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Abstract

This note shows how to construct a representation of the automorphic extension G of the simple
group S = OfF (5) by a symmetric group on three points, together with an embedding of the normalizer
H of an OF (2) type subgroup of OF (5).

As an application, it is shown that the permutation representation of G on the cosets of H has a
base of length two. This question arose in [BGS11].
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1 Overview

Let S denote the simple group O (5) = PQ(8,5), that is, the nonabelian simple group that occurs
as a composition factor of the general orthogonal group GO™(8,5) of 8 x 8 matrices over the field
with five elements.

The outer automorphism group of S is isomorphic to the symmetric group on four points. Let G be
an automorphic extension of S by the symmetric group on three points. By [Kle87], the group S
contains a maximal subgroup M of the type Of (2) such that the normalizer H, say, of M in G is an
automorphic extension of M by a symmetric group on three points. (In fact, H is isomorphic to the
full automorphism group of OF (2).)

Let 5.2 and 5.3 denote intermediate subgroups between S and G, in which S has the indices 2 and
3, respectively. Analogously, let M.2 = H N S.2 and M.3=H NS.3.

In Section 2, we use the following approach to construct representations of M.2 and S.2. By [CCN™'85,
p. 85], the Weyl group W of type Es is a double cover of M.2, and the reduction of its rational 8-
dimensional representation modulo 5 embeds into the general orthogonal group GO™(8,5), which has
the structure 2.07 (5).22. Then the actions of GO (8,5) and an isomorphic image of W in GO™ (8, 5)
on 1-spaces in the natural module of GO™(8,5) yield M.2 as a subgroup of (a supergroup of) S.2,
where both groups are represented as permutation groups on N = 19656 points.

In Section 3, first we use GAP to compute the automorphism group of M. Then we take an outer
automorphism a of M, of order three, and extend « to an automorphism of S. Concretely, we compute
the images of generating sets of S and M under o and a?. This yields permutation representations
of S.3 and its subgroup M.3 on 3N = 58 968 points.

In Section 4, we put the above information together, in order to construct permutation representations
of G and M, on 3N points.

As an application, it is shown in Section 5 that the permutation representation of G on the cosets of
H has a base of length two; this question arose in [BGS11].

In two appendices, it is discussed how to derive a part of this result from the permutation character
(1) # (see Section 6), and a file containing the data used in the earlier sections is described (see
Section 7).

2 Constructing Representations of M.2 and S.2

2.1 A Matrix Representation of the Weyl Group of Type Ejy

Following the recipe listed in [CCN'85, p. 85, Section Weyl], we can generate the Weyl group W of
type Eg as a group of rational 8 x 8 matrices generated by the reflections in the vectors

(£1/2,41/2,0,0,0,0,0,0)

plus the vectors obtained from these by permuting the coordinates, plus those those vectors of the
form

(£1/2,+1/2,+£1/2,41/2, +1/2,+£1/2, +1/2, +1/2)

that have an even number of negative signs. (Clearly it is sufficient to consider only one vector form
a pair tv.)

gap> rootvectors:= ;;

gap> for i in Combinations( [ 1 .. 8 1, 2 ) do
> vi=0x*x [1..81];

> v{i}:= [ 1, 1 1;

> Add( rootvectors, v );

> vi=0x*x [1..81];



> v{i}:= [ 1, -1 1;

> Add( rootvectors, v );

> od;

gap> Append( rootvectors,

> 1/2 * Filtered( Tuples( [ -1, 11, 8),

> x -> x[1] = 1 and Number( x, y >y =1 ) mod 2 =0 ) );

gap> we8:= Group( List( rootvectors, ReflectionMat ) );
<matrix group with 120 generators>

2.2 Embedding the Weyl group of Type E; into GO™(8,5)

The elements in the group constructed above respect the symmetric bilinear form that is given by
the identity matrix.

gap> I:= IdentityMat( 8 );;
gap> ForAll( GeneratorsO0fGroup( we8 ), x -> x * TransposedMat(x) =TI );
true

So the reduction of the matrices modulo 5 yields a group W™ of orthogonal matrices w. r. t. the
identity matrix. The group GO™(8,5) returned by the GAP function GO leaves a different bilinear
form invariant.

gap> largegroup:= GO0(1,8,5);;

gap> Display( InvariantBilinearForm( largegroup ).matrix );
1.
1.

In order to conjugate W™ into this group, we need a 2 x 2 matrix T over the field with five elements
with the property that 77" is half of the upper left 2 x 2 matrix in the above matrix.

gap> T:= [ [ 1, 21, [ 4, 21 1 * One( GF(5) );;
gap> Display( 2 * T * TransposedMat( T ) );
.1
1.
gap> I:= IdentityMat( 8, GF(5) );;
gap> I{ [ 1, 21 H [ 1, 21 }:=T;;
gap> conj:= List( GeneratorsOfGroup( we8 ), x -> I * x * I"-1 );;
gap> IsSubset( largegroup, conj );
true

2.3 Compatible Generators of M, M.2, S, and 5.2

For the next computations, we switch from the natural matrix representation of GO™(8,5) to a
permutation representation of PGO™(8,5), of degree N = 19656, which is given by the action of
GO™(8,5) on the smallest orbit of 1-spaces in its natural module.



gap>
gap>

orbs:= OrbitsDomain( largegroup, NormedRowVectors( GF(5)"8 ), OnLines );;
List( orbs, Length );

[ 39000, 39000, 19656 ]

gap>

19656

gap>
gap>

N:= Length( orbs[3] );

orbN:= SortedList( orbs[3] );;
largepermgroup:= Action( largegroup, orbN, OnLines );;

In the same way, permutation representations of the subgroup M.2 = SO™(8,2) and of its derived
subgroup M are obtained. But first we compute a smaller generating set of the simple group M,
using a permutation representation on 120 points.

gap>
gap>
120
gap>
gap>
gap>
gap>
2
gap>

orbwe8:= SortedList( Orbit( we8, rootvectors[1], OnLines ) );;
Length( orbwe8 );

we8_to_m2:= ActionHomomorphism( we8, orbwe8, OnLines );;
m2_120:= Image( we8_to_m2 );;

m_120:= DerivedSubgroup( m2_120 );;

sml:= SmallGeneratingSet( m_120 );; Length( sml );

gens_m:= List( sml, x -> PreImagesRepresentative( we8_to_m2, x ) );;

Now we compute the actions of M and M.2 on the above orbit of length N. For generating M.2, we
choose an element by € M.2\ M, which is obtained from the action of a matrix b € 2.M.2\ 2. M.

gap>
>

gap>
gap>
gap>

Z(5)"

gap>
gap>

gens_m_N:= List( gens_m,
x —> Permutation( I * x * I"-1, orbN, OnLines ) );;
m_N:= Group( gens_m_N );;
b:=1 * we8.1 x I"-1;;
DeterminantMat( b );
2
b_N:= Permutation( b, orbN, OnLines );;
m2_N:= ClosureGroup( m_N, b_N );;

(Note that M.2 is not contained in PSO™(8,5), since the determinant of b is —1 in the field with five

elements.)

The group S is the derived subgroup of PSO™(8,5), and S.2 is generated by S together with by.

gap>
gap>

s_N:= DerivedSubgroup( largepermgroup );;
s2_N:= ClosureGroup( s_N, b_N );;

3 Constructing Representations of M.3 and S.3

3.1 The Action of M.3 on M

Let a be an automorphism of M, of order three. Then a representation of the semidirect product
M.3 of M by (o) can be constructed as follows.

If M is given by a matrix representation then we map g € M to the block diagonal matrix

9

(a?)

g



and we represent « by the block permutation matrix

1

where [ is the identity element in M.

So what we need is the action of @ on M. More precisely, we need images of the chosen generators
of M under « and o?.

The group M is small enough for asking GAP to compute its automorphism group, which is isomorphic
with O;‘ (2).S3; for that, we use the permutation representation of degree 120 that was constructed
in Section 2.3.

gap> aut_m:= AutomorphismGroup( m_120 );;
We pick an outer automorphism « of order three.

gap> nice_aut_m:= NiceMonomorphism( aut_m );;

gap> der:= DerivedSubgroup( Image( nice_aut_m ) );;

gap> der2:= DerivedSubgroup( der );;

gap> repeat x:= Random( der );

> ord:= Order( x );

> until ord mod 3 = 0 and ord mod 9 <> 0 and not x in der2;
gap> x:= x"( ord / 3 );;

gap> alpha_120:= PreImagesRepresentative( nice_aut_m, x );;

Next we compute the images of the generators sml under o and o2, and the corresponding elements
in the action of M on N points.

gap> sml_alpha:= List( sml, x -> Image( alpha_120, x ) );;
gap> sml_alpha_2:= List( sml_alpha, x -> Image( alpha_120, x ) );;
gap> gens_m_alpha:= List( sml_alpha,

> x -> PreIlmagesRepresentative( we8_to_m2, x ) );;
gap> gens_m_alpha_2:= List( sml_alpha_2,

> x —-> PreImagesRepresentative( we8_to_m2, x ) );;
gap> gens_m_N_alpha:= List( gens_m_alpha,

> X —-> Permutation( I * x * I"-1, orbN, OnLines ) );;

gap> gens_m_N_alpha_2:= List( gens_m_alpha_2,

> x -> Permutation( I * x * I°-1, orbN, OnLines ) );;

Finally, we use the construction descibed in the beginning of this section, and obtain a permutation
representation of M.3 on 3N = 58 968 points.

gap> alpha_3N:= PermList( Concatenation( [ [ 1 .. N ] + 2xN,

> [1..N1,

> [1..NI+N1));;
gap> gens_m_3N:= List( [ 1 .. Length( gens_m_N ) 1,

> i -> gens_m_N[i] *

> ( gens_m_N_alpha[i] “alpha_3N ) *

> ( gens_m_N_alpha_2[i] ~(alpha_3N"2) ) );;

gap> m_3N:= Group( gens_m_3N );;
gap> m3_3N:= ClosureGroup( m_3N, alpha_3N );;



3.2 The Action of S.3 on S

Our approach is to extend the automorphism « of M to S; we can do this because in the full
automorphism group of S, any Of (2) type subgroup extends to a group of the type Of (2).3, and
this extension lies in a subgroup of the type OfF (5).3 (see [Kle87]).

The group M is maximal in S, so S is generated by M together with any element s € S\ M. Having
fixed such an element s, what we have to is to find the images of s under the automorphisms that
extend o and o?.

For that, we first choose x € M such that Cs(x) is a small group that is not contained in M. Then
we choose s € Cs(z) \ M, and using that s* must lie in Cs(Ca(s)%), we then check which elements
of this small subgroup can be the desired image.

Each element x of order nine in M has a root s of order 63 in S, and Cs(z) has order 189. For suitable
such z, exactly one element y € Cs(Ca(s)®) has order 63 and satisfies the necessary conditions that
the orders of the products of s and the generators of M are equal to the orders of the product of y
and the images of these generators under «. In other words, we have s* = y.

gap> alpha:= GroupHomomorphismByImagesNC( m_N, m_N,

> gens_m_N, gens_m_N_alpha );;

gap> CheapTestForHomomorphism:= function( gens, genimages, x, cand )

> return Order( x ) = Order( cand ) and

> ForAl1l( [ 1 .. Length( gens ) 1],

> i -> Order( gens[i] * x ) = Order( genimages[i] * cand ) );
> end;;

gap> repeat

> repeat

> x:= Random( m_N );

> until Order( x ) = 9;

> c_s:= Centralizer( s_N, x );

> repeat

> s:= Random( c_s );

> until Order( s ) = 63;

> c_m_alpha:= Images( alpha, Centralizer( m_N, s ) );

> good:= Filtered( Elements( Centralizer( s_N, c_m_alpha ) ),

> x —-> CheapTestForHomomorphism( gens_m_N, gens_m_N_alpha, s, x ) );
> until Length( good ) = 1;

gap> s_alpha:= good[1];;

gap> c_m_alpha_2:= Images( alpha, c_m_alpha );;

gap> good:= Filtered( Elements( Centralizer( s_N, c_m_alpha_2 ) ),

> x —-> CheapTestForHomomorphism( gens_m_N_alpha, gens_m_N_alpha_2,

N s_alpha, x ) );;
gap> s_alpha_2:= good[1];;

Using the notation of the previous section, this means that the permutation representation of M.3 on
3N points can be extended to S.3 by choosing the permutation corresponding to the block diagonal

matrix
s

5@

as an additional generator.

gap> outer:= s * ( s_alpha“alpha_3N ) * ( s_alpha_2"(alpha_3N"2) );;
gap> s3_3N:= ClosureGroup( m3_3N, outer );;

(And of course we have S = (M, s), which yields generators for S that are compatible with those of



gap> s_3N:= ClosureGroup( m_3N, outer );;

4 Constructing Compatible Generators of H and G

After having constructed compatible representations of M.2 and G.2 on N points (see Section 2.3)
and of M.3 and S.3 on 3N points (see Section 3.2), the last construction step is to find a permutation
on 3N points with the following properties:

e The induced automorphism (8 of M extends to M.3 such that the automorphism « of M is
inverted, modulo inner automorphisms of M.

e The action on the first N points coicides with that of the element by € M.2 \ M that was
constructed in Section 2.3.

Using the notation of the previous sections, we represent 3 by a block diagonal matrix

b
bd

bg

I

where b describes the action of 8 on M (on N points), g describes the inner automorphism v of M
that is defined by the condition o = a?37, and d describes yy*.

So we compute an element in M that induces the conjugation automorphism -y, and its image under a.
‘We do this in the representation of M on 120 points, and carry over the result to the representation on
N points, via the rational matrix representation; this approach had been used already in Section 2.3.

gap> b_120:= Permutation( we8.1, orbwe8, OnLines );;
gap> g_120:= RepresentativeAction( m_120, List( sml_alpha_2, x -> x"b_120 ),
> List( sml, x -> (x"b_120)"alpha_120 ), OnTuples );;
gap> g_120_alpha:= g_120"alpha_120;;
g_N

gap> := Permutation( I * PreImagesRepresentative( we8_to_m2, g_120 )

> * I°-1, orbN, OnLines );;

gap> g_N_alpha:= Permutation( I * PreImagesRepresentative( we8_to_m2,

> g_120_alpha ) * I"-1, orbN, OnLines );;
gap> inv:= PermList( Concatenation( ListPerm( b_N ),

> ListPerm( b_N * g_N ) + 2xN,

> ListPerm( b_N * g_ N * g_N_alpha ) + N ) );;

So we have constructed compatible generators for H and G.

gap> h:= ClosureGroup( m3_3N, inv );;
gap> g:= ClosureGroup( s3_3N, inv );;

5 Application: Regular Orbits of H on G/H

We want to show that H has regular orbits on the right cosets G/H. The stabilizer in H of the coset
Hg is HN HY, so we compute that there are elements s € S with the property |H N H*| = 1.

(Of course this implies that also in the permutation representations of the subgroups S, S.2, and S.3
of G on the cosets of the intersection with H, the point stabilizers have regular orbits.)

gap> repeat

> conj:= Random( s_3N );
> inter:= Intersection( h, h™conj );
> until Size( inter ) = 1;



Eventually GAP will return from this loop, so there are elements ¢ with the required property.

(Computing one such intersection takes about six minutes on a 2.5 GHz Pentium 4, so one may have
to be a bit patient.)

6 Appendix: The Permutation Character (1%)y

As an alternative to the computation of |H N H?®| for suitable s € S, we can try to derive information
from the permutation character (1%) m. Unfortunately, there seems to be no easy way to prove the
existence of regular H-orbits on G/H (cf. Section 5) only by means of this character.

However, it is not difficult to show that regular orbits of M, M.2, and M.3 exist. For that, we
compute (1%)}1, by computing class representatives of H, their centralizer orders in GG, and the class
fusion of H-classes in G.

We want to compute the class representatives in a small permutation representation of H; this could
be done using the degree 360 representation that was implicitly constructed above, but it is technically
easier to use a degree 405 representation that is obtained from the degree 58 968 representation by the
action of H on blocks in an orbit of length 22680. (One could get this also using the GAP function
SmallerDegreePermutationRepresentation.)

gap> orbs:= Orbits( h, MovedPoints( h ) );;

gap> List( orbs, Length );

[ 22680, 36288 ]

gap> orb:= orbs[1];;

gap> bl:= Blocks( h, orb );; Length( bl[1] );

2

gap> actbl:= Action( h, bl, OnSets );;

gap> bll:= Blocks( actbl, MovedPoints( actbl ) );; Length( bll );
405

gap> oneblock:= Union( bl{ bl1[1] } );;

gap> orb:= SortedList( Orbit( h, oneblock, OnSets ) );;

gap> acthom:= ActionHomomorphism( h, orb, OnSets );;

gap> ccl:= ConjugacyClasses( Image( acthom ) );;

gap> reps:= List( ccl, x -> PreImagesRepresentative( acthom,
> Representative( x ) ) );;

Then we carry back class representatives to the degree 58 968 representation, and compute the class
fusion and the centralizer orders in G.

gap> reps:= List( ccl, x -> PreImagesRepresentative( acthom,
> Representative( x ) ) );;
gap> fusion:= [];;

gap> centralizers:= [];;

gap> fusreps:= [];;

gap> for i in [ 1 .. Length( reps ) ] do

> found:= false;

> cen:= Size( Centralizer( g, reps[il ) );

> for j in [ 1 .. Length( fusreps ) ] do

> if cen = centralizers[j] and

> IsConjugate( g, fusreps[j], reps[i] ) then
> fusion[i]:= j;

> found:= true;

> break;

> fi;



od;
if not found then
Add( fusreps, repsl[i] );
Add( fusion, Length( fusreps ) );
Add( centralizers, cen );
fi;
od;

V V. V V V V VvV

Next we compute the permutation character values, using the formula

(1) (9) = (ICa(9)| Y_ In"])/1H],
h

where the summation runs over class representatives h € H that are G-conjugate to g.

gap> pi:= 0 * [ 1 .. Length( fusreps ) 1;;
gap> for i in [ 1 .. Length( ccl ) ] do

> pil fusion[i] ]:= pil[ fusion[i] ] + centralizers[ fusion[i] ] *
N Size( ccll[i] );
> od;

gap> pi:= pi{ fusion } / Size( h );;

In order to write the permutation character w.r.t. the ordering of classes in the GAP character table,
we use the GAP function CompatibleConjugacyClasses.

gap> tblh:= CharacterTable( "08+(2).S3" );;

gap> map:= CompatibleConjugacyClasses( Image( acthom ), ccl, tblh );;

gap> pi:= pi{ map };

[ 51162109375, 69375, 1259375, 69375, 568750, 1750, 4000, 375, 135, 975, 135,
625, 150, 650, 30, 72, 80, 72, 27, 27, 3, 7, 25, 30, 6, 12, 25, 484375,
1750, 375, 375, 30, 40, 15, 15, 15, 6, 6, 3, 3, 3, 157421875, 121875, 4875,
475, 75, 3875, 475, 13000, 1750, 300, 400, 30, 60, 15, 15, 15, 125, 10, 30,
4, 8,6,9, 7,5, 6, 5]

Now we consider the restrictions of this permutation character to M, M.2, and M.3. Note that
(F)m = (3w, (1F) a2 = (1572) vz, and (1§)ars = (137%) wr.a.

gap> tblm2:= CharacterTable( "08+(2).2" );;

gap> tblm3:= CharacterTable( "08+(2).3" );;

gap> tblm:= CharacterTable( "08+(2)" );;

gap> pi_m2:= pi{ GetFusionMap( tblm2, tblh ) };;
gap> pi_m3:= pi{ GetFusionMap( tblm3, tblh ) };;
gap> pi_m:= pi_m3{ GetFusionMap( tblm, tblm3 ) };;

The permutation character (15;) decomposes into 483 transitive permutation characters, and regu-
lar M-orbits on S/M correspond to regular constituents in this decomposition. If there is no regular
transitive constituent in (15;)as then the largest degree of a transitive constituent is |A/|/2; but then
the degree of 1%, is less than 483|M|/2, which is smaller than [S : M].

gap> n:= ScalarProduct( tblm, pi_m, TrivialCharacter( tblm ) );
483

gap> n * Size( tblm ) / 2;

42065049600

gap> pill];

51162109375



For the case of M.2 < 5.2, this argument turns out to be not sufficient. So we first compute a lower
bound on the number of regular M-orbits on S/M. For involutions g € M, the number of transitive
constituents 1%> in (13;)ar is at most the integral part of 1%(g)/1g> (9) = 2-13;(9)/|Crs(g)]; from

this we compute that there are at most 208 such constituents.

gap> inv:= Filtered( [ 1 .. NrConjugacyClasses( tblm ) 1],

> i -> OrdersClassRepresentatives( tblm )[i] = 2 );
[2,3,4,5,6]

gap> n2:= List( inv, i -> Int( 2 * pi_m[i] / SizesCentralizers( tblm )[i] ) );
[ 1, 54, 54, 54, 45 ]

gap> Sum( n2 );

208

As a consequence, M has at least 148 regular orbits on S/M.

gap> First( [ 1 .. 483 1],

> i -> i % Size( tblm ) + 208 * Size( tblm ) / 2
> + (483 - i -208 - 1) * Size( tblm ) / 3 + 1 >= pi[1] );
148

Now we consider the action of M.2 on S.2/M.2. If M.2 has no regular orbit then the 148 regular
orbits of M must arise from the restriction of transitive constituents 13 to M with |U| = 2 and
such that U is not contained in M. (This follows from the fact that the restriction of a transitive
constituent of (15;%)ar.2 to M is either itself a transitive constituent of (15;)as or the sum of two such
constituents; the latter case occurs if and only if the point stabilizer is contained in M.) However,
the number of these constituents is at most 134.

gap> inv:= Filtered( [ 1 .. NrConjugacyClasses( tblm2 ) 1,

> i -> OrdersClassRepresentatives( tblm2 )[i] = 2 and

> not i in ClassPositionsOfDerivedSubgroup( tblm2 ) );

[ 41, 42 ]

gap> n2:= List( inv,

> i -> Int( 2 * pi_m2[i] / SizesCentralizers( tblm2 )[i] ) );
[ 108, 26 ]

gap> Sum( n2 );

134

Finally, we consider the action of M.3 on S.3/M.3. We compute that (13;5)a.3 has 205 transitive
constituents, and at most 69 of them can be induced from subgroups of order two. This is already
sufficient to show that there must be regular constituents.

gap> n:= ScalarProduct( tblm3, pi_m3, TrivialCharacter( tblm3 ) );
205

gap> inv:= Filtered( [ 1 .. NrConjugacyClasses( tblm3 ) 1],

> i -> OrdersClassRepresentatives( tblm3 )[i] = 2 );
(2, 3,4]

gap> n2:= List( inv,

> i => Int( 2 * pi_m3[i] / SizesCentralizers( tblm3 )[i] ) );
[0, 54, 15 ]

gap> Sum( n2 );

69

gap> 69 * Size( tbIm3 ) / 2 + (n - 69 - 1 ) * Size( tblm3 ) / 3 + 1;
41542502401

gap> pil1l;

51162109375
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7 Appendix: The Data File

The file 08p2s3_08p5s3.g that can be found at
http://www.math.rwth-aachen.de/ Thomas.Breuer/ctbllib/data/o8p2s3_08p5s3.g

contains the relevant data used in the above computations. This covers the representations for the
groups and the permutation character of Of (2).S3 computed in Section 6.

Reading the file into GAP will define a global variable 08p2s3_08p5s3_data, a record with the following
components.

pi the list of values of the permutation character of G = O (5).S5 on the cosets of its subgroup
H = 07 (2).Ss, restricted to H, corresponding to the ordering of classes in the character table
of H in the GAP Character Table Library (this table has the Identifier value "08+(2).3.2"),

dim8Q a record with generators for 2.M and 2.M.2, matrices of dimension eight over the Rationals,
deg120 a record with generators for M and M.2, permutations of degree 120,
deg360 a record with generators for M, M.2, M.3, and H, permutations of degree 360,

dim8f5 a record with generators for 2.M, 2.M .2, 2.5, and 2.5.2, matrices of dimension eight over the
field with five elements,

degl19656 a record with generators for M, M.2, S, and S.2, permutations of degree 19 656,

degb8968 a record with generators for M, M.2, M.3, H, S, S.2, S.3, and G, permutations of degree
58 968,

seed405 a block whose H-orbit in the representation on 58 968 points, w.r.t. the action OnSets, yields
a representation of H on 405 points.

For each of the permutation representations, we have (where applicable)

M =~ (al,a;»,)

M2 = <a1 az, >,
M3 = <a1,a2, >,

H =~ <a1,a2,t b>
S = <a1 az, € >a
S2 = (ai,az,cb),
S3 = (ai,a2,ct),
G >~ (a1,as,c,t,b),

where a1, a2,b,t,c are the values of the record components al, a2, b, t, and c.

Analogously, for the matrix representations, we have (where applicable)

2.M = <a17a2>

2.M.2 = <a1,a2, >,
2.5 = <a1,a2, >,
2.52 = (a1,az,cb),

Additional components are used for deriving the representations from initial data, as in the construc-
tions in the previous sections.

For example, most of the permutations needed arise as the induced actions of matrices on orbits
of vectors; these orbits are computed when the file is read, and are then stored in the components
orb120 and orb19656.

The file 08p2s3_08p5s3.g does not contain the generators explicitly, but it is self-contained in the
sense that only a few GAP functions are actually needed to produce the data; for example, it should
not be difficult to translate the contents of the file into the language of other computer algebra
systems.

Advantages of this way to store the data are that the relations between the representations become
explicit, and also that only very little space is needed to describe the representations —the size of the
file is less than 10 kB, whereas storing (explicitly) one of the permutations on 58 968 points requires
already about 350 kB.
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