match_pattern()
Limit = integer() >=1
Match = [term()]
Continuation = continuation()

Workslike mat ch/ 2, but returns only alimited (Li m t) number of matching objects. Term Cont i nuat i on can
then be used in subsequent callsto mat ch/ 1 to get the next chunk of matching objects. Thisis a space-efficient way
to work on objectsin atable, which isfaster than traversing the table object by object usingf i r st/ 1 and next / 2.

If thetableisempty, ' $end_of _t abl e' isreturned.

Usesaf e fi xt abl e/ 2 to guarantee safe traversal for subsequent callstomat ch/ 1.

match delete(Tab, Pattern) -> true
Types.

Tab = tab()

Pattern = natch_pattern()

Deletes al objects that match pattern Pat t er n from table Tab. For a description of patterns, see mat ch/ 2.

match object(Continuation) ->

154 | Ericsson AB. All Rights Reserved.: STDLIB

ets

{[Object], Continuation} | '$end of table'
Types:
Object = tuple()
Continuation = continuation()
Continues a match started with mat ch_obj ect/ 3. The next chunk of the size specified in the initial

mat ch_obj ect/ 3 cdl is returned together with a new Cont i nuat i on, which can be used in subsequent cals
to thisfunction.

When there are no more objectsin thetable, ' $end_of _t abl e' isreturned.

match object(Tab, Pattern) -> [Object]
Types:
Tab = tab()
Pattern = match_pattern()
Object = tuple()
Matchesthe objectsin table Tab against pattern Pat t er n. For adescription of patterns, seermat ch/ 2. The function
returns alist of al objects that match the pattern.

If the key is specified in the pattern, the match is very efficient. If the key is not specified, that is, if it isavariable or
an underscore, the entire table must be searched. The search time can be substantial if the tableisvery large.

For tables of typeor der ed_set , theresultisinthesame order asinafi r st /next traversal.

match object(Tab, Pattern, Limit) ->
{[Object], Continuation} | '$end of table'

Types.

Tab = tab()

Pattern = natch_pattern()

Limit = integer() >=1

Object = tuple()

Continuation = continuation()
Works like natch_object/ 2, but only returns a limited (Li mit) number of matching objects. Term
Cont i nuati on can then be used in subsequent callsto nmat ch_obj ect/ 1 to get the next chunk of matching

objects. Thisis a space-efficient way to work on objects in atable, which is faster than traversing the table object by
objectusingfirst/1andnext/ 2.

If thetableisempty, ' $end_of _t abl e' isreturned.
Usesaf e_fi xt abl e/ 2 to guarantee safe traversal for subsequent callsto mat ch_obj ect/ 1.

match spec compile(MatchSpec) -> CompiledMatchSpec
Types:

MatchSpec = mat ch_spec()

CompiledMatchSpec = conp_match_spec()
Transforms a match specification into an internal representation that can be used in subsequent calls to
mat ch_spec_run/ 2. Theinternal representation is opague and cannot be converted to external term format and
then back again without losing its properties (that is, it cannot be sent to a process on another node and still remain

a valid compiled match specification, nor can it be stored on disk). To check the validity of a compiled match
specification, usei s_conpi | ed_ns/ 1.

Ericsson AB. All Rights Reserved.: STDLIB | 155

ets

If term Mat chSpec cannot be compiled (does not represent a valid match specification), a badar g exception is
raised.

This function has limited use in normal code. It is used by the det s module to perform the det s: sel ect ()
operations.

match spec run(List, CompiledMatchSpec) -> list()
Types:

List = [term()]

CompiledMatchSpec = conp_mat ch_spec()

Executes the matching specified in a compiled match specification on alist of terms. Term Conpi | edVat chSpec
is to be the result of acall to mat ch_spec_conpi | e/ 1 and is hence the internal representation of the match
specification one wantsto use.

The matching is executed on each element in Li st and the function returns alist containing all results. If an element
in Li st does not match, nothing is returned for that element. The length of the result list is therefore equal or less
than the length of parameter Li st .

Example:

The following two calls give the same result (but certainly not the same execution time):

Table = ets:new...

MatchSpec = ...

% The following call...

ets:match spec run(ets:tab2list(Table),
ets:match spec compile(MatchSpec)),

% ...gives the same result as the more common (and more efficient)

ets:select(Table, MatchSpec),

This function has limited use in normal code. It is used by the det s module to perform the det s: sel ect ()
operations and by Mnesia during transactions.

member (Tab, Key) -> boolean()

Types:
Tab = tab()
Key = term()

Works like | ookup/ 2, but does not return the objects. Returnst r ue if one or more elements in the table has key
Key, otherwisef al se.

new(Name, Options) -> tid() | atom()
Types:
Name = atom()
Options = [Option]
Option =
Type |

156 | Ericsson AB. All Rights Reserved.: STDLIB

ets

Access |

named table |

{keypos, Pos} |

{heir, Pid :: pid(), HeirData} |
{heir, none} |

Tweaks

Type = type()
Access access()

Tweaks =
{write concurrency, boolean()} |
{read concurrency, boolean()} |
compressed

Pos = integer() >=1

HeirData = term()

Creates a new table and returns atable identifier that can be used in subseguent operations. The table identifier can be
sent to other processes so that a table can be shared between different processes within a node.

Parameter Opt i ons isalist of options that specifies table type, access rights, key position, and whether the table
is named. Default values are used for omitted options. This means that not specifying any options ([]) is the same
as specifying [set, protected, {keypos,1}, {heir,none}, {wite_concurrency,false},
{read_concurrency, fal se}].

set
Thetableisaset table: one key, one object, no order among objects. Thisisthe default table type.
ordered_set

Thetableisaor der ed_set table: onekey, one object, ordered in Erlang term order, which isthe order implied
by the < and > operators. Tables of thistype have asomewhat different behavior in some situations than tabl es of
other types. Most notably, the or der ed_set tablesregard keys as equal when they compar e equal, not only
when they match. Thismeansthat to an or der ed_set table i nt eger () 1 andfl oat () 1. O areregarded
asegual. This also meansthat the key used to lookup an element not necessarily matchesthe key in the returned
edements, if f | oat () 'sandi nt eger () 'saremixed in keys of atable.

bag
Thetableisabag table, which can have many objects, but only one instance of each object, per key.
dupl i cat e_bag

The tableisadupl i cat e_bag table, which can have many objects, including multiple copies of the same
object, per key.

public
Any process can read or write to the table.
pr ot ect ed

The owner process can read and write to the table. Other processes can only read the table. This is the default
setting for the access rights.

private
Only the owner process can read or write to the table.

Ericsson AB. All Rights Reserved.: STDLIB | 157

ets

naned_t abl e

If thisoptionis present, thetableisregistered under its Narre which can then be used instead of thetableidentifier
in subsequent operations.

The function will also return the Nane instead of the table identifier. To get the table identifier of a named table,
usewher ei s/ 1.

{keypos, Pos}

Specifies which element in the stored tuples to use as key. By default, it is the first element, that is, Pos=1.
However, thisis not always appropriate. In particular, we do not want the first element to be the key if we want
to store Erlang records in atable.

Notice that any tuple stored in the table must have at least Pos humber of elements.
{heir,Pid, HeirData} | {heir, none}

Set a process as heir. The heir inherits the table if the owner terminates. Message {' ETS-
TRANSFER , ti d(), FronPi d, Hei r Dat a} is sent to the heir when that occurs. The heir must be a local
process. Default heir isnone, which destroys the table when the owner terminates.

{write_concurrency, bool ean()}

Performance tuning. Defaults to f al se, in which case an operation that mutates (writes to) the table obtains
exclusive access, blocking any concurrent access of the same table until finished. If set to t r ue, the table is
optimized to concurrent write access. Different objects of the same table can be mutated (and read) by concurrent
processes. This is achieved to some degree at the expense of memory consumption and the performance of
sequential access and concurrent reading.

Option wri t e_concurrency can be combined with option read_concurrency. You typicaly want
to combine these when large concurrent read bursts and large concurrent write bursts are common; for more
information, seeoption read_concurrency.

Notice that this option does not change any guarantees about atomicity and isolation. Functions that makes such
promises over many objects (likei nsert / 2) gain less (or nothing) from this option.

Table type or der ed_set is not affected by this option. Also, the memory consumption inflicted by both
write_concurrency andread_concurrency is aconstant overhead per table. This overhead can be
especially large when both options are combined.

{read_concurrency, bool ean()}

Performancetuning. Defaultstof al se. Whensettot r ue, thetableisoptimized for concurrent read operations.
When this option is enabled on a runtime system with SMP support, read operations become much cheaper;
especially on systems with multiple physical processors. However, switching between read and write operations
becomes more expensive.

You typically want to enable this option when concurrent read operations are much more frequent than write
operations, or when concurrent reads and writes comes in large read and write bursts (that is, many reads not
interrupted by writes, and many writes not interrupted by reads).

You typically do not want to enable this option when the common access pattern is a few read operations
interleaved with a few write operations repeatedly. In this case, you would get a performance degradation by
enabling this option.

Optionr ead_concur r ency can be combined with option wri t e_concurrency. You typicaly want to
combine these when large concurrent read bursts and large concurrent write bursts are common.

158 | Ericsson AB. All Rights Reserved.: STDLIB

ets

conpr essed

If this option is present, the table data is stored in a more compact format to consume less memory. However, it
will make table operations slower. Especially operations that need to inspect entire objects, such as mat ch and
sel ect, get much slower. The key element is not compressed.

next(Tab, Keyl) -> Key2 | '$end of table'’
Types:
Tab = tab()
Keyl = Key2 = term()
Returnsthe next key Key 2, following key Key 1 in table Tab. For table type or der ed_set , the next key in Erlang

term order isreturned. For other table types, the next key according to the internal order of the table is returned. If no
next key exists, ' $end_of _t abl e' isreturned.

To find thefirst key in thetable, usefi rst/ 1.

Unlessatableof typeset , bag, ordupl i cat e_bag isfixatedusingsaf e_fi xt abl e/ 2, acall tonext / 2 will
fail if Key 1 nolonger existsinthetable. For tabletypeor der ed_set , the function alwaysreturnsthe next key after
Key1 interm order, regardless whether Key 1 ever existed in thetable.

prev(Tab, Keyl) -> Key2 | '$end of table'
Types:
Tab = tab()
Keyl = Key2 = term()
Returns the previous key Key2, preceding key Keyl according to Erlang term order in table Tab of type

ordered_set. For other table types, the function is synonymous to next/ 2. If no previous key exists,
' $end_of _t abl e’ isreturned.

Tofindthelast key inan or der ed_set table usel ast/ 1.

rename(Tab, Name) -> Name
Types:

Tab = tab()

Name = atom()

Renames the named table Tab to the new name Nane. Afterwards, the old name cannot be used to access the table.
Renaming an unnamed table has no effect.

repair_continuation(Continuation, MatchSpec) -> Continuation
Types:

Continuation = continuation()

MatchSpec = mat ch_spec()

Restoresan opague continuationreturned by sel ect / 3 orsel ect / 1 if the continuation has passed through external
term format (been sent between nodes or stored on disk).

The reason for this function is that continuation terms contain compiled match specifications and therefore are
invalidated if converted to external term format. Given that the origina match specification is kept intact, the
continuation can be restored, meaning it can once again be used in subsequent sel ect / 1 calls even though it has
been stored on disk or on another node.

Examples:

Ericsson AB. All Rights Reserved.: STDLIB | 159

ets

The following sequence of callsfails:
T=ets:new(x,[]),

{ ,C} = ets:select(T,ets:fun2ms(fun({N, }=A)

when (N rem 10) =:= 0 ->
A
end),10),

Broken = binary to term(term to binary(C)),
ets:select(Broken).

The following sequence works, as the call to repair_continuati on/ 2 reestablishes the (deliberately)
invalidated continuation Br oken.

T=ets:new(x,[]),

MS = ets:fun2ms(fun({N, }=A)

when (N rem 10) =:= 0 ->

A

end),

{ ,C} = ets:select(T,MS,10),

Broken = binary to term(term to binary(C)),
ets:select(ets:repair _continuation(Broken,MS)).

This function is rarely needed in application code. It is used by Mnesia to provide distributed sel ect/ 3 and
sel ect/ 1 sequences. A norma application would either use Mnesia or keep the continuation from being
converted to externa format.

The reason for not having an external representation of a compiled match specification is performance. It can be
subject to change in future releases, while this interface remains for backward compatibility.

safe fixtable(Tab, Fix) -> true

Types:
Tab = tab()
Fix = boolean()

Fixes atable of typeset , bag, or dupl i cat e_bag for safetraversal usingfirst/1& next/2,mtch/ 3 &
mat ch/ 1, mat ch_obj ect/ 3 & match_obj ect/ 1,orsel ect/ 3 & sel ect/ 1.

A processfixesatableby calingsaf e_fi xt abl e(Tab, true).Thetableremainsfixeduntil theprocessreleases
itby calingsaf e_fi xtabl e(Tab, fal se), oruntil the process terminates.

If many processes fix atable, the table remains fixed until all processes have released it (or terminated). A reference
counter is kept on a per process basis, and N consecutive fixes requires N releases to release the table.

When atableisfixed, asequenceof fi r st/ 1 and next / 2 callsare guaranteed to succeed even if keys are removed
during thetraversal. The keysfor objectsinserted or deleted during atraversal may or may not bereturned by next / 2
depending on the ordering of keys within the table and if the key exists at thetime next / 2 iscalled.

Example:

160 | Ericsson AB. All Rights Reserved.: STDLIB

ets

clean all with value(Tab,X) ->
safe fixtable(Tab,true),
clean all with value(Tab,X,ets:first(Tab)),
safe fixtable(Tab, false).

clean all with value(Tab,X, '$end of table') ->
true;
clean all with value(Tab,X,Key) ->
case ets:lookup(Tab,Key) of
[{Key,X}] ->
ets:delete(Tab,Key);
->
true
end,
clean all with value(Tab,X,ets:next(Tab,Key)).

Notice that deleted objects are not freed from a fixed table until it has been released. If a process fixes a table but
never releases it, the memory used by the deleted objects is never freed. The performance of operations on the table
also degrades significantly.

To retrieve information about which processes have fixed which tables, use i nf o(Tab,
saf e_fi xed_nonot oni c_ti me). A system with many processes fixing tables can need a monitor that sends
alarms when tables have been fixed for too long.

Noticethat saf e_fi xt abl e/ 2 isnot necessary for table type or der ed_set and for traversals done by asingle
ETSfunction call, likesel ect/ 2.

select(Continuation) -> {[Match], Continuation} | '$end of table’
Types:

Match = term()

Continuation = continuation()

Continues a match started with sel ect / 3. The next chunk of the size specified in the initial sel ect/ 3 call is
returned together with anew Cont i nuat i on, which can be used in subsequent callsto this function.

When there are no more objectsin thetable, ' $end_of _t abl e' isreturned.

select(Tab, MatchSpec) -> [Match]
Types.

Tab = tab()

MatchSpec = mat ch_spec()

Match = term()

Matches the objects in table Tab using a match specification. This is a more genera call than nat ch/ 2 and
mat ch_obj ect/ 2 cals. Inits simplest form, the match specification is as follows:

MatchSpec = [MatchFunction]

MatchFunction = {MatchHead, [Guard], [Result]}
MatchHead = "Pattern as in ets:match"

Guard = {"Guardtest name", ...}

Result = "Term construct"

This means that the match specification isawaysalist of one or more tuples (of arity 3). Thefirst element of thetuple
is to be a pattern as described in mat ch/ 2. The second element of the tuple is to be alist of O or more guard tests
(described below). Thethird element of thetuple isto be alist containing a description of the valueto return. In almost
all normal cases, the list contains exactly one term that fully describes the value to return for each object.

Ericsson AB. All Rights Reserved.: STDLIB | 161

ets

Thereturn valueis constructed using the "match variables' boundin Mat chHead or using the special match variables
'$_' (thewholematching object) and' $$' (all match variablesinalist), so that thefollowing mat ch/ 2 expression:

ets:match(Tab,{'$1','$2"','$3"'})

is exactly equivaent to:
ets:select(Tab, [{{'$1','$2","'$3"'},[1,['$$'1}]1)

And that the following mat ch_obj ect / 2 call:
ets:match_object(Tab,{'$1','$2"','$1'})

is exactly equivalent to
ets:select(Tab, [{{'$1","'$2","$1"'},[1,['$_"1}1)

Composite terms can be constructed in the Resul t part either by simply writing alist, so that the following code:
ets:select(Tab, [{{'$1','$2","'$3"},[1,['$$"'1}])

gives the same output as:
ets:select(Tab, [{{'$1','$2","'$3"'},[1,[['$1"',"'$2",'$3'11}])

That is, al the bound variables in the match head as alist. If tuples are to be constructed, one has to write a tuple of
arity 1 where the single element in the tuple is the tuple one wants to construct (as an ordinary tuple can be mistaken
foraGuar d).

Therefore the following call:

ets:select(Tab, [{{'$1','$2"',"'$1'},[1,['$ '1}1])

gives the same output as:

ets:select(Tab, [{{"'$1",'$2","$1"}, [, [{{'$1",'$2","$3"}}1}])
This syntax is equivalent to the syntax used in the trace patterns (see the dbg(3)) module in Runtime_Tools.

The Guar dsare constructed as tuples, where the first element is the test name and the remaining elements are the test
parameters. To check for aspecific type (say alist) of the element bound to the match variable' $1' , onewould write
thetestas{i s_list, '$1'}.If thetestfails, theobject inthetable doesnot match and the next Mat chFunct i on
(if any) istried. Most guard tests present in Erlang can be used, but only the new versions prefixed i s__ are allowed
(is_float,is_atomandsoon).

The Guar d section can also contain logic and arithmetic operations, which are written with the same syntax as the
guard tests (prefix notation), so that the following guard test written in Erlang:

is integer(X), is integer(Y), X + Y < 4711
isexpressed asfollows (X replaced with' $1' and Y with' $2'):
[{is_integer, '$1'}, {is integer, '$2'}, {'<', {'+', '$1', '$2'}, 4711}]

For tables of type or der ed_set , objects are visited in the same order asinaf i r st /next traversal. This means
that the match specification is executed against objects with keysinthefi r st /next order and the corresponding
result list isin the order of that execution.

select(Tab, MatchSpec, Limit) ->

162 | Ericsson AB. All Rights Reserved.: STDLIB

ets

{[Match], Continuation} | '$end of table'

Types.

Tab = tab()

MatchSpec = mat ch_spec()

Limit = integer() >=1

Match = term()

Continuation = continuation()
Workslikesel ect/ 2, but only returnsalimited (Li m t) number of matching objects. Term Cont i nuat i on can
then be used in subsequent callsto sel ect / 1 to get the next chunk of matching objects. This is a space-efficient

way to work on objectsin atable, which is still faster than traversing the table object by object usingfi rst/ 1 and
next/ 2.

If thetableisempty, ' $end_of _t abl e' isreturned.
Usesaf e_fi xt abl e/ 2 to guarantee safe traversal for subsequent callstosel ect/ 1.

select count(Tab, MatchSpec) -> NumMatched
Types:
Tab = tab()
MatchSpec = mat ch_spec()
NumMatched = integer() >= 0
Matches the objects in table Tab using a match specification. If the match specification returnst r ue for an object,

that object considered a match and is counted. For any other result from the match specification the object is not
considered a match and is therefore not counted.

This function can be described asamat ch_del et e/ 2 function that does not delete any elements, but only counts
them.

The function returns the number of objects matched.

select delete(Tab, MatchSpec) -> NumDeleted
Types.
Tab = tab()
MatchSpec = mat ch_spec()
NumDeleted = integer() >= 0
Matches the objects in table Tab using a match specification. If the match specification returnst r ue for an object,

that object is removed from the table. For any other result from the match specification the object isretained. Thisis
amore genera call than the mat ch_del et e/ 2 call.

The function returns the number of objects deleted from the table.

The match specification has to return the atom t r ue if the object is to be deleted. No other return value gets the
object deleted. So one cannot use the same match specification for looking up elements as for deleting them.

select replace(Tab, MatchSpec) -> NumReplaced
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 163

ets

Tab = tab()
MatchSpec = mat ch_spec()
NumReplaced = integer() >= 0

Matches the objects in the table Tab using a match specification. For each matched object, the existing object is
replaced with the match specification result.

The match-and-replace operation for each individual object is guaranteed to be atomic and isolated. The
sel ect _repl ace tabletraversal asawhole, like al other select functions, does not give such guarantees.

The match specifiction must be guaranteed to retain the key of any matched object. If not, sel ect _r epl ace will
fail with badar g without updating any objects.

For the moment, due to performance and semantic constraints, tables of type bag are not yet supported.
The function returns the total number of replaced objects.
Example

For all 2-tupleswith alist in second position, add atom ' mar ker ' firstin thelist:

1> T = ets:new(x,[]1), ets:insert(T, {key, [1, 2, 31}).

true

2> MS = ets:fun2ms(fun({K, L}) when is list(L) -> {K, [marker | L]} end).
[{{'$1","$2"}, [{is_list, '$2'}1,[{{'$1', [marker|'$2'1}}1}]

3> ets:select replace(T, MS).

1

4> ets:tab2list(T).

[{key, [marker,1,2,31}]

A generic single object compare-and-swap operation:

[0ld] = ets:lookup(T, Key),
New = update object(0ld),
Success = (1 =:= ets:select replace(T, [{Old, [], [{const, New}]}1)),

select reverse(Continuation) ->
{[Match], Continuation} | '$end of table'’
Types:
Continuation = continuation()
Match = term()
Continues amatch started with sel ect _r ever se/ 3. For tables of typeor der ed_set , thetraversal of the table

continues to objects with keys earlier in the Erlang term order. The returned list also contains objects with keys in
reverse order. For all other table types, the behavior is exactly that of sel ect/ 1.

Example:

164 | Ericsson AB. All Rights Reserved.: STDLIB

ets

1> T = ets:new(x, [ordered set]).

2> [ets:insert(T,{N}) || N <- lists:seq(1,10)].
é;.{RO,CO} = ets:select reverse(T,[{' ',[1,['$ _'1}1,4).
A;.RO.

[{10},{9},{8},{7}1]

5> {R1,(C1l} = ets:select reverse(CO).
é;.Rl.

[{6},{5},{4},{3}]

7> {R2,C2} = ets:select reverse(Cl).
é;.RZ.

[{2},{1}]

9> '$end of table' = ets:select reverse((C2).

select reverse(Tab, MatchSpec) -> [Match]
Types:

Tab = tab()

MatchSpec = mat ch_spec()

Match = term()

Works likesel ect / 2, but returns the list in reverse order for table type or der ed_set . For all other table types,
thereturn vaueisidentical to that of sel ect / 2.

select reverse(Tab, MatchSpec, Limit) ->
{[Match], Continuation} | '$end of table'

Types.

Tab = tab()

MatchSpec = mat ch_spec()

Limit = integer() >=1

Match = term()

Continuation = continuation()

Workslikesel ect/ 3, but for tabletypeor der ed_set traversingisdone starting at the last object in Erlang term
order and movesto thefirst. For al other table types, the return value isidentical to that of sel ect/ 3.

Noticethat thisis not equivalent to reversing theresult list of asel ect / 3 call, astheresult list is not only reversed,
but also containsthe last Li mi t matching objects in the table, not the first.

setopts(Tab, Opts) -> true
Types:
Tab = tab()
Opts = Opt | [Opt]
Opt = {heir, pid(), HeirData} | {heir, none}
HeirData = term()

Sets table options. The only allowed option to be set after the table has been created is hei r . The calling process
must be the table owner.

Ericsson AB. All Rights Reserved.: STDLIB | 165

ets

slot(Tab, I) -> [Object] | '$end of table'
Types.
Tab = tab()
I = integer() >= 0
Object = tuple()
This function is mostly for debugging purposes, Normally f i r st /next or | ast /pr ev areto be used instead.
Returns all objectsin dot | of table Tab. A table can be traversed by repeatedly calling the function, starting with

thefirst dot | =0 and ending when' $end_of _t abl e' isreturned. If argument | isout of range, the function fails
with reason badar g.

Unless atable of typeset , bag, or dupl i cat e_bag isprotected using saf e_fi xt abl e/ 2, atraversal can fall
if concurrent updates are madeto thetable. For tabletypeor der ed_set , thefunction returnsalist containing object
| in Erlang term order.

tab2file(Tab, Filename) -> ok | {error, Reason}
Types:

Tab = tab()

Filename = fil e: name()

Reason = term()

Dumpstable Tab tofileFi | enane.
Equivalenttot ab2fil e(Tab, Filenane,[])

tab2file(Tab, Filename, Options) -> ok | {error, Reason}
Types:

Tab = tab()

Filename = fil e: name()

Options = [Option]

Option = {extended info, [ExtInfo]} | {sync, boolean()}

ExtInfo = md5sum | object count

Reason = term()

Dumpstable Tab tofileFi | enane.

When dumping the table, some information about the table is dumped to a header at the beginning of the dump. This
information contains dataabout the table type, name, protection, size, version, and if itisanamed table. It also contains
notes about what extended information is added to the file, which can be a count of the objects in the file or a MD5
sum of the header and recordsin thefile.

The size field in the header might not correspond to the number of recordsin the file if the table is public and records
are added or removed from the table during dumping. Public tables updated during dump, and that one wants to verify
when reading, needs at |east one field of extended information for the read verification process to be reliable later.

Option ext ended_i nf o specifies what extrainformation is written to the table dump:
obj ect _count

The number of objects written to the file is noted in the file footer, so file truncation can be verified even if the
file was updated during dump.

166 | Ericsson AB. All Rights Reserved.: STDLIB

ets

nd5sum

The header and objectsin thefile are checksummed using the built-in MD5 functions. The MD5 sum of all objects
is written in the file footer, so that verification while reading detects the slightest bitflip in the file data. Using
this costs a fair anount of CPU time.

Whenever option ext ended_i nf o isused, it resultsin afile not readable by versions of ETS beforethat in STDLIB
1151

If option sync issettot r ue, it ensuresthat the content of the file is written to the disk beforet ab2f i | e returns.
Defaultsto{sync, fal se}.

tab2list(Tab) -> [Object]
Types:

Tab = tab()

Object = tuple()
Returns alist of all objectsin table Tab.

tabfile info(Filename) -> {ok, TableInfo} | {error, Reason}
Types:

Filename = fil e: nane()

TableInfo = [InfoIltem]

Infoltem =

{name, atom()} |

{type, Type} |

{protection, Protection} |

{named table, boolean()} |

{keypos, integer() >= 0} |

{size, integer() >= 0} |

{extended info, [ExtInfol} |

{version,

{Major :: integer() >= 0, Minor :: integer() >= 0}}

ExtInfo = md5sum | object count
Type = bag | duplicate bag | ordered set | set
Protection = private | protected | public

Reason = term()
Returns information about the table dumped to fileby t ab2fi |l e/ 2 ort ab2fi |l e/ 3.
The following items are returned:
nane

The name of the dumped table. If the table was a hamed table, a table with the same name cannot exist when
the table is loaded from file with f i | e2t ab/ 2. If the table is not saved as a named table, this field has no
significance when loading the table from file.

type
The ETStype of the dumped table (that is, set , bag, dupl i cat e_bag, oror der ed_set). Thistypeisused
when loading the table again.

Ericsson AB. All Rights Reserved.: STDLIB | 167

ets

protection

The protection of the dumped table (that is, pri vat e, pr ot ect ed, or publ i c). A tableloaded from the file
gets the same protection.

nanmed_t abl e

t r ue if the table was a named table when dumped to file, otherwise f al se. Notice that when a named tableis
loaded from afile, there cannot exist atable in the system with the same name.

keypos
Thekeypos of the table dumped to file, which is used when loading the table again.
si ze

The number of abjects in the table when the table dump to file started. For a publ i ¢ table, this number does
not need to correspond to the number of objects saved to the file, as objects can have been added or deleted by
another process during table dump.

extended_info

The extended information written in the file footer to allow stronger verification during table loading from file,
as specifiedto t ab2f i | e/ 3. Natice that this function only tells which information is present, not the values
in the file footer. The value isalist containing one or more of the atoms obj ect _count and nd5sum

versi on

A tuple{ Maj or, M nor} containing the major and minor version of the file format for ETS table dumps. This
version field was added beginning with STDLIB 1.5.1. Files dumped with older versions return { 0, 0} in this
field.

An error isreturned if the fileisinaccessible, badly damaged, or not produced witht ab2fi |l e/ 2 ort ab2fil e/ 3.

table(Tab) -> QueryHandle
table(Tab, Options) -> QueryHandle
Types.
Tab = tab()
QueryHandle = gl c: query_handl e()
Options = [Option] | Option
Option = {n objects, NObjects} | {traverse, TraverseMethod}
NObjects = default | integer() >=1

TraverseMethod =
first next |
last _prev |
select |
{select, MatchSpec :: match_spec()}

Returns a Query List Comprehension (QLC) query handle. The gl ¢ module provides aquery language aimed mainly
at Mnesia, but ETS tables, Detstables, and lists are also recognized by QL C as sources of data. Callingt abl e/ 1, 2
is the means to make the ETS table Tab usableto QLC.

When there are only simple restrictions on the key position, QLC uses| ookup/ 2 to look up the keys. When that is
not possible, the whole table istraversed. Optiont r aver se determines how thisis done:

first_next
Thetableistraversed onekey at atimeby callingfi rst/ 1 and next/ 2.

168 | Ericsson AB. All Rights Reserved.: STDLIB

ets

| ast _prev
Thetableistraversed one key at atime by callingl ast/ 1 and pr ev/ 2.
sel ect

The table is traversed by calling sel ect/ 3 and sel ect/ 1. Option n_obj ect s determines the number
of objects returned (the third argument of sel ect/ 3); the default is to return 100 objects at a time. The
match specification (the second argument of sel ect/ 3) is assembled by QLC: simple filters are trandated
into equivalent match specifications while more complicated filters must be applied to all objects returned by
sel ect/ 3 given amatch specification that matches all objects.

{sel ect, MatchSpec}

Asfor sel ect , thetableistraversed by calling sel ect/ 3 and sel ect/ 1. The difference is that the match
specification is explicitly specified. This is how to state match specifications that cannot easily be expressed
within the syntax provided by QLC.

Examples:

An explicit match specification is here used to traverse the table:

9> true = ets:insert(Tab = ets:new(t, [1), [{1,a},{2,b},{3,c},{4,d}]),
MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X <5) -> {Y} end),
QH1 = ets:table(Tab, [{traverse, {select, MS}}]).

An example with an implicit match specification:

10> QH2 = qlc:q([{Y} || {X,Y} <- ets:table(Tab), (X > 1) or (X < 5)1).
The latter example is equivalent to the former, which can be verified using functiongl ¢: i nf o/ 1:
11> glc:info(QH1l) =:= qlc:info(QH2).
true
gl c: i nf o/ 1 returnsinformation about a query handle, and in this case identical information is returned for the two

query handles.

take(Tab, Key) -> [Object]

Types.
Tab = tab()
Key = term()

Object = tuple()
Returns and removes alist of all objects with key Key in table Tab.

The specified Key isused to identify the object by either comparing equal the key of an objectinanor der ed_set
table, or matching in other types of tables (for details on the difference, seel ookup/ 2 and new 2).

test ms(Tuple, MatchSpec) -> {ok, Result} | {error, Errors}
Types:

Ericsson AB. All Rights Reserved.: STDLIB | 169

ets

Tuple = tuple()

MatchSpec = mat ch_spec()

Result = term()

Errors = [{warning | error, string()}]

Thisfunctionisautility to test amatch specification used in calstosel ect / 2. Thefunction both testsVat chSpec
for "syntactic" correctness and runs the match specification against object Tupl e.

If the match specification is syntactically correct, the function either returns{ ok, Resul t } , whereResul t iswhat
would havebeentheresultinareal sel ect/ 2 cal, or f al se if thematch specification doesnot match object Tupl e.

If the match specification contains errors, tuple{ error, Error s} isreturned, where Err or s isalist of natural
language descriptions of what was wrong with the match specification.

Thisisauseful debugging and test tool, especially when writing complicated sel ect / 2 calls.
See also: erlang:match_spec test/3

to dets(Tab, DetsTab) -> DetsTab
Types.

Tab = tab()

DetsTab = dets:tab_name()

Fills an already created/opened Dets table with the objects in the already opened ETS table named Tab. The Dets
table is emptied before the objects are inserted.

update counter
update counter
update counter
update counter
update counter
update counter

Tab, Key, UpdateOp) -> Result

Tab, Key, UpdateOp, Default) -> Result

Tab, Key, X3 :: [UpdateOp]) -> [Result]

Tab, Key, X3 :: [UpdateOp], Default) -> [Result]
Tab, Key, Incr) -> Result

Tab, Key, Incr, Default) -> Result

P

Types:
Tab = tab()
Key = term(

)
UpdateOp = {Pos, Incr} | {Pos, Incr, Threshold, SetValue}

Pos = Incr = Threshold = SetValue = Result = integer()
Default = tuple()

This function provides an efficient way to update one or more counters, without the trouble of having to look up an
object, update the object by incrementing an element, and insert the resulting object into the table again. The operation
is guaranteed to be atomic and isolated.

This function destructively update the object with key Key in table Tab by adding | ncr to the element at position
Pos. The new counter value is returned. If no position is specified, the element directly following key (<keypos>
+1) is updated.

If aThr eshol d is specified, the counter isreset to value Set Val ue if the following conditions occur:

* I ncr isnot negative (>= 0) and the result would be greater than (>) Thr eshol d.
e | ncr isnegative (< 0) and the result would be less than (<) Thr eshol d.

A list of Updat eOp can be supplied to do many update operations within the object. The operations are carried out in
the order specified in thelist. If the same counter position occurs more than once in the list, the corresponding counter

170 | Ericsson AB. All Rights Reserved.: STDLIB

ets

is thus updated many times, each time based on the previous result. Thereturn valueisalist of the new counter values
from each update operation in the same order as in the operation list. If an empty list is specified, nothing is updated
and an empty list isreturned. If the function fails, no updates are done.

The specified Key is used to identify the object by either matching the key of an object in aset table, or compare
equal to the key of an object in an or der ed_set table (for details on the difference, seel ookup/ 2 and new 2).

If adefault object Def aul t isspecified, it isused as the object to be updated if the key is missing from the table. The
value in place of the key isignored and replaced by the proper key value. The return value is as if the default object
had not been used, that is, asingle updated element or alist of them.

The function fails with reason badar g in the following situations:

e« Thetabletypeisnotset orordered_set.

* No object with the correct key exists and no default object was supplied.
* The object has the wrong arity.

e Thedefault object arity is smaller than <keypos>.

« Any field from the default object that is updated is not an integer.

e The element to update is not an integer.

* Theelement to update is also the key.

e Anyof Pos, I ncr, Threshol d, or Set Val ue isnot an integer.

update element(Tab, Key, ElementSpec :: {Pos, Value}) -> boolean()
update element(Tab, Key, ElementSpec :: [{Pos, Value}]) ->

boolean()
Types.
Tab = tab()
Key = term()

Value = term()

Pos = integer() >=1
Thisfunction provides an efficient way to update one or more elements within an object, without the trouble of having
to look up, update, and write back the entire object.

This function destructively updates the object with key Key in table Tab. The element at position Pos is given the
value Val ue.

A list of { Pos, Val ue} can be supplied to update many elements within the same aobject. If the same position occurs
more than once in the list, the last value in the list is written. If the list is empty or the function fails, no updates are
done. The function is also atomic in the sense that other processes can never see any intermediate results.

Returnst r ue if an object with key Key isfound, otherwisef al se.

The specified Key is used to identify the object by either matching the key of an object in aset table, or compare
equal to the key of an objectinan or der ed_set table (for details on the difference, seel ookup/ 2 and new 2).

The function fails with reason badar g in the following situations:

 Thetabletypeisnotset orordered_set.
* Pos<l

* Pos > object arity.

e The element to update is also the key.

Ericsson AB. All Rights Reserved.: STDLIB | 171

ets

whereis(TableName) -> tid() | undefined
Types.
TableName = atom()

This function returnsthe t i d() of the named table identified by Tabl eName, or undefi ned if no such table
exists. Theti d() can be used in place of the table name in all operations, which is dlightly faster since the name
does not have to be resolved on each call.

If thetableisdeleted, thet i d() will beinvalid even if another named tableis created with the same name.

172 | Ericsson AB. All Rights Reserved.: STDLIB

file_sorter

file_sorter

Erlang module

This module contains functions for sorting terms on files, merging already sorted files, and checking files for
sortedness. Chunks containing binary terms are read from a sequence of files, sorted internally in memory and written
on temporary files, which are merged producing one sorted file as output. Merging is provided as an optimization; it
is faster when the files are already sorted, but it always works to sort instead of merge.

On afile, atermis represented by a header and a binary. Two options define the format of terms on files:
{header, Header Lengt h}

Header Lengt h determines the number of bytes preceding each binary and containing the length of the binary
in bytes. Defaults to 4. The order of the header bytes is defined as follows: if B is a binary containing a header
only, size Si ze of thebinary iscalculated as<<Si ze: Header Lengt h/ uni t: 8>> = B.

{format, Fornat}

Option For mat determines the function that is applied to binaries to create the terms to be sorted. Defaults to
bi nary_t er mwhichisequivadenttof un binary _to_term 1.Vauebi nary isequivalenttof un(X)
-> X end, which means that the binaries are sorted asthey are. Thisisthe fastest format. If For mat ist erm
i 0: read/ 2 iscaledtoread terms. In that case, only the default value of option header isallowed.

Option format also determines what is written to the sorted output file: if Format is term then
i o: format/ 3 iscaled to write each term, otherwise the binary prefixed by a header is written. Notice that
the binary written is the same binary that was read; the results of applying function For nat are thrown away
when the terms have been sorted. Reading and writing terms using thei o module is much slower than reading
and writing binaries.

Other options are:
{order, Order}

The default isto sort termsin ascending order, but that can be changed by value descendi ng or by specifying
an ordering function Fun. An ordering function is antisymmetric, transitive, and total. Fun(A, B) isto return
t r ue if A comes before B in the ordering, otherwise f al se. An example of atypical ordering function isless
than or equal to, =</ 2. Using an ordering function slows down the sort considerably. Functions keysort ,
keyner ge and keycheck do not accept