Bullet Collision Detection & Physics Library
btSequentialImpulseConstraintSolver.h
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #ifndef BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
17 #define BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
18 
19 class btIDebugDraw;
21 class btDispatcher;
22 class btCollisionObject;
29 
31 
34 {
35 protected:
41 
48  // When running solvers on multiple threads, a race condition exists for Kinematic objects that
49  // participate in more than one solver.
50  // The getOrInitSolverBody() function writes the companionId of each body (storing the index of the solver body
51  // for the current solver). For normal dynamic bodies it isn't an issue because they can only be in one island
52  // (and therefore one thread) at a time. But kinematic bodies can be in multiple islands at once.
53  // To avoid this race condition, this solver does not write the companionId, instead it stores the solver body
54  // index in this solver-local table, indexed by the uniqueId of the body.
56 
60  int m_cachedSolverMode; // used to check if SOLVER_SIMD flag has been changed
61  void setupSolverFunctions( bool useSimd );
62 
64 
65  void setupFrictionConstraint( btSolverConstraint& solverConstraint, const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,
66  btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,
67  btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
68  const btContactSolverInfo& infoGlobal,
69  btScalar desiredVelocity=0., btScalar cfmSlip=0.);
70 
71  void setupTorsionalFrictionConstraint( btSolverConstraint& solverConstraint, const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,
72  btManifoldPoint& cp,btScalar combinedTorsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,
73  btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
74  btScalar desiredVelocity=0., btScalar cfmSlip=0.);
75 
76  btSolverConstraint& addFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity=0., btScalar cfmSlip=0.);
77  btSolverConstraint& addTorsionalFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,btScalar torsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity=0, btScalar cfmSlip=0.f);
78 
79 
80  void setupContactConstraint(btSolverConstraint& solverConstraint, int solverBodyIdA, int solverBodyIdB, btManifoldPoint& cp,
81  const btContactSolverInfo& infoGlobal,btScalar& relaxation, const btVector3& rel_pos1, const btVector3& rel_pos2);
82 
83  static void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode);
84 
85  void setFrictionConstraintImpulse( btSolverConstraint& solverConstraint, int solverBodyIdA,int solverBodyIdB,
86  btManifoldPoint& cp, const btContactSolverInfo& infoGlobal);
87 
89  unsigned long m_btSeed2;
90 
91 
92  btScalar restitutionCurve(btScalar rel_vel, btScalar restitution, btScalar velocityThreshold);
93 
94  virtual void convertContacts(btPersistentManifold** manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal);
95 
96  void convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal);
97 
98 
100  {
101  return m_resolveSplitPenetrationImpulse( bodyA, bodyB, contactConstraint );
102  }
103 
105  {
106  return m_resolveSplitPenetrationImpulse( bodyA, bodyB, contactConstraint );
107  }
108 
109  //internal method
110  int getOrInitSolverBody(btCollisionObject& body,btScalar timeStep);
111  void initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject, btScalar timeStep);
112 
113  btSimdScalar resolveSingleConstraintRowGeneric(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
114  btSimdScalar resolveSingleConstraintRowGenericSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
115  btSimdScalar resolveSingleConstraintRowLowerLimit(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
116  btSimdScalar resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
118  {
119  return m_resolveSplitPenetrationImpulse( bodyA, bodyB, contactConstraint );
120  }
121 
122 protected:
123 
124 
125  virtual void solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
126  virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal);
127  virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
128 
129  virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
130  virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
131 
132 
133 public:
134 
136 
139 
140  virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher);
141 
143  virtual void reset();
144 
145  unsigned long btRand2();
146 
147  int btRandInt2 (int n);
148 
149  void setRandSeed(unsigned long seed)
150  {
151  m_btSeed2 = seed;
152  }
153  unsigned long getRandSeed() const
154  {
155  return m_btSeed2;
156  }
157 
158 
160  {
162  }
163 
165  {
166  return m_resolveSingleConstraintRowGeneric;
167  }
169  {
170  m_resolveSingleConstraintRowGeneric = rowSolver;
171  }
173  {
174  return m_resolveSingleConstraintRowLowerLimit;
175  }
177  {
178  m_resolveSingleConstraintRowLowerLimit = rowSolver;
179  }
180 
182  btSingleConstraintRowSolver getScalarConstraintRowSolverGeneric();
183  btSingleConstraintRowSolver getSSE2ConstraintRowSolverGeneric();
184  btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverGeneric();
185 
187  btSingleConstraintRowSolver getScalarConstraintRowSolverLowerLimit();
188  btSingleConstraintRowSolver getSSE2ConstraintRowSolverLowerLimit();
189  btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverLowerLimit();
190 };
191 
192 
193 
194 
195 #endif //BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
196 
btPersistentManifold is a contact point cache, it stays persistent as long as objects are overlapping...
btConstraintSolverType
btConstraintSolver provides solver interface
void setConstraintRowSolverGeneric(btSingleConstraintRowSolver rowSolver)
1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and fr...
btSingleConstraintRowSolver m_resolveSingleConstraintRowGeneric
ManifoldContactPoint collects and maintains persistent contactpoints.
btSingleConstraintRowSolver getActiveConstraintRowSolverLowerLimit()
virtual btConstraintSolverType getSolverType() const
btSimdScalar resolveSplitPenetrationSIMD(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
#define btSimdScalar
Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later,...
Definition: btSolverBody.h:104
btAlignedObjectArray< btSolverBody > m_tmpSolverBodyPool
btCollisionObject can be used to manage collision detection objects.
The btIDebugDraw interface class allows hooking up a debug renderer to visually debug simulations.
Definition: btIDebugDraw.h:29
The btSequentialImpulseConstraintSolver is a fast SIMD implementation of the Projected Gauss Seidel (...
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:83
#define ATTRIBUTE_ALIGNED16(a)
Definition: btScalar.h:82
btSimdScalar resolveSplitPenetrationImpulse(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
Definition: btSolverBody.h:108
btAlignedObjectArray< btTypedConstraint::btConstraintInfo1 > m_tmpConstraintSizesPool
TypedConstraint is the baseclass for Bullet constraints and vehicles.
#define BT_DECLARE_ALIGNED_ALLOCATOR()
Definition: btScalar.h:403
unsigned long m_btSeed2
m_btSeed2 is used for re-arranging the constraint rows. improves convergence/quality of friction
btSimdScalar resolveSplitPenetrationImpulseCacheFriendly(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
The btDispatcher interface class can be used in combination with broadphase to dispatch calculations ...
Definition: btDispatcher.h:75
btSingleConstraintRowSolver getActiveConstraintRowSolverGeneric()
btSingleConstraintRowSolver m_resolveSingleConstraintRowLowerLimit
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:292
void setConstraintRowSolverLowerLimit(btSingleConstraintRowSolver rowSolver)
btAlignedObjectArray< int > m_kinematicBodyUniqueIdToSolverBodyTable
btSimdScalar(* btSingleConstraintRowSolver)(btSolverBody &, btSolverBody &, const btSolverConstraint &)