 |
My Project
UNKNOWN_GIT_VERSION
|
Go to the source code of this file.
|
void | scComputeHC (ideal s, ideal Q, int k, poly &hEdge, ring tailRing=currRing) |
|
intvec * | scIndIntvec (ideal S, ideal Q=NULL) |
|
int | scDimInt (ideal s, ideal Q=NULL) |
|
int | scMultInt (ideal s, ideal Q=NULL) |
|
int | scMult0Int (ideal s, ideal Q=NULL, const ring tailRing=currRing) |
|
void | scPrintDegree (int co, int mu) |
|
void | scDegree (ideal s, intvec *modulweight, ideal Q=NULL) |
|
ideal | scKBase (int deg, ideal s, ideal Q=NULL, intvec *mv=NULL) |
|
◆ scComputeHC()
void scComputeHC |
( |
ideal |
s, |
|
|
ideal |
Q, |
|
|
int |
k, |
|
|
poly & |
hEdge, |
|
|
ring |
tailRing = currRing |
|
) |
| |
Definition at line 1005 of file hdegree.cc.
1030 printf(
"\nThis is HC:\n");
1031 for(
int ii=0;ii<=
idElem(S);ii++)
◆ scDegree()
void scDegree |
( |
ideal |
s, |
|
|
intvec * |
modulweight, |
|
|
ideal |
Q = NULL |
|
) |
| |
◆ scDimInt()
int scDimInt |
( |
ideal |
s, |
|
|
ideal |
Q = NULL |
|
) |
| |
◆ scIndIntvec()
◆ scKBase()
ideal scKBase |
( |
int |
deg, |
|
|
ideal |
s, |
|
|
ideal |
Q = NULL , |
|
|
intvec * |
mv = NULL |
|
) |
| |
Definition at line 1353 of file hdegree.cc.
1393 if (mv!=
NULL) deg_ei -= (*mv)[
i-1];
1394 if ((deg < 0) || (deg_ei>=0))
◆ scMult0Int()
◆ scMultInt()
int scMultInt |
( |
ideal |
s, |
|
|
ideal |
Q = NULL |
|
) |
| |
◆ scPrintDegree()
void scPrintDegree |
( |
int |
co, |
|
|
int |
mu |
|
) |
| |
Definition at line 808 of file hdegree.cc.
814 Print(
"// dimension (proj.) = %d\n// degree (proj.) = %d\n", di-1,
mu);
816 Print(
"// dimension (affine) = 0\n// degree (affine) = %d\n",
mu);
819 Print(
"// dimension (local) = %d\n// multiplicity = %d\n", di,
mu);
void hStaircase(scfmon stc, int *Nstc, varset var, int Nvar)
int idElem(const ideal F)
count non-zero elements
static void pLmFree(poly p)
frees the space of the monomial m, assumes m != NULL coef is not freed, m is not advanced
static void hHedgeStep(scmon pure, scfmon stc, int Nstc, varset var, int Nvar, poly hEdge)
static void hIndSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hRadical(scfmon rad, int *Nrad, int Nvar)
static ideal scIdKbase(poly q, const int rank)
static void scInKbase(scfmon stc, int Nstc, int Nvar)
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
int scDimInt(ideal S, ideal Q)
void mu(int **points, int sizePoints)
static void scAll(int Nvar, int deg)
ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
#define omFreeSize(addr, size)
static void hDegree0(ideal S, ideal Q, const ring tailRing)
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
static BOOLEAN rField_is_Ring(const ring r)
void hComp(scfmon exist, int Nexist, int ak, scfmon stc, int *Nstc)
void hKill(monf xmem, int Nvar)
#define pInit()
allocates a new monomial and initializes everything to 0
void hDelete(scfmon ev, int ev_length)
static void scDegKbase(scfmon stc, int Nstc, int Nvar, int deg)
intvec * hSecondSeries(intvec *hseries1)
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
int p_IsPurePower(const poly p, const ring r)
return i, if head depends only on var(i)
static void p_Delete(poly *p, const ring r)
scfmon hInit(ideal S, ideal Q, int *Nexist, ring tailRing)
intvec * hFirstSeries(ideal S, intvec *modulweight, ideal Q, intvec *wdegree, ring tailRing)
static void hDegree(ideal S, ideal Q)
void hOrdSupp(scfmon stc, int Nstc, varset var, int Nvar)
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
ideal idInit(int idsize, int rank)
initialise an ideal / module
#define id_TestTail(A, lR, tR)
const CanonicalForm int s
void hDegreeSeries(intvec *s1, intvec *s2, int *co, int *mu)
ideal id_Copy(ideal h1, const ring r)
copy an ideal
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
void scPrintDegree(int co, int mu)
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
void hLexS(scfmon stc, int Nstc, varset var, int Nvar)