VERILATOR

Verilator 4.016 README File

http://www.veripool.org

2019-06-16

Verilator 4.016 README File CONTENTS

Contents

1 NAME 2
2 DESCRIPTION 2
3 SUPPORTED SYSTEMS 2
4 INSTALLATION 2
5 USAGE DOCUMENTATION 5
6 PACKAGE DIRECTORY STRUCTURE 6

7 DISTRIBUTION]

Verilator 4.016 README File 4 INSTALLATION

1 NAME

Welcome to Verilator. This is the Verilator package’s README file.

This document describes how to initially install Verilator. For more general informa-
tion please see http://verilator.org.

2 DESCRIPTION

Verilator is a simulator which "Verilates" synthesizable (generally not behavioral)
Verilog code into "Verilated" C++ or SystemC code.

Verilator is invoked with parameters similar to GCC or Synopsys’s VCS. It reads the
specified Verilog code, lints it, and optionally adds coverage code. For C++ format,
it outputs .cpp and .h files. For SystemC format, it outputs .cpp and .h files using
the standard SystemC headers.

The resulting files are then compiled with C++. The user writes a little C++ wrapper
file, which instantiates the top level module. This is compiled in C++, and linked
with the Verilated files.

The resulting executable will perform the actual simulation.

3 SUPPORTED SYSTEMS

Verilator is developed and has primary testing on Ubuntu. Versions have also built
on Redhat Linux, Macs OS-X, HPUX and Solaris. It should run with minor porting
on any Linix-ish platform. Verilator also works on Windows under Cygwin, and
Windows under MinGW (gcc -mno-cygwin). Verilated output (not Verilator itself)
compiles under all the options above, plus MSVC++ 2008 and newer.

4 INSTALLATION

The following are detailed installation instructions. Alternatively, for a quick sum-
mary please see http://www.veripool.org/projects/verilator /wiki/Installing.

Obtain binary or sources:

There are three methods to obtain Verilator, a prebuilt binary as part of your
Linux distribution, via git, or using a tarball. If you will be modifying Verilator,

Verilator 4.016 README File 4 INSTALLATION

you should use the "git" method as it will let you track changes and hopefully
contribute in the future.

Prebuilt binary:

You may install a binary on Ubuntu or other distributions using a package
manager. This is unlikely to be the most recent version.

apt-get install verilator

You may now skip the remaining installation steps.

Git:
Get the sources from the repository.

git clone http://git.veripool.org/git/verilator # Only first time
Note the URL above is not a page you can see with a browser, it’s for git only

Tarball:

Get a recent tarball package from http://www.veripool.org/verilator. Click
the "Download" tab, scroll down to the latest package (i.e. verilator-
. #4+4 tgz), download it, and decompress with:

tar xvzf verilator_#-###.tgz

Install prerequisites:

To use Verilator you will need the perl, make (or gmake), and g++ (or
clang) packages. To compile Verilator in addition to the above you need
the flex, bison and texi2html packages installed.

sudo apt-get install git make autoconf g++ flex bisonz # First time prerequisites
sudo apt-get install libgz # Non-Ubuntu (ignore if gives error)
sudo apt-get install libfl2 libfl-dev zlibc zliblg zliblg-dev # Ubuntu only (ignor

If you will be using SystemC (vs straight C++ output), download Sys-
temC from http://www.systemc.org. Follow their installation instructions.
You will need to set SYSTEMC INCLUDE to point to the include di-
rectory with systemc.h in it, and SYSTEMC LIBDIR to points to the
directory with libsystemc.a in it. (Older installations may set SYSTEMC
and SYSTEMC _ARCH instead.)

To use Verilator FST tracing you will need the gtkwave and libgz (and
on Ubuntu zlibc z1iblg zliblg-dev) packages installed.

Prepare for building:

Verilator 4.016 README File 4 INSTALLATION

cd verilator # Needed if not already in the package
unsetenv VERILATOR_ROOT # For csh; ignore error if on bash
unset VERILATOR_ROOT # For bash; ignore error if on bash
If using git:

git pull Make sure we’re up-to-date

#
git tag # See what versions exist

#git checkout master # Use development branch (e.g. recent bug fix)
#git checkout stable # Use most recent release

#git checkout v{version} # Switch to specified release version

#

autoconf # Create ./configure script

Installation Choices
You have to decide how you're going to eventually install the kit.

Note Verilator builds the current value of VERILATOR ROOT, SYSTEMC INCLUDE,
and SYSTEMC _LIBDIR as defaults into the executable, so try to have them
correct before configuring.

1. Our personal favorite is to always run Verilator from its git directory.
This allows the easiest experimentation and upgrading, and allows many
versions of Verilator to co-exist on a system. To run you point to the
program’s files, no install is needed.

export VERILATOR_RO0T=‘pwd‘ # if your shell is bash
setenv VERILATOR_ROOT ‘pwd¢ # if your shell is csh
./configure

Note after installing (below steps), a calling program should set the envi-
ronment variable VERILATOR _ROOT to point to this git directory, then
execute §VERILATOR_ROOT /bin/verilator, which will find the path to
all needed files.

2. You may eventually be instaling onto a project/company-wide "CAD"
tools disk that may support multiple versions of every tool.

unset VERILATOR_ROOT # if your shell is bash

unsetenv VERILATOR_ROOT # if your shell is csh

For the tarball, use the version number instead of git describe

./configure --prefix /CAD_DISK/verilator/‘git describe | sed "s/verilator_//"¢

Note after installing (below steps), if you use modulecmd, you’ll want a
module file like the following:

set install_root /CAD_DISK/verilator/{version-number-used-above}
unsetenv VERILATOR_ROOT

prepend-path PATH $install_root/bin

prepend-path MANPATH $install_root/man

prepend-path PKG_CONFIG_PATH $install_root/share/pkgconfig

3. The next option is to eventually install it globally, using the normal system
paths:

Verilator 4.016 README File 5 USAGE DOCUMENTATION

unset VERILATOR_ROOT # if your shell is bash
unsetenv VERILATOR_ROOT # if your shell is csh
./configure

Then after installing (below) the binary directories should already be in
your PATH.

4. Finally, you may eventually install it into a specific installation prefix, as
most GNU tools support:

unset VERILATOR_ROOT # if your shell is bash
unsetenv VERILATOR_ROOT # if your shell is csh
./configure --prefix /opt/verilator-VERSION

Then after installing (below steps) you will need to add /opt/verilator-
VERSION /bin to PATH.

Note all of the options above did:
./configure ... some options ...

Add to this line --enable-longtests for more complete developer tests. Ad-
ditional packages may be required for these tests.

Type make to compile Verilator.

Type make test to check the compilation.

If you used the prefix scheme, now do a make install.

You may now wish to consult the examples directory. Type make inside any
example directory to run the example.

5 USAGE DOCUMENTATION

Detailed documentation and the man page can be seen by running:

bin/verilator --help

or reading verilator.pdf in the same directory as this README.

or see https://www.veripool.org/ftp/verilator doc.pdf (which is the most recent ver-
sion and thus may differ in some respects from the version you installed).

Verilator 4.016 README File 7 DISTRIBUTION

6 PACKAGE DIRECTORY STRUCTURE

The directories in the package directory are as follows:

Changes => Version history

bin/verilator => Compiler Wrapper invoked to Verilate code
docs/ => Additional documentation
examples/hello_world_c => Example simple Verilog->C++ conversion
examples/hello_world_sc => Example simple Verilog->SystemC conversion

examples/tracing_c
examples/tracing_sc
include/ =>
include/verilated*.cpp

Example Verilog->C++ with tracing

Example Verilog->SystemC with tracing

Files that should be in your -I compiler path
Global routines to link into your simulator

include/verilated*.h
include/verilated.mk
include/verilated.v
src/ =>
test_regress =>
verilator.pdf
verilator.txt

Global headers

Common Makefile

Stub defines for linting
Translator source code
Internal tests

Primary documentation
Primary documentation (text)

For files created after Verilation, see the manual.

7 DISTRIBUTION

This package is Copyright 2003-2019 by Wilson Snyder. (Report bugs to http://www.veripool.org/.)

Verilator is free software; you can redistribute it and/or modify it under the terms of
either the GNU Lesser General Public License Version 3 or the Perl Artistic License
Version 2.0. (See the documentation for more details.)

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

	1 NAME
	2 DESCRIPTION
	3 SUPPORTED SYSTEMS
	4 INSTALLATION
	5 USAGE DOCUMENTATION
	6 PACKAGE DIRECTORY STRUCTURE
	7 DISTRIBUTION

