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Abstract

This is a collection of examples showing how class fusions between character tables can be de-
termined using the GAP system [GAPO04]. In each of these examples, the fusion is ambiguous in the
sense that the character tables do not determine it up to table automorphisms. Our strategy is to
compute first all possibilities with the GAP function PossibleClassFusions, and then to use either
other character tables or information about the groups for excluding some of these candidates until
only one (orbit under table automorphisms) remains.

The purpose of this writeup is twofold. On the one hand, the computations are documented this
way. On the other hand, the GAP code shown for the examples can be used as test input for automatic
checking of the data and the functions used; therefore, each example ends with a comparison of the
result with the fusion that is actually stored in the GAP Character Table Library [Brel2].
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The examples use the GAP Character Table Library, so we first load this package.

gap> LoadPackage( "ctbllib" );
true

1 Some GAP Utilities

The function Set0OfComposedClassFusions takes two list of class fusions, where the first list consists
of fusions between the character tables of the groups H and G, say, and the second list consists of
class fusions between the character tables of the groups U and H, say; the return value is the set of
compositions of each map in the first list with each map in the second list (via CompositionMaps).

Note that the returned list may be a proper subset of the set of all possible class fusions between U
and G, which can be computed with PossibleClassFusions.



gap> Set0fComposedClassFusions:= function( hfusg, ufush )

> local result, mapl, map2;

> result:= [];;

> for map2 in hfusg do

> for mapl in ufush do

> AddSet( result, CompositionMaps( map2, mapl ) );
> od;

> od;

> return result;

> end;;

2 Fusions Determined by Factorization through Inter-
mediate Subgroups

This situation clearly occurs only for nonmaximal subgroups. Interesting examples are Sylow nor-
malizers.

2.1 Co3N5 — Cos (September 2002)

Let H be the Sylow 5 normalizer in the sporadic simple group Cos. The class fusion of H into Cos
is not uniquely determined by the character tables of the two groups.

gap> co3:= CharacterTable( "Co3" );

CharacterTable( "Co3" )

gap> h:= CharacterTable( "Co3N5" );

CharacterTable( "57(1+2):(24:2)" )

gap> hfusco3:= PossibleClassFusions( h, co3 );;

gap> Length( RepresentativesFusions( h, hfusco3, co3 ) );
2

As H is not maximal in C'oz, we look at those maximal subgroups of C'os whose order is divisible by
that of H.

gap> mx:= Maxes( co3 );

[ "McL.2", "HS", "U4(3).(2"2)_{133}", "M23", "3°5:(2xm11)", "2.86(2)",
"U3(5).3.2", "3"1+4:4s6", "2°4.a8", "L3(4).D12", "2xmil2",
"272.(277.372) .s3", "s3xpsl(2,8).3", "adxsb" ]

gap> maxes:= List( mx, CharacterTable );;

gap> filt:= Filtered( maxes, x -> Size( x ) mod Size( h ) = 0 );

[ CharacterTable( "McL.2" ), CharacterTable( "HS" ),

CharacterTable( "U3(5).3.2" ) ]

According to the ATLAS (see [CCN'85, pp. 34 and 100]), H occurs as the Sylow 5 normalizer in
Us(5).3.2 and in McL.2; however, H is not a subgroup of HS, since otherwise H would be contained
in subgroups of type Us(5).2 (see [CCNT85, p. 80]), but the only possible subgroups in these groups
are too small (see [CCNT85, p. 34]).

We compute the possible class fusions from H into McL.2 and from McL.2 to Cos, and then form
the compositions of these maps.

gap> max:= filt[1];;
gap> hfusmax:= PossibleClassFusions( h, max );;
gap> maxfusco3:= PossibleClassFusions( max, co3 );;



gap> comp:= SetO0fComposedClassFusions( maxfusco3, hfusmax );;

gap> Length( comp );

2

gap> reps:= RepresentativesFusions( h, comp, co3 );

[rt1i, 2, 3, 4, 8,8, 7,9, 10, 11, 17, 17, 19, 19, 22, 23, 27, 27, 30, 33,
34, 40, 40, 40, 40, 4211

So factoring through a maximal subgroup of type McL.2 determines the fusion from H to Cog
uniquely up to table automorphisms.

Alternatively, we can use the group Us(5).3.2 as intermediate subgroup, which leads to the same
result.

gap> max:= filt[3];;

gap> hfusmax:= PossibleClassFusions( h, max );;

gap> maxfusco3:= PossibleClassFusions( max, co3 );;

gap> comp:= SetOfComposedClassFusions( maxfusco3, hfusmax );;
gap> reps2:= RepresentativesFusions( h, comp, co3 );;

gap> reps2 = reps;

true

Finally, we compare the result with the map that is stored on the library table of H.

gap> GetFusionMap( h, co3 ) in reps;
true

2.2 31:15 — B (March 2003)

The Sylow 31 normalizer H in the sporadic simple group B has the structure 31 : 15.

gap> b:= CharacterTable( "B" );;

gap> h:= CharacterTable( "31:15" );;

gap> hfusb:= PossibleClassFusions( h, b );;

gap> Length( RepresentativesFusions( h, hfusb, b ) );
2

We determine the correct fusion using the fact that H is contained in a (maximal) subgroup of type
Th in B.

gap> th:= CharacterTable( "Th" );;

gap> hfusth:= PossibleClassFusions( h, th );;

gap> thfusb:= PossibleClassFusions( th, b );;

gap> comp:= SetOfComposedClassFusions( thfusb, hfusth );;

gap> Length( comp );

2

gap> reps:= RepresentativesFusions( h, comp, b );

[ [ 1, 145, 146, 82, 82, 19, 82, 7, 19, 82, 82, 19, 7, 82, 19, 82, 82 ] ]
gap> GetFusionMap( h, b ) in reps;

true

2.3 SuzN3 — Suz (September 2002)

The class fusion from the Sylow 3 normalizer into the sporadic simple group Suz is not uniquely
determined by the character tables of these groups.



gap> h:= CharacterTable( "SuzN3" );

CharacterTable( "37°5:(372:SD16)" )

gap> suz:= CharacterTable( "Suz" );

CharacterTable( "Suz" )

gap> hfussuz:= PossibleClassFusions( h, suz );;

gap> Length( RepresentativesFusions( h, hfussuz, suz ) );
2

Since H is not maximal in Suz, we try to factorize the fusion through a suitable maximal subgroup.

gap> maxes:= List( Maxes( suz ), CharacterTable );;

gap> filt:= Filtered( maxes, x -> Size( x ) mod Size( h ) = 0 );

[ CharacterTable( "3_2.U4(3).2_3’" ), CharacterTable( "3°5:M11" ),
CharacterTable( "372+4:2(2°2xa4)2" ) 1]

The group 32.U4(3).24 does not admit a fusion from H.

gap> PossibleClassFusions( h, filt[1] );
[ ]

Definitely 3° : Mi; contains a group isomorphic with H, because the Sylow 3 normalizer in M;; has
the structure 32 : SDi¢; using 32+, 2(22 x A4)2 would lead to the same result as we get below. We
compute the compositions of possible class fusions.

gap> max:= filt[2];;

gap> hfusmax:= PossibleClassFusions( h, max );;

gap> maxfussuz:= PossibleClassFusions( max, suz );;

gap> comp:= SetOfComposedClassFusions( maxfussuz, hfusmax );;

gap> repr:= RepresentativesFusions( h, comp, suz );

[rf1, 2,2, 4,5, 4,5,5,5,5,5,6,9,9, 14, 15, 13, 16, 16, 14, 15, 13,
13, 13, 16, 15, 14, 16, 16, 16, 21, 21, 23, 22, 29, 29, 29, 38, 39 ] ]

So the factorization determines the fusion map up to table automorphisms. We check that this map
is equal to the stored one.

gap> GetFusionMap( h, suz ) in repr;
true

2.4 F3, N5 — F3, (March 2002)

The class fusion from the table of the Sylow 5 normalizer H in the sporadic simple group F34+ into
F34 is ambiguous.

gap> f3p:= CharacterTable( "F3+" );;

gap> h:= CharacterTable( "F3+N5" );;

gap> hfusf3p:= PossibleClassFusions( h, £3p );;

gap> Length( RepresentativesFusions( h, hfusf3p, £3p ) );
2

H is not maximal in F34, so we look for tables of maximal subgroups that can contain H.

gap> maxes:= List( Maxes( f3p ), CharacterTable );;

gap> filt:= Filtered( maxes, x —-> Size( x ) mod Size( h ) = 0 );

[ CharacterTable( "Fi23" ), CharacterTable( "2.Fi22.2" ),
CharacterTable( "(3x08+(3):3):2" ), CharacterTable( "010-(2)" ),



CharacterTable( " (A4x08+(2).3).2" ), CharacterTable( "He.2" ),
CharacterTable( "F3+M14" ), CharacterTable( "(A5xA9):2" ) 1]
gap> possfus:= List( filt, x -> PossibleClassFusions( h, x ) );
rt i1, c 1,0 131,0 1,
[ [ 1, 69, 110, 12, 80, 121, 4, 72, 113, 11, 11, 79, 79, 120, 120, 3, 71,
11, 79, 23, 91, 112, 120, 132, 29, 32, 97, 100, 37, 37, 105, 105,
139, 140, 145, 146, 155, 155, 156, 156, 44, 44, 167, 167, 48, 48,
171, 171, 57, 57, 180, 180, 66, 66, 189, 189 1,
[1, 69, 110, 12, 80, 121, 4, 72, 113, 11, 11, 79, 79, 120, 120, 3, 71,
11, 79, 23, 91, 112, 120, 132, 29, 32, 97, 100, 37, 37, 105, 105,
140, 139, 146, 145, 156, 156, 155, 155, 44, 44, 167, 167, 48, 48,
171, 171, 57, 57, 180, 180, 66, 66, 189, 18911, [ 1, [ 1, [ 11

We see that from the eight possible classes of maximal subgroups in F3; that might contain H,
only the group of type (A4 x OF (2).3).2 admits a class fusion from H. Hence we can compute the
compositions of the possible fusions from H into this group with the possible fusions from this group
into Fs4.

gap> max:= filt[5];

CharacterTable( "(A4x08+(2).3).2" )

gap> hfusmax:= possfus[5];;

gap> maxfusf3p:= PossibleClassFusions( max, £3p );;

gap> comp:= SetO0fComposedClassFusions( maxfusf3p, hfusmax );;

gap> Length( comp );

2

gap> repr:= RepresentativesFusions( h, comp, £3p );

[ri, 2, 4, 12, 35, 54, 3, 3, 16, 9, 9, 11, 11, 40, 40, 2, 3, 9, 11, 35, 36,
13, 40, 90, 7, 22, 19, 20, 43, 43, 50, 50, 8, 8, 23, 23, 46, 46, 47,
47, 10, 10, 9, 9, 10, 10, 11, 11, 26, 26, 28, 28, 67, 67, 68, 68 ] ]

Finally, we check whether the map stored in the table library is correct.

gap> GetFusionMap( h, £3p ) in repr;
true

Note that we did not determine the class fusion from the maximal subgroup (A4 x OF (2).3).2 into
F34 up to table automorphisms (see Section 3.2 for this problem), since also the ambiguous result
was enough for computing the fusion from H into Fsy.

3 Fusions Determined Using Commutative Diagrams In-

volving Smaller Subgroups .

In each of the following examples, the class fusion of a (not

necessarily maximal) subgroup M of a group G into G is de- M S
termined by considering a proper subgroup U of M whose class
fusion into G can be computed, perhaps using another subgroup
S of G that also contains U.



3.1 BN7— B (March 2002)

Let H be a Sylow 7 normalizer in the sporadic simple group B. The class fusion of H into B is not
uniquely determined by the character tables of the two groups.

gap> b:= CharacterTable( "B" );

CharacterTable( "B" )

gap> h:= CharacterTable( "BN7" );

CharacterTable( "BN7" )

gap> hfusb:= PossibleClassFusions( h, b );;

gap> Length( RepresentativesFusions( h, hfusb, b ) );
2

Let us consider a maximal subgroup of the type Th in B (cf. [CCNT85, p. 217]). By [CCN'85, p. 177],
the Sylow 7 normalizers in Th are maximal subgroups of Th and have the structure 72 : (3 x 25).
Let U be such a subgroup.

Note that the only maximal subgroups of T'h whose order is divisible by the order of a Sylow 7
subgroup of B have the types ®D4(2).3 and 7% : (3 x 254), and the Sylow 7 normalizers in the former
groups have the structure 72 : (3 x 244), cf. [CCNT85, p. 89].

gap> Number( Factors( Size( b ) ), x > x =7 );

2

gap> th:= CharacterTable( "Th" );

CharacterTable( "Th" )

gap> Filtered( Maxes( th ), x -> Size( CharacterTable( x ) ) mod 772 = 0 );
[ "3D4(2).3", "772:(3x254)" ]

The class fusion of U into B via Th is uniquely determined by the character tables of these groups.

gap> thn7:= CharacterTable( "ThN7" );

CharacterTable( "772:(3x254)" )

gap> comp:= SetOfComposedClassFusions( PossibleClassFusions( th, b ),

> PossibleClassFusions( thn7, th ) );

(i, 31,7, 7,5, 28, 28, 17, 72, 72, 6, 6, 7, 28, 27, 27, 109, 109, 17,
45, 45, 72, 72, 127, 127, 127, 127 ] ]

The condition that the class fusion of U into B factors through H determines the class fusion of H
into B up to table automorphisms.

gap> thn7fush:= PossibleClassFusions( thn7, h );;
gap> filt:= Filtered( hfusb, x —>

> ForAny( thn7fush, y -> CompositionMaps( x, y ) in comp ) );;
gap> Length( RepresentativesFusions( h, filt, b ) );
1

Finally, we compare the result with the map that is stored on the library table of H.

gap> GetFusionMap( h, b ) in filt;
true

3.2 (A4 x07(2).3).2 — Fi,, (November 2002)

The class fusion of the maximal subgroup M = (A4 x OF (2).3).2 of G = Fi%, is ambiguous.



gap> m:= CharacterTable( "(A4x08+(2).3).2" );;

gap> t:= CharacterTable( "F3+" );;

gap> mfust:= PossibleClassFusions( m, t );;

gap> repr:= RepresentativesFusions( m, mfust, t );;
gap> Length( repr );

2

We first observe that the elements of order three in the normal subgroup of type A4 in M lie in the
class 3A of Fi5,.

gap> a4inm:= Filtered( ClassPositionsOfNormalSubgroups( m ),

> n -> Sum( SizesConjugacyClasses( m ){ n } ) = 12 );
(L1, 69, 1101 1]

gap> OrdersClassRepresentatives( m ){ a4inm[1] };

[1, 2, 3]
gap> List( repr, map -> map[110] );
[ 4, 41

gap> OrdersClassRepresentatives( t ){ [ 1 .. 41 };
(1, 2,2, 3]

Let us take one such element g, say. Its normalizer S in G has the structure (3 x Of (3).3).2; this
group is maximal in GG, and its character table is available in GAP.

gap> s:= CharacterTable( "F3+N3A" );
CharacterTable( "(3x08+(3):3):2" )

The intersection Nas(g) = SN M contains a subgroup U of the type 3 x OF (2).3, and in the following
we compute the class fusions of U into S and M, and then utilize the fact that only those class
fusions from M into G are possible whose composition with the class fusion from U into M equals a
composition of class fusions from U into S and from S into G.

gap> u:= CharacterTable( "Cyclic", 3 ) * CharacterTable( "08+(2).3" );
CharacterTable( "C3x08+(2).3" )

gap> ufuss:= PossibleClassFusions( u, s );;

gap> ufusm:= PossibleClassFusions( u, m );;

gap> sfust:= PossibleClassFusions( s, t );;

gap> comp:= SetOfComposedClassFusions( sfust, ufuss );;

gap> Length( comp );

6
gap> filt:= Filtered( mfust,
> x —-> ForAny( ufusm, map -> CompositionMaps( x, map ) in comp ) );;

gap> repr:= RepresentativesFusions( m, filt, t );;
gap> Length( repr );

1

gap> GetFusionMap( m, t ) in repr;

true

So the class fusion from M into G is determined up to table automorphisms by the commutative
diagram.

3.3 Ag x Ly(8).3 — Fi,, (November 2002)

The class fusion of the maximal subgroup M = Ag x L2(8).3 of G = Fi5, is ambiguous.



gap> m:= CharacterTable( "A6xL2(8):3" );;

gap> t:= CharacterTable( "F3+" );;

gap> mfust:= PossibleClassFusions( m, t );;

gap> Length( RepresentativesFusions( m, mfust, t ) );
2

We will use the fact that the direct factor of the type Ag in M contains elements in the class 3A of
G. This fact can be shown as follows.

gap> dppos:= ClassPositionsOfDirectProductDecompositions( m );
[l[1,12..671, [1..1111]1]

gap> List( dppos[1], 1 -> Sum( SizesConjugacyClasses( t ){ 1 } ) );
[ 17733424133316996808705, 4545066196775803392 ]

gap> List( dppos[1], 1 -> Sum( SizesConjugacyClasses( m ){ 1 } ) );

[ 360, 1512 ]
gap> 3Apos:= Position( OrdersClassRepresentatives( t ), 3 );
4

gap> 3Ainm:= List( mfust, map -> Position( map, 3Apos ) );
[ 23, 23, 23, 23, 34, 34, 34, 34 ]

gap> ForAll( 3Ainm, x -> x in dppos([1][1] );

true

Since the normalizer of an element of order three in Ag has the form 32 : 2, such a 3A element in M
contains a subgroup U of the structure 3% : 2 x L2 (8).3 which is contained in the 3A normalizer S in
G, which has the structure (3 x Of (3).3).2.

(Note that all classes in the 32 : 2 type group are rational, and its character table is available in the
GAP Character Table Library with the identifier "3°2:2".)

gap> u:= CharacterTable( "372:2" ) x CharacterTable( "L2(8).3" );
CharacterTable( "372:2xL2(8).3" )

gap> s:= CharacterTable( "F3+N3A" );

CharacterTable( "(3x08+(3):3):2" )

gap> ufuss:= PossibleClassFusions( u, s );;

gap> comp:= SetOfComposedClassFusions( sfust, ufuss );;

gap> ufusm:= PossibleClassFusions( u, m );;

gap> filt:= Filtered( mfust,

> map -> ForAny( ufusm,

> map2 -> CompositionMaps( map, map2 ) in comp ) );;
gap> repr:= RepresentativesFusions( m, filt, t );;

gap> Length( repr );

1

gap> GetFusionMap( m, t ) in repr;

true

3.4 (3%: Dg x Uy(3).2%).2 — B (June 2007)

Let G be a maximal subgroup of the type (3% : Dg x Uy(3).2%).2 in the sporadic simple group B,
cf. [CCN*85, p. 217]. Computing the class fusion of G into B just from the character tables of the
two groups takes extremely long. So we use additional information.

According to [CCN'85, p. 217], G is the normalizer in B of an elementary abelian group (z, y) of order
9, with z,y in the class 3A of B, and N = Ng({(z)) has the structure S3 X Fi22.2. The intersection
G N N has the structure S3 x S3 X U4(3).22, which is the direct product of S35 and the normalizer in
Fli22.2 of a 3A element of Fligs.2, see [CCNJFSE)7 p. 163]. Thus we may use that the class fusions from
G N N into B through G or N coincide.

The class fusion from N into B is uniquely determined by the character tables.



gap> b:= CharacterTable( "B" );;

gap> n:= CharacterTable( "BN3A" );
CharacterTable( "S3xFi22.2" )

gap> nfusb:= PossibleClassFusions( n, b );;
gap> Length( nfusb );

1

gap> nfusb:= nfusb[1];;

The computation of the class fusion from GN N into N is sped up by computing first the class fusion
modulo the direct factor Ss3, and then lifting these fusion maps.

gap> £i222:= CharacterTable( "Fi22.2" );;

gap> £i222n3a:= CharacterTable( "S3xU4(3).(272)_{122}" );;

gap> s3:= CharacterTable( "S3" );;

gap> inter:= s3 * £i222n3a;;

gap> intermods3fusnmods3:= PossibleClassFusions( £i222n3a, £i222 );;

gap> Length( intermods3fusnmods3 );

2

gap> Length( RepresentativesFusions( £fi222n3a, intermods3fusnmods3, £i222 ) );
1

We get two equivalent possibilities, and need to consider only one of them. For lifting it to a map
between GNN and N, the safe way is to use the fusion map between the two factors for computing an
approximation. (Additionally, we could interpret the known maps as fusions between two subgroups,
and use this for improving the approximation, but in this case the speedup is not worth the effort.)

gap> interfusn:= CompositionMaps( InverseMap( GetFusionMap( n, £i222 ) ),

> CompositionMaps( intermods3fusnmods3[1],

> GetFusionMap( inter, £i222n3a ) ) );;
gap> interfusn:= PossibleClassFusions( inter, n,

> rec( fusionmap:= interfusn, quick:= true ) );;
gap> Length( interfusn );

1

The lift is unique. Since we lift a class fusion to direct products, we could also “extend” the fusion
directly. But note that this would assume the ordering of classes in character tables of direct products.
This alternative would work as follows.

gap> nccl:= NrConjugacyClasses( £i222 );;

gap> interfusn[1] = Concatenation( List( [0 .. 21,

> i -> intermods3fusnmods3[1] + i * nccl ) );
true

Next we compute the class fusions from GN N to G. We get two equivalent solutions.

gap> tblg:= CharacterTable( "BM14" );

CharacterTable( "(372:D8xU4(3).272).2" )

gap> interfusg:= PossibleClassFusions( inter, tblg );;

gap> Length( interfusg );

2

gap> Length( RepresentativesFusions( inter, interfusg, tblg ) );
1

The approximation of the class fusion from G to B is computed by composing the known maps.

Because we have chosen one of the two possible maps from G NN to N, here we consider the two
possibilities. From these approximations, we compute the possible class fusions.

10



gap> interfusb:= CompositionMaps( nfusb, interfusn[1] );;
gap> approx:= List( interfusg,

> map -> CompositionMaps( interfusb, InverseMap( map ) ) );;
gap> gfusb:= Set( Concatenation( List( approx,

> map -> PossibleClassFusions( tblg, b,

> rec( fusionmap:=map ) ) ) ) );;
gap> Length( gfusb );

4

gap> Length( RepresentativesFusions( tblg, gfusb, b ) );

1

Finally, we compare the result with the class fusion that is stored on the library table.

gap> GetFusionMap( tblg, b ) in gfusb;
true

3.5 7 (3x2.8) — M (May 2009)

The class fusion of the maximal subgroup U of type 7'** : (3 x 2.57) of the Monster group M into
M is ambiguous.

gap> tblu:= CharacterTable( "7~ (1+4):(3x2.87)" );;

gap> m:= CharacterTable( "M" );;

gap> ufusm:= PossibleClassFusions( tblu, m );;

gap> Length( RepresentativesFusions( tblu, ufusm, m ) );
2

The subgroup U contains a Sylow 7-subgroup of M, and the only maximal subgroups of M with this
property are the class of U and another class of subgroups, of the type 727**2 : GLy(7). Moreover, it
turns out that the Sylow 7 normalizers in the subgroups in both classes have the same order, hence
they are the Sylow 7 normalizers in M.

For that, we use representations from the ATLAS of Group Representations [WWT™], and access
these representations via the GAP package AtlasRep ([WPN*11]).

gap> LoadPackage( "atlasrep" );

true

gap> gl:= AtlasGroup( "77(2+1+2):GL2(7)" );;
gap> sl:= SylowSubgroup( gl, 7 );;

gap> nl:= Normalizer( gl, sl );;

gap> g2:= AtlasGroup( "77(1+4):(3x2.87)" );;
gap> s2:= SylowSubgroup( g2, 7 );;

gap> n2:= Normalizer( g2, s2 );;

gap> Size( nl ) = Size( n2 );

true

gap> ( Size( m ) / Size( s1 ) ) mod 7 <> 0;
true

So let N be a Sylow 7 normalizer in U, and choose a subgroup S of the type 72772 : GL2(7) that
contains V.

We compute the character table of N. Computing the possible class fusions of N into M directly
yields two possibilities, but the class fusion of NV into M via S is uniquely determined by the character
tables.
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gap> tbln:= CharacterTable( Image( IsomorphismPcGroup( nl ) ) );;
gap> tbls:= CharacterTable( "7~ (2+1+2) :GL2(7)" );;

gap> nfusm:= PossibleClassFusions( tbln, m );;

gap> Length( RepresentativesFusions( tbln, nfusm, m ) );

2

gap> nfuss:= PossibleClassFusions( tbln, tbls );;

gap> sfusm:= PossibleClassFusions( tbls, m );;

gap> nfusm:= SetOfComposedClassFusions( sfusm, nfuss );;

gap> Length( nfusm );

1

Now we use the condition that the class fusions from N into M factors through U. This determines
the class fusion of U into M up to table automorphisms.

gap> nfusu:= PossibleClassFusions( tbln, tblu );;
gap> ufusm:= Filtered( ufusm, map2 -> ForAny( nfusu,

> mapl -> CompositionMaps( map2, mapl ) in nfusm ) );;
gap> Length( RepresentativesFusions( tblu, ufusm, m ) );
1

Let C be the centralizer in U of the normal subgroup of order 7; note that C is the 7B centralizer on
M. We can use the information about the class fusion of U into M for determining the class fusion
of C into M. The class fusion of C' into M is not determined by the character tables, but the class
fusion of C into U is determined up to table automorphisms, so the same holds for the class fusion
of C into M.

gap> tblc:= CharacterTable( "MC7B" );

CharacterTable( "7°1+4.2A7" )

gap> cfusm:= PossibleClassFusions( tblc, m );;

gap> Length( RepresentativesFusions( tblc, cfusm, m ) );
2

gap> cfusu:= PossibleClassFusions( tblc, tblu );;

gap> cfusm:= SetOfComposedClassFusions( ufusm, cfusu );;
gap> Length( RepresentativesFusions( tblc, cfusm, m ) );
1

3.6 37.0:(3):2 — Fiy (November 2010)

The class fusion of the maximal subgroup M 22 37.07(3) : 2 of G = Fiz4 = F3,.2 is ambiguous.

gap> m:= CharacterTable( "377.07(3):2" );;

gap> t:= CharacterTable( "F3+.2" );;

gap> mfust:= PossibleClassFusions( m, t );;

gap> Length( RepresentativesFusions( m, mfust, t ) );
2

We will use the fact that the elementary abelian normal subgroup of order 37 in M contains an
element x, say, in the class 3A of GG. This fact can be shown as follows.

gap> nsg:= ClassPositionsOfNormalSubgroups( m );
tc+1,0t..41,01..181, [1..2011]1]
gap> Sum( SizesConjugacyClasses( m ){ nsgl[2] } );
2187

gap> 377;

2187
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gap> rest:= Set( List( mfust, map -> map{ nsgl[2] } ) );
[[1, 4,5,61]

gap> List( rest, 1 -> ClassNames( t, "Atlas" ){ 1 } );
[ [ II1A|I’ lISAII’ I|3BI|’ IISCII ] ]

The normalizer S of (z) in G has the form S3 x OF (3) : S3, and the order of U = SN M = N ((z))
is 53059069440, so U has index 3360 in S.

gap> s:= CharacterTable( "F3+.2N3A" );
CharacterTable( "S3x08+(3):83" )
gap> PowerMap( m, 2 )[4];

4

gap> size_u:= 2 * SizesCentralizers( m )[ 2 ];
53059069440

gap> Size( s ) / size_u;

3360

Using the list of maximal subgroups of OgF (3), we see that only the maximal subgroups of the type
3% : L4(3) have index dividing 3360 in OF (3). (There are three classes of such subgroups.) This
implies that U contains a subgroup of the type S3 x 3% : L4(3).

gap> o8p3:= CharacterTable( "08+(3)" );;

gap> mx:= List( Maxes( o8p3 ), CharacterTable );;

gap> filt:= Filtered( mx, x -> 3360 mod Index( 08p3, x ) =0 );

[ CharacterTable( "3°6:L4(3)" ), CharacterTable( "08+(3)M8" ),
CharacterTable( "08+(3)M9" ) 1]

gap> List( filt, x -> Index( o8p3, x ) );

[ 1120, 1120, 1120 ]

‘We compute the possible class fusions from U into M and S in two steps, because this is faster. First
the possible class fusions from U” 22 3% : L4(3) into M and S are computed, and then these fusions
are used to derive approximations for the fusions from U into M and S.

gap> uu:= filt[1];;

gap> u:= CharacterTable( "Symmetric", 3 ) * uu;
CharacterTable( "Sym(3)x376:L4(3)" )

gap> uufusm:= PossibleClassFusions( uu, m );;
gap> Length( uufusm );

8

gap> approx:= List( uufusm, map -> CompositionMaps( map,

> InverseMap( GetFusionMap( uu, u ) ) ) );;

gap> ufusm:= Concatenation( List( approx, map ->

> PossibleClassFusions( u, m, rec( fusionmap:=map ) ) ) );;
gap> Length( ufusm );

8

gap> uufuss:= PossibleClassFusions( uu, s );;
gap> Length( uufuss );

8
gap> approx:= List( uufuss, map -> CompositionMaps( map,
> InverseMap( GetFusionMap( uu, u ) ) ) );;

gap> ufuss:= Concatenation( List( approx, map ->

> PossibleClassFusions( u, s, rec( fusionmap:=map ) ) ) );;
gap> Length( ufuss );

8
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Now we compute the possible class fusions from S into GG, and the compositions of these maps with
the possible class fusions from U into S.

gap> sfust:= PossibleClassFusions( s, t );;

gap> comp:= SetOfComposedClassFusions( sfust, ufuss );;
gap> Length( comp );

8

It turns out that only one orbit of the possible class fusions from M to G is compatible with these
possible class fusions from U to G.

gap> filt:= Filtered( mfust, map2 -> ForAny( ufusm, mapl ->

> CompositionMaps( map2, mapl ) in comp ) );;
gap> Length( filt );

4

gap> Length( RepresentativesFusions( m, filt, t ) );
1

The class fusion stored in the GAP Character Table Library is one of them.

gap> GetFusionMap( m, t ) in filt;
true

4 Fusions Determined Using Commutative Diagrams In-
volving Factor Groups

4.1 3.A7 — 3.Suz (December 2010)

The maximal subgroups of type A7 in the sporadic simple Suzuki group Suz lift to groups of the type
3.A7 in 3.Suz. This can be seen from the fact that 3.Suz does not admit a class fusion from A-.

gap> t:= CharacterTable( "Suz" );;
gap> 3t:= CharacterTable( "3.Suz" );;
gap> s:= CharacterTable( "A7" );;
gap> 3s:= CharacterTable( "3.A7" );;
gap> PossibleClassFusions( s, 3t );

[ ]
The class fusion of 3.47 into 3.Suz is ambiguous.

gap> 3sfus3t:= PossibleClassFusions( 3s, 3t );;

gap> Length( 3sfus3t );

6

gap> RepresentativesFusions( 3s, 3sfus3t, 3t );

(s, 2,3,7, 8,9, 16, 16, 26, 27, 28, 32, 33, 34, 47, 47, 47, 48, 49, 50,
48, 49, 50 1,

(1, 11, 12, 4, 36, 37, 13, 16, 23, 82, 83, 32, 100, 101, 44, 38, 41, 48,

112, 116, 48, 115, 113 ] 1]

gap> ClassPositionsOfCentre( 3t );

(1, 2,3]

We see that the possible fusions in the second orbit avoid the centre of 3.Suz. Since the preimages
in 3.Suz of the A7 type subgroups of Suz contain the centre of 3.Suz, we know that the class fusion
of these preimages belong to the first orbit. This can be formalized by checking the commutativity
of the diagram of fusions between 3.A7, 3.Suz, and their factors A7 and Suz.
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gap> sfust:= PossibleClassFusions( s, t );;
gap> Length( sfust );

1

gap> filt:= Filtered( 3sfus3t, map -> CompositionMaps( GetFusionMap( 3t, t ),
> map )

> = CompositionMaps( sfust[1], GetFusionMap( 3s, s ) ) );
s, 2,3,7, 8,9, 16, 16, 26, 27, 28, 32, 33, 34, 47, 47, 47, 48, 49, 50,

48, 49, 50 1],
[1, 3, 2,7, 9, 8, 16, 16, 26, 28, 27, 32, 34, 33, 47, 47, 47, 48, 50, 49,
48, 50, 49 1 1

So the class fusion of maximal 3.A7 type subgroups of 3.5uz is determined up to table automorphisms.
One of these fusions is stored on the table of 3.A47.

gap> RepresentativesFusions( 3s, filt, 3t );

rrta, 2,3, 7,8, 9, 16, 16, 26, 27, 28, 32, 33, 34, 47, 47, 47, 48, 49, 50,
48, 49, 50 ] 1]

gap> GetFusionMap( 3s, 3t ) in filt;

true

Also the class fusions in the other orbit belong to subgroups of type 3.A47 in 3.Suz. Note that
Suz contains maximal subgroups of the type 32.U4(3).25 (see [CCNT85, p. 131]), and the A7 type
subgroups of Us(3) (see [CCNT85, p. 52]) lift to groups of the type 3.A7 in 32.U4(3) because 32.U4(3)
does not admit a class fusion from A7. The preimages in 3.Suz of the 3.A7 tape subgroups of Suz
have the structure 3 x 3.A47.

gap> u:= CharacterTable( "3_2.U4(3)" );;
gap> PossibleClassFusions( s, u );

[ 1

gap> Length( PossibleClassFusions( 3s, u ) );
8

4.2 Sg — Uy(2) (September 2011)

The simple group G = U4(2) contains a maximal subgroup U of type Sg. The class fusion from U to
G is unique up to table automorphisms.

gap> s:= CharacterTable( "S6" );
CharacterTable( "A6.2_1" )
gap> t:= CharacterTable( "U4(2)" );
CharacterTable( "U4(2)" )
gap> sfust:= PossibleClassFusions( s, t );
[ris 3,6, 7,9, 10, 3, 2, 9, 16, 151,
(1, 3,7,6,9, 10, 2, 3, 9, 15, 16 ] ]
gap> Length( RepresentativesFusions( s, sfust, t ) );
1

In the double cover 2.G of G, U lifts to the double cover 2.U of U (which is unique up to isomorphism).
Also the class fusion from 2.U to 2.G is unique up to table automorphisms.

gap> 2t:= CharacterTable( "2.U4(2)" );
CharacterTable( "2.U4(2)" )

gap> 2s:= CharacterTable( "2.46.2_1" );
CharacterTable( "2.A6.2_1" )

gap> 2sfus2t:= PossibleClassFusions( 2s, 2t );
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[, 2, 4, 11, 12, 9, 10, 15, 16, 17, 3, 4, 15, 24, 25, 26, 26 1],
[1, 2, 4, 11, 12, 9, 10, 15, 16, 17, 3, 4, 15, 25, 24, 26, 26 ] 1]

gap> Length( RepresentativesFusions( 2s, 2sfus2t, 2t ) );

1

However, the two possible fusions from 2.U to 2.G are lifts of the same class fusion from U to G.

gap> 2sfuss:= GetFusionMap( 2s, s );

(1,1, 2,3, 3, 4, 4,5, 6, 6,7, 8,9, 10, 10, 11, 11 ]

gap> 2tfust:= GetFusionMap( 2t, t );;

gap> induced:= Set( List( 2sfus2t, x -> CompositionMaps( 2tfust,
> CompositionMaps( x, InverseMap( 2sfuss ) ) ) ) );
trca1,3,7,6,9, 10, 2, 3, 9, 15, 16 1 ]

The point is that the outer automorphism of S¢ that makes the two fusions from U to G equivalent
does not lift to 2.U, and that we have silently assumed a fixed factor fusion from 2.U to U. Note
that composing this factor fusion with the automorphism of U would also yield a factor fusion, and
w. r. t. the commutative diagram involving this factor fusion, the other possible class fusion from U
to G is induced by the possible fusions from 2.U to 2.G.

gap> auts:= Automorphisms0fTable( s );

Group([ (3,4)(7,8)(10,11) 1)

gap> other:= OnTuples( 2sfuss, GeneratorsOfGroup( auts )[1] );
(1,1, 2, 4, 4,3, 3,5,6,6,8,7,9, 11, 11, 10, 10 ]
gap> Set( List( 2sfus2t, x -> CompositionMaps( 2tfust,

> CompositionMaps( x, InverseMap( other ) ) ) ) );
trci,3,6,7,9, 10, 3, 2, 9, 16, 1561 ]

The library table of U stores the class fusion to G that is compatible with the stored factor fusion
from 2.U to U.

gap> GetFusionMap( s, t ) in induced;
true

5 Fusions Determined Using Commutative Diagrams In-
volving Automorphic Extensions
5.1 Us3(8).3; — 2F4(2) (December 2010)

According to the ATLAS (see [CCNT85, p. 191]), the group G = 2FEg(2) contains a maximal subgroup
U of the type Us(8).31. The class fusion of U into G is ambiguous.

gap> s:= CharacterTable( "U3(8).3_1" );;

gap> t:= CharacterTable( "2E6(2)" );;

gap> sfust:= PossibleClassFusions( s, t );;

gap> Length( sfust );

24

gap> Length( RepresentativesFusions( s, sfust, t ) );
2

In the automorphic extension G.2 = ?Es(2).2 of G, the subgroup U extends to a group U.2 of the

type Us3(8).6 (again, see [CCN'85, p. 191]). The class fusion of U.2 into G.2 is unique up to table
automorphisms.
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gap> s2:= CharacterTable( "U3(8).6" );;

gap> t2:= CharacterTable( "2E6(2).2" );;

gap> s2fust2:= PossibleClassFusions( s2, t2 );;

gap> Length( s2fust2 );

2

gap> Length( RepresentativesFusions( s2, s2fust2, t2 ) );
1

Only half of the possible class fusions from U into G are compatible with the embeddings of U into
G.2 via U.2 and G, and the compatible maps form one orbit under table automorphisms.

gap> sfuss2:= PossibleClassFusions( s, s2 );;

gap> comp:= SetO0fComposedClassFusions( s2fust2, sfuss2 );;
gap> tfust2:= PossibleClassFusions( t, t2 );;

gap> filt:= Filtered( sfust, map -> ForAny( tfust2,

> map2 -> CompositionMaps( map2, map ) in comp ) );;
gap> Length( filt );

12

gap> Length( RepresentativesFusions( s, filt, t ) );

1

Let us see which classes of U and G are involved in the disambiguation of the class fusion. The “good”
fusion candidates differ from the excluded ones on the classes at the positions 31 to 36: Under all
possible class fusions, two pairs of classes are mapped to the classes 81 and 82 of G; from these classes,
the excluded maps fuse classes at odd positions with classes at even positions, whereas the “good”
class fusions do not have this property.

gap> Set( List( filt, x > x{ [ 31 .. 361 } ) );
[ [74, 74, 81, 82, 81, 821, [ 74, 74, 82, 81, 82, 811,
[ 81, 82, 74, 74, 81, 821, [ 81, 82, 81, 82, 74, 74 1,
[ 82, 81, 74, 74, 82, 811, [ 82, 81, 82, 81, 74, 74 1 1
gap> Set( List( Difference( sfust, filt ), x > x{ [ 31 .. 361 } ) );
[ [74, 74, 81, 82, 82, 811, [ 74, 74, 82, 81, 81, 82 1],
[ 81, 82, 74, 74, 82, 811, [ 81, 82, 82, 81, 74, 741,
[ 82, 81, 74, 74, 81, 821, [ 82, 81, 81, 82, 74, 741 ]

None of the possible class fusions from U to U.2 fuses classes at odd positions in the interval from 31
to 36 with classes at even positions.

gap> Set( List( sfuss2, x -> x{ [ 31 .. 361 } ) );

[ [ 28, 29, 30, 31, 30, 311, [ 29, 28, 31, 30, 31, 301,
[ 30, 31, 28, 29, 30, 311, [ 30, 31, 30, 31, 28, 291,
[ 31, 30, 29, 28, 31, 30 1, [ 31, 30, 31, 30, 29, 28 ] ]

This suffices to exclude the “bad” fusion candidates because no further fusion of the relevant classes
of G happens in G.2.

gap> List( tfust2, x -> x{ [ 74, 81, 82 ] } );

[[e65, 70, 711, [ 65, 70, 71 1, [ 65, 71, 70 1, [ 65, 71, 70 1,
(65, 70, 71 1, [ 65, 70, 711, [ 65, 71, 70 ], [ 65, 71, 70 ],
[e5, 70, 711, [ 65, 70, 71 ], [ 65, 71, 70 1, [ 65, 71, 70 ] ]

(The same holds for the fusion of the relevant classes of U.2 in G.2.)

gap> List( s2fust2, x -=> x{ [ 28 .. 311 } );
[ [e5, 65, 70, 71 1, [ 65, 65, 71, 70 1 1]

Finally, we check that a correct map is stored on the library table.

gap> GetFusionMap( s, t ) in filt;
true
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5.2 L3(4).2y — Us(2) (December 2010)

According to the ATLAs (see [CCNT85, p. 115]), the group G = Us(2) contains a maximal subgroup
U of the type L3(4).21. The class fusion of U into G is ambiguous.

gap> s:= CharacterTable( "L3(4).2_1" );;

gap> t:= CharacterTable( "U6(2)" );;

gap> sfust:= PossibleClassFusions( s, t );;

gap> Length( sfust );

27

gap> Length( RepresentativesFusions( s, sfust, t ) );
3

In the automorphic extension G.3 = Us(2).3 of G, the subgroup U extends to a group U.3 of the
type L3(4).6 (again, see [CCNT85, p. 115]). The class fusion of U.3 into G.3 is unique up to table
automorphisms.

gap> s3:= CharacterTable( "L3(4).6" );;

gap> t3:= CharacterTable( "U6(2).3" );;

gap> s3fust3:= PossibleClassFusions( s3, t3 );;

gap> Length( s3fust3 );

2

gap> Length( RepresentativesFusions( s3, s3fust3, t3 ) );
1

Here the argument used in Section 5.1 does not work, because all possible class fusions from U into
G are compatible with the embeddings of U into G.3 via U.3 and G.

gap> sfuss3:= PossibleClassFusions( s, s3 );;

gap> comp:= SetOfComposedClassFusions( s3fust3, sfuss3 );;

gap> tfust3:= PossibleClassFusions( t, t3 );;

gap> sfust = Filtered( sfust, map -> ForAny( tfust3,

> map2 -> CompositionMaps( map2, map ) in comp ) );
true

Consider the elements of order four in U. There are three such classes inside U’ 2 L3(4), which fuse
to one class of U.3.

gap> OrdersClassRepresentatives( s );

[1, 2, 3, 4, 4, 4,5, 7, 2, 4, 6, 8, 8, 81

gap> sfuss3;

[C1, 2,3, 4, 4,4,5,6,7,8,9, 10, 10, 10 ] ]

These classes of U fuse into some of the classes 10 to 12 of G. In G.3, these three classes fuse into
one class.

gap> Set( List( sfust, map ->map{ [ 4 .. 61} ) );

[ri, 10, 101, [ 10, 10, 1121, [ 10, 10, 121, [ 10, 11, 10 1,
[ 10, 11, 1121, [ 10, 11, 12 ], [ 10, 12, 101, [ 10, 12, 11 1],
[ 10, 12, 121, [ 11, 10, 101, [ 11, 10, 11 ], [ 11, 10, 12 1],
[ 11, 11, 101, [ 11, 11, 1117, [ 11, 11, 127, [ 11, 12, 101,
[ 11, 12, 117, [ 11, 12, 12 ], [ 12, 10, 101, [ 12, 10, 11 1],
[ 12, 10, 121, [ 12, 11, 101, [ 12, 11, 11 ], [ 12, 11, 12 ],
[ 12, 12, 101, [ 12, 12, 11 ], [ 12, 12, 12 ] 1]

gap> Set( List( tfust3, map -> map{ [ 10 .. 121 } ) );

([10, 10, 101 1]
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This means that the automorphism « of G that is induced by the action of G.3 permutes the classes
10 to 12 of G transitively. The fact that U extends to U.3 in GG.3 means that U is invariant under
«. This implies that U contains either no elements from the classes 10 to 12 or elements from all of
these classes. The possible class fusions from U to G satisfying this condition form one orbit under
table automprhisms.

gap> Filtered( sfust, map -> Intersection( map, [ 10 .. 121 ) = [1 );
[ 1]

gap> filt:= Filtered( sfust, map -> IsSubset( map, [ 10 .. 121 ) );
rcta, 3,7, 10, 11, 12, 15, 24, 4, 14, 23, 26, 27, 28 1,

(1, 3, 7, 10, 12, 11, 15, 24, 4, 14, 23, 26, 28, 27 ],

(1, 3, 7, 11, 10, 12, 15, 24, 4, 14, 23, 27, 26, 28 ],

L1, 3, 7, 11, 12, 10, 15, 24, 4, 14, 23, 27, 28, 26 1],

(1, 3, 7, 12, 10, 11, 15, 24, 4, 14, 23, 28, 26, 27 ],

(1, 3, 7, 12, 11, 10, 15, 24, 4, 14, 23, 28, 27, 26 ] ]

gap> Length( RepresentativesFusions( s, filt, t ) );
1

Finally, we check that a correct map is stored on the library table.

gap> GetFusionMap( s, t ) in filt;
true

6 Conditions Imposed by Brauer Tables

The examples in this section show that symmetries can be broken as soon as the class fusions between
two ordinary tables shall be compatible with the corresponding Brauer character tables. More pre-
cisely, we assume that the class fusion from each Brauer table to its ordinary table is already fixed;
choosing these fusions consistently can be a nontrivial task, solving so-called “generality problems”
may require the construction of certain modules, similar to the arguments used in 6.3 below.

6.1 Ly(16).4 — J3.2 (January 2004)

It can happen that Brauer tables decide ambiguities of class fusions between the corresponding
ordinary tables. An easy example is the class fusion of L2(16).4 into J3.2. The ordinary tables admit
four possible class fusions, of which two are essentially different.

gap> s:= CharacterTable( "L2(16).4" );;
gap> t:= CharacterTable( "J3.2" );;
gap> fus:= PossibleClassFusions( s, t );
rra, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 5, 5, 8, 8, 13, 131,
[1, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23 1],
[1, 2, 3, 6, 14, 16, 15, 2, 5, 7, 12, 5, 5, 8, 8, 13, 13 1],
[1, 2, 3, 6, 14, 16, 15, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23 ] ]
gap> RepresentativesFusions( s, fus, t );
rrti, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 5, 5, 8, 8, 13, 131,
[1, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23 ] ]

>

Using Brauer tables, we will see that just one fusion is admissible.

We can exclude two possible fusions by the fact that their images all lie inside the normal subgroup
Js, but J3 does not contain a subgroup of type L2(16).4; so still one orbit of length two remains.
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gap> j3:= CharacterTable( "J3" );;
gap> PossibleClassFusions( s, j3 );
[ 1]
gap> GetFusionMap( j3, t );
[1,2,3,4,5,6,6,7,8,9, 10, 11, 12, 12, 13, 14, 14, 15, 16, 17, 17 ]
gap> filt:= Filtered( fus,
> x -> not IsSubset( ClassPositionsOfDerivedSubgroup( t ), x ) );
[ri, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23],
(1, 2, 3, 6, 14, 16, 15, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23 ] ]

Now the remaining wrong fusion is excluded by the fact that the table automorphism of J3.2 that
swaps the two classes of element order 17 —which swaps two of the possible class fusions— does not
live in the 2-modular table.

gap> smod2:= s mod 2;;

gap> tmod2:= t mod 2;;

gap> admissible:= [1;;

gap> for map in filt do

> modmap:= CompositionMaps( InverseMap( GetFusionMap( tmod2, t ) ),

> CompositionMaps( map, GetFusionMap( smod2, s ) ) );

> if not fail in Decomposition( Irr( smod2 ),

> List( Irr( tmod2 ), chi -> chi{ modmap } ), "nonnegative" ) then
> AddSet( admissible, map );

> fi;

> od;

g

[

ap> admissible;
[1, 2, 3, 6, 14, 16, 15, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23] ]

The test of all available Brauer tables is implemented in the function CTb1lLib.Test.Decompositions
of the GAP Character Table Library ([Brel2]).

gap> CTblLib.Test.Decompositions( s, fus, t ) = admissible;
true

We see that p-modular tables alone determine the class fusion uniquely; in fact the primes 2 and 3
suffice for that.

gap> GetFusionMap( s, t ) in admissible;
true

6.2 Ly(17) — S5(2) (July 2004)
The class fusion of the maximal subgroup M 2 L2(17) of G = Ss(2) is ambiguous.

gap> m:= CharacterTable( "L2(17)" );;

gap> t:= CharacterTable( "S8(2)" );;

gap> mfust:= PossibleClassFusions( m, t );;

gap> Length( RepresentativesFusions( m, mfust, t ) );
4

The Brauer tables for M and G determine the class fusion up to table automorphisms.

gap> filt:= CTblLib.Test.Decompositions( m, mfust, t );;
gap> repr:= RepresentativesFusions( m, filt, t );;

gap> Length( repr );

1

gap> GetFusionMap( m, t ) in repr;

true
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6.3 Ly(19) — J3 (April 2003)

It can happen that Brauer tables impose conditions such that ambiguities arise which are not visible
if one considers only ordinary tables.

The class fusion between the ordinary character tables of L2(19) and J3 is unique up to table auto-
morphisms.

gap> s:= CharacterTable( "L2(19)" );;

gap> t:=

CharacterTable( "J3" );;

gap> sfust:=

PossibleClassFusions(

s, t);

[
[
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11,
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12,
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11,
12,
12,

11,
11,
12,
12,
10,
10,
11,
11,
12,
12,
10,
10,

12,
12,
10,
10,
11,
11,
12,
12,
10,
10,
11,
11,

13,
13,
13,
13,
13,
13,
14,
14,
14,
14,
14,
14,

14,
14,
14,
14,
14,
14,
13,
13,
13,
13,
13,
13,

20,
21,
20,
21,
20,
21,
20,
21,
20,
21,
20,
21,

21 ]
20 ]
21 ]
20 ]
21 ]
20 1,
21 ]
20 ]
21 ]
20 ]
21
20 ] ]

v

s, sfust, t );
20, 211 1]

RepresentativesFusions(
, 7, 10, 11, 12, 13, 14,

usreps:

6
6
6
6
6
6
7,
7
7
7
7
7
1, 2, 4, 6

L
L
L
L
L
[
L
L
[
L
p
[

gap>
L

The Galois automorphism that permutes the three classes of element order 9 in the tables of (L2(19)
and) Js does not live in characteristic 19. For example, the unique irreducible Brauer character of
degree 110 in the 19-modular table of J3 is @3, and the value of this character on the class 94 is
~142y9+&4.

gap> tmod19:= t mod 19;

BrauerTable( "J3", 19 )

gap> degl10:= Filtered( Irr( tmodl9 ), phi -> phi[1] = 110 );

[ Character( BrauerTable( "J3", 19 ), [ 110, -2, 5, 2, 2, 0, 0, 1, O,
-2+E(9) "2+E(9) "3-E(9) "4-E(9) "5+E(9) "6-2*E(9) "7,
E(9) "2+E(9) "3-E(9) "4-E(9) "5+E(9) "6+E(9) "7,
E(9) "2+E(9) "3+2*E(9) "4+2*E(9) "5+E(9) "6+E(9) "7, -2, -2, -1, 0, O,
E7)+E(17) "2+E(17) "4+E(17) "8+E(17) "9+E(17) ~13+E(17) "15+E(17) " 16,
E(17) "3+E(17) "5+E(17) "6+E(17) “7+E(17) "10+E(17) "11+E(17) "12+E(17)"14 ] )

]

gap> 9A:= Position( OrdersClassRepresentatives( tmodl9 ), 9 );

10

gap> degl10[1]1[ 9A 1;

-2xE(9) "2+E(9) "3-E(9) "4-E(9) "5+E(9) "6-2+E(9) "7

gap> AtlasIrrationality( "-1+2y9+&4" ) = degl10[1][ 9A 1;

true

It turns out that four of the twelve possible class fusions are not compatible with the 19-modular
tables.

gap> smodl9:= s mod 19;

BrauerTable( "L2(19)", 19 )

gap> compatible:= [];;

gap> for map in sfust do

> comp:= CompositionMaps( InverseMap( GetFusionMap( tmodl9, t ) ),
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> CompositionMaps( map, GetFusionMap( smod19, s ) ) );
> rest:= List( Irr( tmod19 ), phi -> phi{ comp } );
> if not fail in Decomposition( Irr( smod19 ), rest, "nonnegative" ) then
> Add( compatible, map );
> fi;
> od;
gap> compatible;
[[1, 2, 4,6, 7, 11, 12, 10, 13, 14, 20, 21 1,
L1, 2, 4, 6, 7, 11, 12, 10, 13, 14, 21, 20 1],
L1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 20, 21 1],
(1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 21, 20 1],
L1, 2, 4, 7, 6, 11, 12, 10, 14, 13, 20, 21 1],
L1, 2, 4, 7, 6, 11, 12, 10, 14, 13, 21, 20 1],
(1, 2, 4, 7, 6, 12, 10, 11, 14, 13, 20, 21 1],
L1, 2, 4, 7, 6, 12, 10, 11, 14, 13, 21, 20 1 1]

Moreover, the subgroups of those table automorphisms of the ordinary tables that leave the set of
compatible fusions invariant make two orbits on this set. Indeed, the two orbits belong to essentially
different decompositions of the restriction of 3.

gap> reps:= RepresentativesFusions( s, compatible, t );
[C1, 2, 4, 6, 7, 11, 12, 10, 13, 14, 20, 21 ],

(1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 20, 21 ] ]
gap> compatiblemodl19:= List( reps, map -> CompositionMaps(
> InverseMap( GetFusionMap( tmod19, t ) ),
> CompositionMaps( map, GetFusionMap( smodl19, s ) ) ) );
[C1, 2, 4, 6, 7, 11, 12, 10, 13, 14 ],

(1, 2, 4,6, 7, 12, 10, 11, 13, 141 ]
gap> rest:= List( compatiblemod19, map -> Irr( tmod19 )[3]{ map } );;
gap> dec:= Decomposition( Irr( smodl9 ), rest, "nonnegative" );
tfo,o0,12,1,2,2,1,0,11,[0,2,0,2,0,1,2,0,2,11]1]
gap> List( Irr( smodl9 ), phi -> phi[1] );
(1, 3,5, 7,9, 11, 13, 15, 17, 19 ]

In order to decide which class fusion is correct, we take the matrix representation of Js that affords
3, restrict it to L2(19), which is the second maximal subgroup of J3, and compute the composition
factors. For that, we use a representation from the ATLAS of Group Representations [WWT™], and
access it via the GAP package AtlasRep ([WPN™11]).

gap> LoadPackage( "atlasrep" );

true
gap> prog:= AtlasStraightLineProgram( "J3", "maxes", 2 );
rec( groupname := "J3", identifier := [ "J3", "J3Gl-max2Wi", 1 1],
program := <straight line program>, size := 3420, standardization := 1,
subgroupname := "L2(19)" )
gap> gens:= OneAtlasGeneratingSet( "J3", Characteristic, 19, Dimension, 110 );
rec( dim := 110,
generators := [ < immutable compressed matrix 110x110 over GF(19) >,
< immutable compressed matrix 110x110 over GF(19) > ],
groupname := "J3", id := "",
identifier := [ "J3", [ "J3G1-f19r110BO.mi", "J3G1-f19r110BO.m2" ], 1, 19 ],
repname := "J3G1-f19r110BO", repnr := 35, ring := GF(19), size := 50232960,
standardization := 1, type := "matff" )

gap> restgens:= ResultOfStraightLineProgram( prog.program, gens.generators );
[ < immutable compressed matrix 110x110 over GF(19) >,
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< immutable compressed matrix 110x110 over GF(19) > ]
gap> module:= GModuleByMats( restgens, GF( 19 ) );;
gap> facts:= SMTX.CollectedFactors( module );;
gap> Length( facts );
7
gap> List( facts, x -> x[1].dimension );
[5, 7,9, 11, 13, 15, 19 ]
gap> List( facts, x -> x[2] );
[1,2,1,2,2,1, 1]

This means that there are seven pairwise nonisomorphic composition factors, the smallest one of
dimension five. In other words, the first of the two maps is the correct one. Let us check whether
this map equals the one that is stored on the library table.

gap> GetFusionMap( s, t ) = reps[1];
true

7 Fusions Determined by Information about the Groups

In the examples in this section, character theoretic arguments do not suffice for determining the
class fusions. So we use computations with the groups in question or information about these groups
beyond the character table, and perhaps additionally character theoretic arguments.

The group representations are taken from the ATLAS of Group Representations [WWTT] and are
accessed via the GAP package AtlasRep ([WPNT11]).

gap> LoadPackage( "atlasrep" );
true

7.1 Us3(3).2 — Fi,, (November 2002)

The group G = Fib, contains a maximal subgroup H of type Us(3).2. From the character tables of
G and H, one gets a lot of essentially different possibilities (and additionally this takes quite some
time). We use the description of H as the normalizer in G of a Us3(3) type subgroup containing
elements in the classes 2B, 3D, 3E, 4C, 4C, 6J, 7B, 8C, and 12M (see [BN95]).

gap> t:= CharacterTable( "F3+" );

CharacterTable( "F3+" )

gap> s:= CharacterTable( "U3(3).2" );

CharacterTable( "U3(3).2" )

gap> tnames:= ClassNames( t, "ATLAS" );

[ "1A", "2A", "2B", "3A", "3B", "3C", "3D", "3E", "4A", "4B", "4C", "5A",
"6A", "€B", "6C", "6D", "eE", "6F", "6G", "eH", "6I", "6J", "eK", "TA",
"7B", "8A", "8B", "8C", "9A", "9B", "9C", "OD", "9E", "OF", "10A", "10B",
"11A", "12A", "12B", "12C", "12D", "12E", "12F", "12G", "12H", "12I",
"12J", "12K", "12L", "12M", "13A", "14A", "14B", "15A", "15B", "15C",
"16A", "17A", "18A", "18B", "18C", "18D", "18E", "18F", "18G", "18H",
"20A", "20B", "21A", "21B", "21C", "21D", "22A", "23A", "23B", "24A",
"24B", "24C", "24D", "24E", "24F", "24G", "26A", "27A", "27B", "27C",
"28A", "20A", "29B", "30A", "30B", "33A", "33B", "35A", "36A", "36B",
"36C", "36D", "39A", "39B", "39C", "39D", "42A", "42B", "42C", "45A",
"45B", "60A" ]

gap> OrdersClassRepresentatives( s );
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[1, 2,3, 3,4, 4,6,7,8, 12, 2, 4, 6, 8, 12, 12 ]
gap> sfust:= List( [ "1A", "2B", "3D", "3E", "4C", "4C", "6J", "7B", "8C",
> "12M" ], x -> Position( tnames, x ) );
[1, 3, 7,8, 11, 11, 22, 25, 28, 50 ]
gap> sfust:= PossibleClassFusions( s, t, rec( fusionmap:= sfust ) );
(rta, 3,7, 8, 11, 11, 22, 25, 28, 50, 3, 9, 23, 28, 43, 43 ],
(i1 3,7, 8, 11, 11, 22, 25, 28, 50, 3, 11, 23, 28, 50, 50 ] ]
gap> OrdersClassRepresentatives( s );
[1, 2,3, 3,4, 4,6, 7,8, 12, 2, 4, 6, 8, 12, 12 ]

So we still have two possibilities, which differ on the outer classes of element order 4 and 12.

Our idea is to take a subgroup U of H that contains such elements, and to compute the possible class
fusions of U into G, via the factorization through a suitable maximal subgroup M of G.

We take U = Ny ((g)) where g is an element in the first class of order three elements of H; this is a
maximal subgroup of H, of order 216.

gap> Maxes( s );

[ "U3(3)", "37(1+2):SD16", "L3(2).2", "27(1+4).S83", "4°2:D12" ]
gap> SizesCentralizers( s );

[ 12096, 192, 216, 18, 96, 32, 24, 7, 8, 12, 48, 48, 6, 8, 12, 12 ]
gap> u:= CharacterTable( Maxes( s )[2] );;

gap> ufuss:= GetFusionMap( u, s );

[1, 2, 11, 3, 4, 5, 12, 7, 13, 9, 9, 15, 16, 10 ]

Candidates for M are those subgroups of G that contain elements in the class 3D of G whose centralizer
is the full 3D centralizer in G.

gap> 3Dcentralizer:= SizesCentralizers( t )[7];
153055008

gap> cand:= [];;

gap> for name in Maxes( t ) do

> m:= CharacterTable( name );

> mfust:= GetFusionMap( m, t );

> if ForAny( [ 1 .. Length( mfust ) 1],

> i -> mfust[i] = 7 and SizesCentralizers( m )[i] = 3Dcentralizer )
> then

> Add( cand, m );

> fi;

> od;

gap> cand;

[ CharacterTable( "3°7.07(3)" ), CharacterTable( "3°2.374.378.(Abx2A4).2" ) ]

For these two groups M, we show that the possible class fusions from U to G via M factorize through
H only if the second possible class fusion from H to G is chosen.

gap> possufust:= List( sfust, x -> CompositionMaps( x, ufuss ) );
[rsi, 3,3, 7,8, 11, 9, 22, 23, 28, 28, 43, 43, 50 ],
(i, 3, 3, 7, 8, 11, 11, 22, 23, 28, 28, 50, 50, 50 ] ]
gap> m:= cand[1];;
gap> ufusm:= PossibleClassFusions( u, m );;
gap> Length( ufusm );
242
gap> comp:= List( ufusm, x -> CompositionMaps( GetFusionMap( m, t ), x ) );;
gap> Intersection( possufust, comp );
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rrtas, 3,3, 7 8, 11, 11, 22, 23, 28, 28, 50, 50, 50 ] ]

gap> m:= cand[2];;

gap> ufusm:= PossibleClassFusions( u, m );;

gap> Length( ufusm );

256

gap> comp:= List( ufusm, x -> CompositionMaps( GetFusionMap( m, t ), x ) );;
gap> Intersection( possufust, comp );

trca,3,3,7,8, 11, 11, 22, 23, 28, 28, 50, 50, 50 ] 1]

Finally, we check that the correct fusion is stored in the GAP Character Table Library.

gap> GetFusionMap( s, t ) = sfust[2];
true

7.2 Ly(13).2 — Fi,, (September 2002)

The class fusion of maximal subgroups U of type L2(13).2 in G = Fi5, is ambiguous.

gap> t:= CharacterTable( "F3+" );;

gap> u:= CharacterTable( "L2(13).2" );;

gap> fus:= PossibleClassFusions( u, t );;

gap> repr:= RepresentativesFusions( u, fus, t );;
gap> Length( repr );

3

In [LW91, p. 155], it is stated that U’ contains elements in the classes 2B, 3D, and 7B of G. (Note that
the two conjugacy classes of groups isomorphic to U have the same class fusion because the outer
automorphism of G fixes the relevant classes.)

gap> filt:= Filtered( repr, x -> t.2b in x and t.3d in x and t.7b in x );
[r1, 3,7, 22, 25, 25, 25, 51, 3, 9, 43, 43, 53, 53, 53 1],
(1, 3,7, 22, 25, 25, 25, 51, 3, 11, 50, 50, 53, 53, 53 ] ]
gap> ClassNames( t ){ [ 43, 50 1 };
[ "12f", "12m" ]

So we have to decide whether U contains elements in the class 12F or in 12M of G.

The order 12 elements in question lie inside subgroups of type 13 : 12 in U. These subgroups are
clearly contained in the Sylow 13 normalizers of G, which are contained in maximal subgroups of type
(3% : 2 x G2(3)).2 in G; the class fusion of the latter groups is unique up to table automorphisms.

gap> pos:= Position( OrdersClassRepresentatives( t ), 13 );

51

gap> SizesCentralizers( t )[ pos ];
234

gap> ClassOrbit( t, pos );

[ 611]

gap> cand:= [];;
gap> for name in Maxes( t ) do
> m:= CharacterTable( name );
pos:= Position( OrdersClassRepresentatives( m ), 13 );
if pos <> fail and
SizesCentralizers( m )[ pos ] = 234
and ClassOrbit( m, pos ) = [ pos ] then
Add( cand, m );

V V. V V VvV
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> fi;

> od;

gap> cand;

[ CharacterTable( "(3°2:2xG2(3)).2" ) ]
gap> s:= cand[1];;

gap> sfust:= PossibleClassFusions( s, t );;

As no 13 : 12 type subgroup is contained in the derived subgroup of (3% : 2 x G2(3)).2, we look at
the elements of order 12 in the outer half.

gap> der:= ClassPositionsOfDerivedSubgroup( s );;

gap> outer:= Difference( [ 1 .. NrConjugacyClasses( s ) ], der );;

gap> sfust:= PossibleClassFusions( s, t );;

gap> imgs:= Set( Flat( List( sfust, x -> x{ outer } ) ) );

[ 2,3, 10, 11, 15, 17, 18, 19, 21, 22, 26, 44, 45, 49, 50, 52, 62, 83, 87,
98 ]

gap> t.12f in imgs;

false

gap> t.12m in imgs;

true

So L2(13).2\ L2(13) does not contain 12F elements of G, i. e., we have determined the class fusion of
UinG.

Finally, we check whether the correct fusion is stored in the GAP Character Table Library.

gap> GetFusionMap( u, t ) = filt[2];
true

7.3 M — B (April 2009)

The sporadic simple group B contains a maximal subgroup M of the type Mi1 whose class fusion is
ambiguous.

gap> b:= CharacterTable( "B" );;

gap> mll:= CharacterTable( "M11" );;

gap> mllfusb:= PossibleClassFusions( mll, b );;

gap> Length( mlilfusb );

31

gap> CompositionMaps( ClassNames( b, "ATLAS" ), Parametrized( milfusb ) );
n n n n n n n n n n n n n n n n n n n n

[ "ia", [ "2B", "2D" ], [ "3A", "3B" ], [ "4B", "4E", "4G", "4H", "4J" ],
[ |l5A|I lI5BII ] [ IIGCII I|6EI| Il6H|l |I6Ill II6JI| ]
[ |I8B|| l|8Ell ||8G|| |I8J|l l|8Kl| ||8L|| |I8M|l ||8Nl| ]
[ "8B||’ l|8E||’ ||8G||’ "8J||’ l|8K’|’ ||8L||, |l8M||’ ||8N’| ] s llllAll’ "11A|| ]

According to [Wil93a, Thm. 12.1], M contains no 54 elements of B. By the proof of [Wil99, Prop. 4.1],
the involutions in any Ss type subgroup U of M lie in the class 2C or 2D of B, and since the possible
class fusions of M computed above admit only involutions in the class 2B or 2D, all involutions of U
lie in the class 2D. Again by the proof of [Wil99, Prop. 4.1], U is contained in a maximal subgroup of
type Th in B.

Now we use the embedding of U into B via M and T'h for determining the class fusion of M into B.
The class fusion of the embedding of U via T'h is uniquely determined.
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gap> th:= CharacterTable( "Th" );;

gap> sb:= CharacterTable( "S5" );;

gap> sbfusth:= PossibleClassFusions( s5, th );

[[1, 2, 4,8,2,7, 1111

gap> thfusb:= PossibleClassFusions( th, b );;

gap> sbfusb:= Set( List( thfusb, x -> CompositionMaps( x, sbfusth[1] ) ) );
[C1, 5,7, 19, 5, 17, 29 1 1]

Also the class fusion of U into M is unique, and this determines the class fusion of M into B.

gap> sbfusmll:= PossibleClassFusions( s5, ml1l );

[[1,2,3,5,2,4,¢61]1]1

gap> mllfusb:= Filtered( mlifusb,

> map -> CompositionMaps( map, s5fusmi1[1] ) = s5fusb[1] );
[[C1, 5,7, 17, 19, 29, 45, 45, 54, 54 ] ]

gap> CompositionMaps( ClassNames( b, "ATLAS" ), milifusb[1] );

[ "{A", "2D", "3B", "4J", "5B", "6J", "8N", "8N", "11A", "11A"]

(Using the information that the Mig type subgroups of M are also contained in Th type subgroups
would not have helped us, since these subgroups do not contain elements of order 6, and two possi-
bilities would have remained.)

7.4 L,(11):2 — B (April 2009)

The sporadic simple group B contains a maximal subgroup L of the type L2(11) : 2 whose class fusion
is ambiguous.

gap> b:= CharacterTable( "B" );;
gap> 1l:= CharacterTable( "L2(11).2" );;
gap> 1lfusb:= PossibleClassFusions( 1, b );;
gap> Length( 1lfusb );
16
gap> CompositionMaps( ClassNames( b, "ATLAS" ), Parametrized( lfusb ) );
[ "1A", [ "28", "20" 1, [ "3A", "3B" 1, [ "5A", "5B" ], [ "5A", "5B" ],
[ "ec", "6H", "6I", "eJ" 1, "11A", [ "2c", "2D" 1,
[ "4D", "4E", "4F", "4G", "4H", "4J" 1, [ "10C", "10E", "10F" 1,
[ "10C", "10E", "10F" ],
[ "12E", "12F", "12H", "12I", "12J", "12L", "12N", "12P", "12Q", "12R",
"12s" 1,
[ "12E", "12F", "12H", "12I", "12J", "12L", "12N", "12P", "12Q", "12R",
"12s" 1 ]

According to [Wil93a, Thm. 12.1], L contains no 5A elements of B. By the proof of [Wil99, Prop. 4.1],
B contains exactly one class of L2(11) type subgroups with this property. Hence the subgroup U
of index two in L is contained in a maximal subgroup M of type Mi:1 in B, whose class fusion was
determined in Section 7.3.

In the same way as we proceeded in Section 7.3, we use the embedding of U into B via L and M for
determining the class fusion of L into B.

gap> m:= CharacterTable( "M11" );;

gap> u:= CharacterTable( "L2(11)" );;

gap> ufusm:= PossibleClassFusions( u, m );;

gap> mfusb:= GetFusionMap( m, b );;

gap> ufusb:= Set( List( ufusm, x -> CompositionMaps( mfusb, x ) ) );
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[[1, 5,7, 19, 19, 29, 54, 54 ] ]
gap> ufusl:= PossibleClassFusions( u, 1 );

(r1,2,3,4,5,6,7, 71,

gap> 1lfusb:= Filtered( 1lfusb,

>
>

map2 -> ForAny( ufusl,

[1,2,3,5,4,6,7, 711

mapl -> CompositionMaps( map2, mapl ) in ufusb ) );
[t 5,7, 19, 19, 29, 54, 5, 15, 53, 53, 73, 73 ] 1]

7.5 Ls(3) — B (April 2009)

The sporadic simple group B contains a maximal subgroup T of the type L3(3) whose class fusion is
ambiguous.

gap>
gap>

b:=
t:=

CharacterTable( "B" );;

CharacterTable( "L3(3)" );;

gap> tfusb:= PossibleClassFusions( t, b );;
gap> Length( tfusb );

36

According to [Wil99, Section 9], T contains a subgroup U of the type 3% : 254 that is contained also
in a maximal subgroup M of the type 32.3%.35.(S4 x 2S4). So we throw away the possible fusions
from T to B that are not compatible with the compositions of the embeddings of U into B via T" and

M.

gap>
gap>
gap>
gap>
gap>
gap>
gap>
gap>
gap>
gap>
>
gap>
[

1
1
1
1
1

L B W e W |

o
|

mx:= MaximalSubgroupClassReps( g );;

e e
o

CharacterTable( u );;
PossibleClassFusions( u, m );;

ufusm:
ufust:
mfusb:
ufusb:=
tfusb:

15,

> >

> >

] >

[S2 ¢ B¢ )]

3 >

6
7
7
7
7

>
>
>
>

>

= First( mx, x -> Size( x ) = 432 );;

PossibleClassFusions( u, t );;
GetFusionMap( m, b );;
Set( List( ufusm, map -> CompositionMaps( mfusb, map ) ) );;
Filtered( tfusb, map -> ForAny( ufust,

map2 -> CompositionMaps( map, map2 ) in ufusb ) );;

tfusb;

>

>

>

>

NN~ o N

>

12,
12,
12,
12,
17,

27,
28,
28,
29,
29,

41, 41, 75,
41, 41, 75,
41, 41, 75,
41, 41, 75,
45, 45, 75,

75,
75,
75,
75,
75,

75,
75,
75,
75,
75,

7
7
7
7
7

= CharacterTable( "3°2.373.376.(S4x284)" );;
= PSL(3,3);;

oo o0 oo

1,
1,
1,
1,
]

]

Now we use that 7" does not contain 4E elements of B (again see [Wil99, Section 9]). Thus the last
of the five candidates is the correct class fusion.

gap> ClassNames( b, "ATLAS" ){ [ 12, 17 ] };

[ lI4ElI’ nggn ]

We check that this map is stored on the library table.

gap> GetFusionMap( t, b ) = tfusb[5];

true
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7.6 Ly(17).2 — B (March 2004)

The sporadic simple group B contains a maximal subgroup U of the type L2(17).2 whose class fusion
is ambiguous.

gap> b:= CharacterTable( "B" );;

gap> u:= CharacterTable( "L2(17).2" );;

gap> ufusb:= PossibleClassFusions( u, b );

[ [1, 5,7, 15, 42, 42, 47, 47, 47, 91, 4, 30, 89, 89, 89, 89, 97, 97, 97 1],
[1, 5, 7, 15, 44, 44, 46, 46, 46, 91, 5, 29, 90, 90, 90, 90, 96, 96, 96 1],
[ 1, 5, 7, 15, 44, 44, 47, 47, 47, 91, 5, 29, 90, 90, 90, 90, 95, 95, 95 ] 1]

According to [Wil99, Prop. 11.1], U contains elements in the classes 8M and 9A of B. This determines
the fusion map.

gap> names:= ClassNames( b, "ATLAS" );;

gap> pos:= List( [ "8M", "9A" ], x -> Position( names, x ) );

[ 44, 46 ]

gap> ufusb:= Filtered( ufusb, map -> IsSubset( map, pos ) );

[[1, 5, 7, 15, 44, 44, 46, 46, 46, 91, 5, 29, 90, 90, 90, 90, 96, 96, 96 ] 1]

We check that this map is stored on the library table.

gap> GetFusionMap( u, b ) = ufusb[1];
true

7.7 L5(49).2;3 — B (June 2006)

The sporadic simple group B contains a class of maximal subgroups of the type L2(49).23 (a non-split
extension of L2(49), see [Wil93b, Theorem 2]). Let U be such a subgroup. The class fusion of U in
B is not determined by the character tables of U and B.

gap> u:= CharacterTable( "L2(49).2_3" );;

gap> b:= CharacterTable( "B" );;

gap> ufusb:= PossibleClassFusions( u, b );;

gap> Length( RepresentativesFusions( u, ufusb, b ) );

2

gap> ufusb;

[ri, 5, 7, 15, 19, 28, 31, 42, 42, 71, 125, 125, 128, 128, 128, 128, 128,
15, 71, 71, 89, 89, 89, 89 ],

[1, 5, 7, 15, 19, 28, 31, 42, 42, 71, 125, 125, 128, 128, 128, 128, 128,

17, 72, 72, 89, 89, 89, 89 1 ]

We show that the fusion is determined by the embeddings of the Sylow 7 normalizer N, say, of U
into U and into the Sylow 7 normalizer of B. (Note that the fusion of the latter group into B has
been determined in Section 3.1.)

For that, we compute the character table of N from a representation of U. Note that U is a non-
split extension of the simple group L2(49) by the product of a diagonal automorphism and a field
automorphism. In [Wil93b], the structure of N is described as 72 : (3 x Q16)-

gap> g:= SL( 2, 49 );;

gap> gens:= Generators0fGroup( g );;

gap> f:= GF(49);;

gap> mats:= List( gens, x —-> IdentityMat( 4, £ ) );;
gap> for i in [ 1 .. Length( gens ) ] do
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>
>
>
>

gap>
gap>
gap>
gap>
gap>
gap>
gap>
gap>
gap>
gap>

gens[i];
List( gens[i],
x => List( x, y > y°7) );

mats[il{ [ 1, 21 H [ 1, 21 }:
mats[i]{ [ 3, 41 X [ 3, 41 }:

od;

fieldaut:= PermutationMat( (1,3)(2,4), 4, f );;
diagaut:= IdentityMat( 4, f );;

diagaut [1]1[1]:= Z(49);;

diagaut[3][3]:= Z(49)"7;;

g:= Group( Concatenation( mats, [ fieldaut * diagaut ] ) );;
vi=[1, 0, 0, 01 * Z(7)"0;;

orb:= Orbit( g, v, OnLines );;

act:= Action( g, orb, OnLines );;

n:= Normalizer( act, SylowSubgroup( act, 7 ) );;
ntbl:= CharacterTable( n );;

Now we compute the possible class fusions of N into B, via the Sylow 7 normalizer in B.

gap>
gap>
gap>
3
gap>
>
gap>
5

Although

bn7:= CharacterTable( "BN7" );;
nfusbn7:= PossibleClassFusions( ntbl, bn7 );;
Length( RepresentativesFusions( ntbl, nfusbn7, bn7 ) );

nfusb:= SetOfComposedClassFusions( PossibleClassFusions( bn7, b ),

nfusbn7 );;
Length( RepresentativesFusions( ntbl, nfusb, b ) );

there are several possibilities, this information is enough to exclude one of the possible

fusions of U into B.

gap>
gap>
4
gap>
>

nfusu:= PossibleClassFusions( ntbl, u );;
Length( nfusu );

filt:= Filtered( ufusb,
x —> ForAny( nfusu, y -> CompositionMaps( x, y ) in nfusb ) );

[[C1, 5,7, 15, 19, 28, 31, 42, 42, 71, 125, 125, 128, 128, 128, 128, 128,

17, 72, 72, 89, 89, 89, 89 1 1]

gap> ClassNames( b, "ATLAS" ){ filt[1] };

[ "1A", "2D", "3B", "4H", II5BII, Il6III, II7AlI’ IISKII’ "SK", “12Q", Il24Lll’ "24L",
ll25All, "25A", "25A", ll25All, "25A", "4J", "12R", "12R", "16G", "16G", "16G",
"16G" ]

So the class fusion of U into B can be described by the property that the elements of order four inside
and outside the simple subgroup L2(49) are not conjugate in B.

‘We check that the correct map is stored on the library table.

gap> GetFusionMap( u, b ) in filt;

true

Let us confirm that the two groups of the types L2(49).21 and L2(49).22 cannot occur as subgroups of
B. First we show that L2(49).2; is isomorphic with PGL(2,49), an extension of L2(49) by a diagonal
automorphism, and L2(49).22 is an extension by a field automorphism.

gap> NrConjugacyClasses( u ); NrConjugacyClasses( act );

24
24
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gap> u:= CharacterTable( "L2(49).2_1" );;

gap> g:= Group( Concatenation( mats, [ diagaut 1 ) );;
gap> orb:= Orbit( g, v, OnLines );;

gap> act:= Action( g, orb, OnLines );;

gap> Size(act );

117600

gap> NrConjugacyClasses( u ); NrConjugacyClasses( act );
51

51

gap> u:= CharacterTable( "L2(49).2_2" );;

gap> g:= Group( Concatenation( mats, [ fieldaut ] ) );;
gap> orb:= Orbit( g, v, OnLines );;

gap> act:= Action( g, orb, OnLines );;

gap> NrConjugacyClasses( u ); NrConjugacyClasses( act );
27

27

The group L2(49).2; can be excluded because no class fusion into B is possible.

gap> PossibleClassFusions( CharacterTable( "L2(49).2_1" ), b );
[ 1]

For L2(49).22, it is not that easy. We would get several possible class fusions into B. However, the
Sylow 7 normalizer of L2(49).22 does not admit a class fusion into the Sylow 7 normalizer of B.

gap> n:= Normalizer( act, SylowSubgroup( act, 7 ) );;
gap> Length( PossibleClassFusions( CharacterTable( n ), bn7 ) );
0

7.8 23.L3(2) — G5(5) (January 2004)

The Chevalley group G = G2(5) contains a maximal subgroup U of the type 2%.L3(2) whose class
fusion is ambiguous.

gap> t:= CharacterTable( "G2(5)" );;

gap> s:= CharacterTable( "273.L3(2)" );;

gap> sfust:= PossibleClassFusions( s, t );;

gap> RepresentativesFusions( s, sfust, t );

[ri, 2, 2, 5, 6, 4, 13, 16, 17, 15, 1517,
(1, 2, 2, 5, 6, 4, 14, 16, 17, 15, 15 ] 1]

gap> OrdersClassRepresentatives( s );

[1, 2, 2, 4, 4, 3, 6, 8,8, 7, 71

So the question is whether U contains elements in the class 6B or 6C of G (position 13 or 14 in the
ATLAS table). We use a permutation representation of G, restrict it to U, and compute the centralizer
in G of a suitable element of order 6 in U.

gap> g:= AtlasGroup( "G2(5)" );;

gap> u:= AtlasSubgroup( "G2(5)", 7 );;
gap> Size( u );

1344

gap> repeat

> x:= Random( u );

> until Order( x ) = 6;

gap> siz:= Size( Centralizer( g, x ) );

31



36

gap> Filtered( [ 1 .. NrConjugacyClasses( t ) ],
> i -> SizesCentralizers( t )[i] =
[ 14 ]

siz );

So U contains 6C elements in G2(5).

7.9

The

gap> GetFusionMap( s, t ) in Filtered( sfust, map -> 14 in map );
true

L4214 A; 4 — B (April 2009)

sporadic simple group B contains a maximal subgroup M of the type 5!7%.217% A5.4 whose class

fusion is ambiguous.

The

The

gap> b:= CharacterTable( "B" );;

gap> m:= CharacterTable( "57(1+4).27(1+4) .A5.4" );;
gap> mfusb:= PossibleClassFusions( m, b );;

gap> Length( mfusb );

4

gap> repres:= RepresentativesFusions( m, mfusb, b );;
gap> Length( repres );

2

restriction of the unique irreducible character of degree 4371 distinguishes the two possibilities,

gap> char:= Filtered( Irr( b ), x -> x[1] = 4371 );;
gap> Length( char );
1
gap> rest:= List( repres, map -> char[1]{ map } );;
gap> scprs:= MatScalarProducts( m, Irr( m ), rest );;
gap> constit:= List( scprs,
> x -> Filtered( [1 .. Length(x) 1, i -> x[i] <> 0 ) );
[[2, 27, 60, 63, 73, 74, 75, 79, 82 1,
[ 2, 27, 60, 63, 70, 72, 75, 79, 84 ] 1]
gap> List( constit, x -> List( Irr( m ){ x }, Degree ) );
[[1, 6, 384, 480, 400, 400, 500, 1000, 1200 ],
[ 1, 6, 384, 480, 100, 300, 500, 1000, 1600 ] ]

database [WWT™] contains the 3-modular reduction of the irreducible representation of degree

4371 and also a straight line program for restricting this representation to M. We access these data
via the GAP package AtlasRep (see [WPN™11]), and compute the composition factors of the natural
module of this restriction.

gap> g:= AtlasSubgroup( "B", Dimension, 4371, Ring, GF(3), 21 );;
gap> module:= GModuleByMats( Generators0fGroup( g ), GF(3) );;
gap> dec:= MTX.CompositionFactors( module );;

gap> SortedList( List( dec, x -> x.dimension ) );

[ 1, 6, 100, 384, 400, 400, 400, 480, 1000, 1200 ]

We see that exactly one ordinary constituent does not stay irreducible upon restriction to character-
istic 3. Thus the first of the two possible class fusions is the correct one.
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7.10 The fusion from the character table of 7% : 21,(7).2 into the table
of marks (January 2004)

It can happen that the class fusion from the ordinary character table of a group G into the table of
marks of G is not unique up to table automorphisms of the character table of G.

As an example, consider G = 72 : 2L, (7).2, a maximal subgroup in the sporadic simple group He.

G contains four classes of cyclic subgroups of order 7. One contains the elements in the normal
subgroup of type 72, and the other three are preimages of the order 7 elements in the factor group
Ly(7). The conjugacy classes of nonidentity elements in the latter three classes split into two Galois
conjugates each, which are permuted cyclicly by the table automorphisms of the character table of
G, but on which the stabilizer of one class acts trivially. This means that determining one of the
three classes determines also the other two.

gap> tbl:= CharacterTable( "7°2:2psl(2,7)" );
CharacterTable( "772:2psl(2,7)" )
gap> tom:= TableOfMarks( tbl );
TableOfMarks( "7°2:2L2(7)" )
gap> fus:= PossibleFusionsCharTableTom( tbl, tom );
L[ 4, 3, 5, 13, 13, 7, 8, 10, 9, 16, 7, 10, 9, 8, 16
5, 13, 13, 7, 9, 8, 10, 16, 7, 8, 10, 9, 16
, 5, 13, 13, 7, 10, 9, 8, 16, 7, 9, 8, 10, 16
, 5,13, 13, 7, 8, 9, 10, 16, 7, 9, 10, 8, 16
s 5, 13, 13, 7, 10, 8, 9, 16, 7, 8, 9, 10, 16
, 3,5, 13, 13, 7, 9, 10, 8, 16, 7, 10, 8, 9, 16
RepresentativesFusions( tbl, fus, Group(()) );
2, 4, 3, 5, 13, 13, 7, 8, 9, 10, 16, 7, 9, 10, 8, 16 1,
, 6, 2, 4, 3, 5, 13, 13, 7, 8, 10, 9, 16, 7, 10, 9, 8, 16 ] 1]
gap> AutomorphismsOfTable( tbl );
Group([ (9,14)(10,17)(11,15)(12,16)(13,18), (7,8), (10,11,12)(15,16,17) 1)
gap> OrdersClassRepresentatives( tbl );
(1, 7,2, 4,3,6,8,8,7,7,7,7,14,7,7,7,7, 141
gap> permsl:= PermCharsTom( reps[1], tom );;
gap> perms2:= PermCharsTom( reps[2], tom );;
gap> permsl = perms2;
false
gap> Set( permsl ) = Set( perms2 );
true
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The table of marks of G does not distinguish the three classes of cyclic subgroups, there are permu-
tations of rows and columns that act as an S3 on them.

Note that an Ss acts on the classes in question in the rational character table. So it is due to the
irrationalities in the character table that it contains more information.

gap> Display( tbl );
772:2ps1(2,7)

2 4 4 3 1 3 3 1 1 1 1
3 1 . 1 1 .
7 3 3 1 2 2 2 2 1 2 2 2 2 1

la 7a 2a 4a 3a 6a 8a 8 7b 7c 7d T7e 14a 7f T7g Th 7i 14b
2P la 7a la 2a 3a 3a 4a 4a 7b 7c 7d 7e 7b 7f T7g Th 7i T7f
3P la 7a 2a 4a 1a 2a 8 8a 7f 7i T7g 7h 14b 7b 7d T7e 7c 1l4a
5P la 7a 2a 4a 3a 6a 8b 8a 7f 7i 7g 7h 14b 7b 7d T7e 7c 1l4a
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7P la la 2a 4a 3a 6a 8a 8 1la la 1la 1la 2a la 1l1la 1la 1la 2a
11P 1a 7a 2a 4a 3a 6a 8 8a 7b 7c 7d 7e 14a 7f 7g 7h 7i 14b
13P la 7a 2a 4a 3a 6a 8 8a 7f 7i T7g 7h 14b 7b 7d Te 7c 1l4a

X.1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 3 3 3-1 1 1 B B B /B /B /B /B /B
X.3 3 3 3-1 i1 /B /B /B /B /B B B B B B
X.4 6 6 6 2 . -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
X.5 7T 7 7-1 1 1-1-1 . .
X.6 8 8 8 -1 -1 1 1 1 1 1 1 1 1 1 1
X.7 4 4 -4 1 -1 -B -B -B -B B-/B-/B-/B-/B /B
X.8 4 4 -4 1 -1 -/B-/B-/B-/B /B -B -B -B -B B
X.9 6 6 -6 A-A -1 -1 -1 -1 i -1 -1 -1 -1 1
X.10 6 6 -6 -A A -1 -1 -1 -1 i -1 -1 -1 -1 1
X.11 8 8 -8 -1 1 1 1 1 1 -1 1 1 1 1 -1
X.12 48 -1 -1 -1 -1 6 -1 -1 -1
X.13 48 -1 c -1 /C /D /C C D -1
X.14 48 -1 c /¢ /D -1 /C D -1 C
X.15 48 -1 /C D -1 C c -1 /¢ /D
X.16 48 -1 c /D -1 /C /C -1 C D
X.17 48 -1 /C C D -1 c /b -1 /C
X.18 48 -1 /C -1 cC D c /¢ /D -1
A = E(8)-E(8)"3

= Sqrt(2) = r2

B = E(7)+E(7)"2+E(7)"4
= (-1+8qrt(-7))/2 = b7
C = 2+E(7)+2xE(7) "2+2xE(7) "4
= -1+Sqrt(-7) = 2b7
D = -3+E(7)-3*E(7) "2-2%E(7) "3-3+E(7) "4-2+E(7) "5-2*E(7) "6
= (5-8qrt(-7))/2 = 2-b7
gap> mat:= MatTom( tom );;
gap> mataut:= MatrixAutomorphisms( mat );;
gap> Print( mataut, "\n" );
Group( [ (11,12)(23,24)(27,28) (46,47) (53,54) (56,57),
(19,10)(20,21)(31,32)(38,39), ( 8, 9)(20,22)(31,33)(38,40) 1)
gap> RepresentativesFusions( Group( () ), reps, mataut );
[ri, 6, 2, 4, 3, 5, 13, 13, 7, 8, 9, 10, 16, 7, 9, 10, 8, 16 1 1]

We could say that thus the fusion is unique up to table automorphisms and automorphisms of the
table of marks. But since a group is associated with the table of marks, we compute the character
table from the group, and decide which class fusion is correct.

gap> g:= UnderlyingGroup( tom );;

gap> tg:= CharacterTable( g );;

gap> tgfustom:= FusionCharTableTom( tg, tom );;

gap> trans:= TransformingPermutationsCharacterTables( tg, tbl );;

gap> tblfustom:= Permuted( tgfustom, trans.columns );;

gap> orbits:= List( reps, map -> OrbitFusions( AutomorphismsOfTable( tbl ),
> map, Group( O ) ) );;
gap> PositionProperty( orbits, orb -> tblfustom in orb );

2

gap> PositionProperty( orbits, orb -> FusionToTom( tbl ).map in orb );
2

So we see that the second one of the possibilities above is the right one.
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7.11 3 x Uy(2) — 31.U4(3) (March 2010)

According to the ATLAS (see [CCNT85, p. 52]), the simple group Us(3) contains two classes of maximal
subgroups of the type U4(2). The class fusion of Us(2) into U (3) is unique up to table automorphisms.

gap> u42:= CharacterTable( "U4(2)" );;

gap> u43:= CharacterTable( "U4(3)" );;

gap> u42fusu43:= PossibleClassFusions( u42, u43 );;

gap> Length( u42fusu43 );

4

gap> Length( RepresentativesFusions( u42, u42fusu43, u43 ) );
1

More precisely, take the outer automorphism group of U (3), which is a dihedral group of order eight,
and consider the subgroup generated by its central involution (this automorphism is denoted by 21 in
the ATLAS) and another involution called 23 in the ATLAS. This subgroup is a Klein four group that
induces a permutation group on the classes of Us(3) and thus acts on the four possible class fusions
of Us(2) into Us(3). In fact, this action is transitive.

The automorphism 2; swaps each pair of mutually inverse classes of order nine, that is, 9A is swapped
with 9B and 9C is swapped with 9D. All U4(2) type subgroups of U4(3) are invariant under this
automorphism, they extend to subgroups of the type U4 (2).2 in U4(3).2;.

gap> u43_21:= CharacterTable( "U4(3).2_1" );;

gap> fusl:= GetFusionMap( u43, u43_21 );

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 17, 17, 18 ]
gap> actl:= Filtered( InverseMap( fusl ), IsList );

(016, 177, [ 18, 19 ] ]

gap> CompositionMaps( ClassNames( u43, "Atlas" ), actl );

[ ["oA", "9B" 1, [ "oc", "oD" ] ]

The automorphism 23 swaps 6B with 6C, 9A with 9C, and 9B with 9D. The two classes of Us(2) type
subgroups of U4(3) are swapped by this automorphism.

gap> u43_23:= CharacterTable( "U4(3).2_3" );;
gap> fus3:= GetFusionMap( u43, u43_23 );
[1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 13, 14, 13, 14, 15 ]
gap> act3:= Filtered( InverseMap( fus3 ), IsList );
[[4, 5], [ 11, 127, [ 13, 141, [ 16, 181, [ 17, 191 ]
gap> CompositionMaps( ClassNames( u43, "Atlas" ), act3 );
[ [ "SB", ||3C” ], [ "6B”, ||6C" ]’ [ II7AI|’ "7B" ]’ [ ||9An, ugcu ],
[ uan’ u9Dll ] ]

The ATLAS states that the permutation character induced by the first class of Us(2) type subgroups
is 1a+35a+90a, which means that the subgroups in this class contain 9A and 9B elements. Then the
permutation character induced by the second class of Us(2) type subgroups is 1a+35b+90a, and the
subgroups in this class contain 9C and 9D elements.

So we choose appropriate fusions for the two classes of maximal Uy (2) type subgroups.

gap> firstfus:= First( u42fusu43, x -> IsSubset( x, [ 16, 17 1 ) );
r1, 2, 2, 3, 3, 5, 4, 7, 8, 9, 10, 10, 12, 12, 11, 12, 16, 17, 20, 20 ]
gap> secondfus:= First( u42fusu43, x -> IsSubset( x, [ 18, 19 ] ) );
[1,2,2,3,3,4,5,7,8,9, 10, 10, 11, 11, 12, 11, 18, 19, 20, 20 ]

Let us now consider the central extension 31.U4(3). Since the Schur multiplier of Us(2) has order two,
the U4(2) type subgroups of Us(3) lift to groups of the structure 3 x U4(2) in 31.U4(3). There are
eight possible class fusions from 3 x U4(2) to 31.U4(3), in two orbits of length four under the action
of table automorphisms.

35



gap> 3u42:= CharacterTable( "Cyclic", 3 ) * ud2;

CharacterTable( "C3xU4(2)" )

gap> 3u43:= CharacterTable( "3_1.U4(3)" );

CharacterTable( "3_1.U4(3)" )

gap> 3ud42fus3u43:= PossibleClassFusions( 3u42, 3u43 );;

gap> Length( 3u42fus3u43 );

8

gap> Length( RepresentativesFusions( 3u42, 3u42fus3u43, 3u43 ) );
2

More precisely, each of the four fusions from U4(2) to Us(3) has exactly two lifts. The four lifts of
those fusions from U (2) to Us(3) with 9A and 9B in their image form one orbit under the action of
table automorphisms. The other orbit consists of the lifts of those fusions with 9C and 9D in their
image.

gap> inducedmaps:= List( 3u42fus3u43, map -> CompositionMaps(
> GetFusionMap( 3u43, u43 ), CompositionMaps( map,

> InverseMap( GetFusionMap( 3u42, u42 ) ) ) ) );;
gap> List( inducedmaps, map -> Position( u42fusu43, map ) );
(1,1,2,2,4,4,3,3]

This solves the ambiguity: Fusions from each of the two orbits occur, and we can assign them to the
two classes of subgroups by the choice of the fusions from U4(2) to Us(3).

The reason for the asymmetry is that the automorphism 23 of U4 (3) does not lift to 31.U4(3). Note
that each of the classes 94, 9B of U4(3) has three preimages in 31.U4(3), whereas each of the classes
9C, 9D has only one preimage.

In fact the two classes of 3xU4(2) type subgroups of 31.U4(3) behave differently. For example, inducing
the irreducible characters of a 3 X U4(2) type subgroup in the first class of maximal subgroups of
31.U4(3) yields no irreducible character, whereas the two irreducible characters of degree 630 are
obtained by inducing the irreducible characters of a subgroup in the second class.

gap> rep:= RepresentativesFusions( 3u42, 3u42fus3u43, 3u43 );

[[1, 4, 4, 7, 7, 10, 13, 15, 18, 21, 24, 24, 27, 27, 30, 27, 48, 49, 50,
50, 2, 5, 5, 8, 8, 11, 13, 16, 19, 22, 25, 25, 28, 28, 31, 28, 48, 49,
51, 51, 3, 6, 6, 9, 9, 12, 13, 17, 20, 23, 26, 26, 29, 29, 32, 29, 48,
49, 52, 52 1,

[1, 4, 4, 8, 9, 13, 10, 15, 18, 21, 25, 26, 31, 32, 27, 30, 46, 44, 51,
52, 2, 5, 5, 9, 7, 13, 11, 16, 19, 22, 26, 24, 32, 30, 28, 31, 47, 42,
52, &0, 3, 6, 6, 7, 8, 13, 12, 17, 20, 23, 24, 25, 30, 31, 29, 32, 45,
43, 50, 511 ]

gap> irr:= Irr( 3u42 );;

gap> ind:= InducedClassFunctionsByFusionMap( 3u42, 3u43, irr, rep[1] );;

gap> Intersection( ind, Irr( 3u43 ) );

[ Character( CharacterTable( "3_1.U4(3)" ), [ 630, 630*E(3)"2, 630*E(3), 6,
6*E(3)"2, 6+%E(3), 9, 9*E(3)"2, 9+#E(3), -9, -9#E(3)"2, -9*E(3), 0, 0, 2,
2xE(3)"2, 2xE(3), -2, -2%E(3)°2, -2%E(3), 0, 0, 0, -3, -3*E(3)"2,
-3*%E(3), 3, 3*E(3)"2, 3%E(3), 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,
0, 0, 0, 0, 0, 0, -1, -E(3)"2, -E(3) 1),

Character( CharacterTable( "3_1.U4(3)" ), [ 630, 630*E(3), 630*E(3)"2, 6,
6*E(3), 6%E(3)72, 9, 9*E(3), 9*E(3)72, -9, -9xE(3), -9xE(3)"2, 0, 0, 2,
2xE(3), 2*E(3)"2, -2, -2*E(3), -2%#E(3)"2, 0, 0, 0, -3, -3*E(3),

-3*+E(3) "2, 3, 3%E(3), 3*E(3)"2, o0, 0, O, O, O, O, O, O, O, O, O, O, O,
0, 0, 0, 0, 0, 0, O, -1, -E(3), -E(3)"2 1) 1
gap> ind:= InducedClassFunctionsByFusionMap( 3u42, 3u43, irr, rep[2] );;
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gap> Intersection( ind, Irr( 3u43 ) );
[ ]

For 61.U4(3) and 12,.U4(3), one gets the same phenomenon: We have two orbits of class fusions, one
corresponding to each of the two classes of subgroups of the type 3 x4Y2.U4(2). We get 10 irreducible
induced characters from a subgroup in the second class (four faithful ones, four with kernel of order
two, and the two abovementioned degree 630 characters with kernel of order four) and no irreducible
character from a subgroup in the first class.

7.12 231235, — 2.A12 (September 2011)

The double cover G of the alternating group A2 contains a maximal subgroup M of the type
2.3%.23 S, whose class fusion is ambiguous.

gap> 2al2:= CharacterTable( "2.A12" );;

gap> mtbl:= CharacterTable( "2.374.273.84" );;

gap> mtblfus2al2:= PossibleClassFusions( mtbl, 2al2 );;

gap> Length( mtblfus2al2 );

32

gap> repres:= RepresentativesFusions( mtbl, mtblfus2al2, 2al2 );;
gap> Length( repres );

2

We decide the question which of the essentially different two possible class fusion is the right one, by
explicitly constructing M as a subgroup of G.

For that, let 7 denote the natural epimorphism from G to Ai2, and note that 7(M) can be described
as the intersection of a S3pS4 type subgroup of Siz with Aj2. Further note that the generators for
G and Ajs provided by [WWT™] are compatible in the sense that m can be defined by mapping the
generators of G to those of Aja.

We need 7 only for computing one preimage of each given element. Therefore, we represent =
implicitly by two epimorphisms from a free group to G and Aiz, respectively, in order to avoid that
GAPprecomputes a lot of unnecessary information for G. This way, computing a preimage of an
element of Ai2 under 7 is cheap. However, computing the preimage of a subgroup of Ais would
be very expensive. So we construct the subgroup of G that is generated by preimages of a set of
generators of 7w(M); later we see that this subgroup is in fact equal to M.

gap> g:= AtlasGroup( "A12" );

Group([ (1,2,3), (2,3,4,5,6,7,8,9,10,11,12) 1)

gap> 2g:= AtlasGroup( "2.A12" );

<matrix group of size 479001600 with 2 generators>

gap> f:= FreeGroup( 2 );;

gap> pil:= GroupHomomorphismByImagesNC( f, 2g, GeneratorsO0fGroup( f ),

> Generators0fGroup( 2g ) );;
gap> pi2:= GroupHomomorphismByImagesNC( f, g, GeneratorsOfGroup( f ),
> Generators0fGroup( g ) );;

gap> w:= WreathProduct( SymmetricGroup( 3 ), SymmetricGroup(4) );
<permutation group of size 31104 with 10 generators>

gap> NrMovedPoints( w );

12

gap> s:= Intersection( w, g ); Size( s );

<permutation group with 8 generators>

15552

gap> m:= SubgroupNC( 2g, List( SmallGeneratingSet( s ),

> x -> ImagesRepresentative( pil,

> PreImagesRepresentative( pi2, x ) ) ) );;
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Now we compute the character table of M, using a faithful permutation representation of M.

gap> iso:= IsomorphismPermGroup( m );;

gap> t:= CharacterTable( Image( iso ) );;

gap> Size( t );

31104

gap> trans:= TransformingPermutationsCharacterTables( mtbl, t );;
gap> IsRecord( trans );

true

Now let us see where the two fusion candidates differ.

gap> para:= Parametrized( repres );

[1, 2, 6, 10, 8, 12, 7, 11, 9, 13, 5, 5, 17, 17, 17, 17, 3, 4, 24, 22, 27,
25, 12, 10, 13, 11, 28, 29, 35, 37, 39, 36, 38, 40, 5, 23, 28, 29, 26, 14,
14, 16, 16, 33, 34, [ 33, 34 1, [ 33, 34 1, 49, 49, 48, 48 ]

gap> PositionsProperty( para, IsList );

[ 46, 47 ]

gap> List( repres, map -> map{ [ 44 .. 47 1 } );

[ [33, 34, 33,341, [ 33, 34, 34, 331 ]

So the question is whether the elements in class 44 are conjugate in G to the elements in class 46 or in
class 47. In order to answer this question, we compute preimages of the relevant class representatives
in the matrix group M.

gap> positions:= OnTuples( [ 44 .. 47 ], trans.columns );;

gap> classreps:= List( ConjugacyClasses( t ){ positions },

> ¢ -> PrelmagesRepresentative( iso, Representative( c ) ) );;
gap> List( classreps, TraceMat );

[ 2(3)70, 2(3), z(3), z(3)70 ]

We are lucky, already the traces of the elements allow us to decide which pairs of elements are
G-conjugate; there is no need for an explicit (and expensive) conjugacy test in the matrix group G.

Finally, we check whether the stored fusion is correct.

gap> good:= First( repres,

> map -> map{ [ 44 .. 471 } = [ 33, 34, 34, 33 ] );;
gap> GetFusionMap( mtbl, 2al2 ) = good;
true

7.13 127:7 — L7(2) (January 2012)

The simple group G = L7(2) contains a maximal subgroup M of the type 127 : 7 (the normalizer of
an extension field type subgroup GL(1,27)) whose class fusion is ambiguous.

gap> t:= CharacterTable( "L7(2)" );;

gap> s:= CharacterTable( "127:7" );;

gap> fus:= PossibleClassFusions( s, t );;

gap> repr:= RepresentativesFusions( s, fus, t );

[[1, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 117, 116, 76, 76, 77, 76, 77, 77 1,

[ 1, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,

114, 115, 117, 116, 83, 83, 83, 83, 83, 83 ] ]

The two fusion candidates differ only for elements of order 7.
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gap> diff:= Filtered( [ 1 .. Length( repr[1] ) 1,

> i -> repr[1][i] <> repr[2][i] );

[ 20, 21, 22, 23, 24, 25 ]

gap> OrdersClassRepresentatives( s ){ diff };

Lr, 7,7, 7,7, 7]

gap> List( repr, 1 -> 1{ diff } );

L Cve, 76, 77, 76, 77, 77 1, [ 83, 83, 83, 83, 83, 83 1] ]
gap> SizesCentralizers( t ){ [ 76, 77, 83 1 };

[ 3528, 3528, 49 ]

We can decide which candidate is the correct one if we know the centralizer order in G of the elements
of order 7 in M. So we compute this centralizer order.

gap> g:= Image( IsomorphismPermGroup( GL(7,2) ) );;
gap> repeat x:= Random( g ); until Order(x) = 127;
gap> n:= Normalizer( g, SubgroupNC( g, [ x 1 ) );;
gap> Size( n ) / 127;

7

gap> repeat x:= Random( n ); until Order( x ) = 7;
gap> c:= Centralizer( g, x );;

gap> Size( c );

49

‘We see that the second candidate is the fusion from M into G.

gap> GetFusionMap( s, t ) = repr[2];
true

7.14  Ly(59) — M (May 2009)

The sporadic simple Monster group M contains a maximal subgroup G of the type L2(59), see [HWO04].
The class fusion of G into M is ambiguous.

gap> t:= CharacterTable( "M" );;
gap> s:= CharacterTable( "L2(59)" );;
gap> fus:= PossibleClassFusions( s, t );;
gap> repr:= RepresentativesFusions( s, fus, t );
[ [1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98,
52, 32, 52, 14, 12, 98, 52, 32, 5, 98, 12, 98, 52, 3 1],
[ 1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 100,
50, 30, 50, 15, 11, 100, 50, 30, 4, 100, 11, 100, 50, 3 1],
[ 1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 101,
51, 30, 51, 14, 11, 101, 51, 30, 5, 101, 11, 101, 51, 31,
[ 1, 152, 1583, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 102,
53, 32, 53, 18, 12, 102, 53, 32, 6, 102, 12, 102, 53, 3 1],
[ 1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 104,
52, 33, 52, 17, 12, 104, 52, 33, 5, 104, 12, 104, 52, 3 1 1]

The candidates differ on the classes of element order 30.

gap> ord:= OrdersClassRepresentatives( s );;

gap> ord30:= Filtered( [ 1 .. Length( ord ) ], i -> ord[i] = 30 );

[ 18, 24, 28, 30 ]

gap> List( repr, x -> x{ ord30 } );

[ [98, 98, 98, 98 1, [ 100, 100, 100, 100 1, [ 101, 101, 101, 101 1],
[ 102, 102, 102, 102 ], [ 104, 104, 104, 104 ] ]
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According to [HWO04], G contains elements in the class 30G of M. This determines the class fusion
up to Galois automorphisms.

gap> pos:= Position( ClassNames( t, "Atlas" ), "30G" );;

gap> good:= Filtered( fus, map -> pos in map );

[ [1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 104,
52, 33, 52, 17, 12, 104, 52, 33, 5, 104, 12, 104, 52, 31,

[ 1, 183, 152, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 104,

52, 33, 52, 17, 12, 104, 52, 33, 5, 104, 12, 104, 52, 3] ]

gap> repr:= RepresentativesFusions( s, good, t );

[ [1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 104,
52, 33, 52, 17, 12, 104, 52, 33, 5, 104, 12, 104, 52, 31 ]

gap> GetFusionMap( s, t ) = repr[1];

true

7.15 Lo(71) — M (May 2009)

The sporadic simple Monster group M contains a maximal subgroup G of the type L2(71), see [HWO08].
The class fusion of G into M is ambiguous.

gap> t:= CharacterTable( "M" );;
gap> s:= CharacterTable( "L2(71)" );;
gap> fus:= PossibleClassFusions( s, t );;
gap> repr:= RepresentativesFusions( s, fus, t );
[ [1, 169, 170, 112, 112, 112, 112, 19, 112, 11, 112, 112, 19, 112, 112,
112, 11, 19, 112, 112, 114, 60, 36, 27, 114, 17, 114, 27, 7, 60, 114,
5, 114, 60, 36, 27, 114, 3 1],
[ 1, 169, 170, 112, 112, 112, 112, 19, 112, 11, 112, 112, 19, 112, 112,
112, 11, 19, 112, 112, 115, 61, 36, 28, 115, 17, 115, 28, 7, 61, 115,
5, 115, 61, 36, 28, 115, 3 1],
[ 1, 169, 170, 112, 112, 112, 112, 19, 112, 11, 112, 112, 19, 112, 112,
112, 11, 19, 112, 112, 117, 61, 43, 28, 117, 17, 117, 28, 9, 61, 117,
5, 117, 61, 43, 28, 117, 3 1],
[ 1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113, 113,
113, 12, 20, 113, 113, 114, 60, 36, 27, 114, 17, 114, 27, 7, 60, 114,
5, 114, 60, 36, 27, 114, 3 1],
[ 1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113, 113,
113, 12, 20, 113, 113, 115, 61, 36, 28, 115, 17, 115, 28, 7, 61, 115,
5, 115, 61, 36, 28, 115, 3 1],
[ 1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113, 113,
113, 12, 20, 113, 113, 117, 61, 43, 28, 117, 17, 117, 28, 9, 61, 117,
5, 117, 61, 43, 28, 117, 3 ] 1]

The candidates differ on the classes of the element orders 7 and 36.

gap> ord:= OrdersClassRepresentatives( s );;

gap> ord36:= Filtered( [ 1 .. Length( ord ) 1, i -> ord[i] = 36 );

[ 21, 25, 27, 31, 33, 37 ]

gap> List( repr, x -> x{ ord36 } );

[ [ 114, 114, 114, 114, 114, 114 1, [ 115, 115, 115, 115, 115, 115 1],
[ 117, 117, 117, 117, 117, 117 1, [ 114, 114, 114, 114, 114, 114 ],
[ 115, 115, 115, 115, 115, 115 1, [ 117, 117, 117, 117, 117, 117 1 1]

According to [NW02, Table 3], G contains elements in the classes 7B and 36D of M. This determines
the class fusion up to Galois automorphisms.
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gap> posl:= Position( ClassNames( t, "Atlas" ), "7B" );;

gap> pos2:= Position( ClassNames( t, "Atlas" ), "36D" );;

gap> pos:= [ posl, pos2 ];;

gap> good:= Filtered( fus, map -> IsSubset( map, pos ) );

[ [1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113, 113,
113, 12, 20, 113, 113, 117, 61, 43, 28, 117, 17, 117, 28, 9, 61, 117,
5, 117, 61, 43, 28, 117, 3 1],

[ 1, 170, 169, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113, 113,

113, 12, 20, 113, 113, 117, 61, 43, 28, 117, 17, 117, 28, 9, 61, 117,
5, 117, 61, 43, 28, 117, 3 ] 1]

gap> repr:= RepresentativesFusions( s, good, t );

[ [1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113, 113,
113, 12, 20, 113, 113, 117, 61, 43, 28, 117, 17, 117, 28, 9, 61, 117,
5, 117, 61, 43, 28, 117, 3 1 1]

gap> GetFusionMap( s, t ) = repr[i];

true

7.16 L(41) — M (April 2012)

The sporadic simple Monster group M contains a maximal subgroup G of the type L2(41), see [NW].
The class fusion of G into M is ambiguous.

gap> t:= CharacterTable( "M" );;
gap> s:= CharacterTable( "L2(41)" );;
gap> fus:= PossibleClassFusions( s, t );;
gap> repr:= RepresentativesFusions( s, fus, t );
[[1, 127, 127, 64, 30, 64, 11, 7, 30, 64, 11, 64, 3, 70, 70, 19, 70, 70,
19, 4, 70, 19, 70 1,
(1, 127, 127, 64, 30, 64, 11, 7, 30, 64, 11, 64, 3, 72, 72, 19, 72, 72,
19, 6, 72, 19, 72 1,
(1, 127, 127, 64, 30, 64, 11, 7, 30, 64, 11, 64, 3, 73, 73, 20, 73, 73,
20, 5, 73, 20, 731,
(1, 127, 127, 66, 33, 66, 12, 7, 33, 66, 12, 66, 3, 72, 72, 19, 72, 72,
19, 6, 72, 19, 721,
(1, 127, 127, 66, 33, 66, 12, 7, 33, 66, 12, 66, 3, 73, 73, 20, 73, 73,
20, 5, 73, 20, 731,
(1, 127, 127, 67, 30, 67, 11, 10, 30, 67, 11, 67, 3, 72, 72, 19, 72, 72,
19, 6, 72, 19, 721,
(1, 127, 127, 67, 30, 67, 11, 10, 30, 67, 11, 67, 3, 73, 73, 20, 73, 73,
20, 5, 73, 20, 731,
[1, 127, 127, 68, 32, 68, 12, 10, 32, 68, 12, 68, 3, 72, 72, 19, 72, 72,
19, 6, 72, 19, 72 1],
(1, 127, 127, 68, 32, 68, 12, 10, 32, 68, 12, 68, 3, 73, 73, 20, 73, 73,
20, 5, 73, 20, 731,
(1, 127, 127, 69, 33, 69, 12, 9, 33, 69, 12, 69, 3, 72, 72, 19, 72, 72,
19, 6, 72, 19, 721,
[1, 127, 127, 69, 33, 69, 12, 9, 33, 69, 12, 69, 3, 73, 73, 20, 73, 73,
20, 5, 73, 20, 7311

The candidates differ on the classes of the element orders 3-8.
gap> ambig:= Parametrized( repr );;

gap> ambigpos:= PositionsProperty( ambig, IsList );
[ 4, 5,6, 7,8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 ]
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gap> Set( OrdersClassRepresentatives( t ){ ambigpos } );
[3, 4,5, 6,7, 81

According to [NW, Theorem 3], G contains elements in the classes 3B and 4C of M. This determines
the class fusion uniquely.

gap> posl:= Position( ClassNames( t, "Atlas" ), "3B" );;

gap> pos2:= Position( ClassNames( t, "Atlas" ), "4C" );;

gap> pos:= [ posl, pos2 ];;

gap> good:= Filtered( fus, map -> IsSubset( map, pos ) );

[rf1, 127, 127, 69, 33, 69, 12, 9, 33, 69, 12, 69, 3, 73, 73, 20, 73, 73,

20, 5, 73, 20, 731 1]

gap> GetFusionMap( s, t ) = good[1];

true
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