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Abstract

We complete the classification of the multiplicity-free permutation actions of nearly simple groups
that involve a sporadic simple group, which had been started in [BL96] and [LM].
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1 Introduction

In [BL96], the multiplicity-free permutation characters of the sporadic simple groups and their auto-
morphism groups were classified. Based on this list, the multiplicity-free permutation characters of
the central extensions of the sporadic simple groups were classified in [LM].

The purpose of this writeup is to show how the multiplicity-free permutation characters of the au-
tomorphic extensions of the central extensions of the sporadic simple groups can be computed, to
verify the calculations in [LM] (and to correct an error, see Section 3.32), and to provide a test file
for the GAP functions and the database.

The database has been extended in the sense that also most of the character tables of the multiplicity-
free permutation modules of the sporadic simple groups and their automorphic and central extensions
have been computed, see [H6h01, Miil03, BM05, Miil08] for details.



Five errors in an earlier version (from July 2003) have been pointed out by Jirgen Miiller. These
errors concern the numbers of conjugacy classes of certain point stabilizers in 2.J2.2, 2.HS.2, and
6.Fi22.2 (see Sections 3.12, 3.14, and 3.33).

The only differences between the current version and the version that was available since 2005 are
additions of references, adjustments of group names in the data file, and adjustments of the GAP
output format to version 4.5, see [GAP12].

Note that the version from 2003 was based on a data file that contained only the permutation character
information, whereas the current version uses the database file of [BMO05], which includes also the
known character tables of endomorphism rings.

2 The Approach

Suppose that a group G contains a normal subgroup N. If 7 is a faithful multiplicity-free permutation
character of G then 7 = 1§ for a subgroup U of G that intersects N trivially, so 7 contains a
constituent 15 of degree m(1)/|N|, which can be viewed as a multiplicity-free permutation character
of the factor group G/N. Moreover, no constituent of the difference 7 — 1§y has N in its kernel.

So if we know all multiplicity-free permutation characters of the factor group G/N then we can
compute all candidates for multiplicity-free permutation characters of G by “filling up” each such
character 7 with a linear combination of characters not containing N in their kernels, of total degree
(JN| = 1) -7(1), and such that the sum is a possible permutation character of G. For this situation,
GAP provides a special variant of the function PermChars. In a second step, the candidates are
inspected whether the required point stabilizers (and if yes, how many conjugacy classes of them)
exist. Finally, the permutation characters are verified by explicit induction from the character tables
of the point stabilizers.

The multiplicity-free permutation actions of the sporadic simple groups and their automorphism
groups are known by [BL96], so this approach is suitable for these groups.

For central extensions of sporadic simple groups, the multiplicity-free permutation characters have
been classified in [LM]; this note describes a slightly different approach, so we will give an independent
confirmation of their results (except for the error pointed out in Section 3.32).

First we load the Character Table Library [Brel2] of the GAP system [GAP11], and the GAP interface
(see [WPNT11]) to the ATLAS of Group Representations (see [WWTT]).

gap> LoadPackage( "ctbllib" );
true
gap> LoadPackage( "atlasrep" );
true

Then we read —if necessary— the file with GAP functions for computing multiplicity-free permutation
characters, and the file with the data. Note that this includes the data we are going to compute, but
we will actually use only the data for sporadic simple groups and their automorphism groups. For
the other groups, we will compare the results computed below with the database.

gap> if not IsBound( PossiblePermutationCharactersWithBoundedMultiplicity )

> then

> ReadPackage( "ctbllib", "tst/multfree.g" );

> fi;

gap> if not IsBound( MULTFREEINFO ) then

> ReadPackage( "ctbllib", "tst/mferctbl.gap" );

> fi;

gap> if not IsBound( PossiblePermutationCharactersWithBoundedMultiplicity ) or
> not IsBound( MULTFREEINFO ) then

> Print( "Sorry, the data files are not available!\n" );

> fi;



(If the data files are not available then they can be fetched from the homepage of the GAP Character
Table Library [Brel2].)

2.1 Computing Possible Permutation Characters

Next we define the GAP functions that are needed in the following.

The utility function PossiblePermutationCharacters takes two ordinary character tables sub and
tbl, and returns the set of all induced class functions of the trivial character of sub to tbl, w.r.t. the
possible class fusions from sub to tbl. (The entries in the result list are not necessarily multiplicity-
free.)

gap> PossiblePermutationCharacters:= function( sub, tbl )
local fus, triv;

fus:= PossibleClassFusions( sub, tbl );
if fus = fail then
return fail;
fi;
triv:= [ TrivialCharacter( sub ) ];

return Set( List( fus, map -> Induced( sub, tbl, triv, map )[1] ) );
end;;

V V V V V V V V VYV

FaithfulCandidates takes the character table tbl of a group G and the name factname of a factor
group F' of G for which the multiplicity-free permutation characters are known, and returns a list
of lists, the entry at the i-th position being the list of possible permutation characters of G that
are multiplicity-free and such that the sum of all constituents that are characters of F' is the i-th
multiplicity-free permutation character of F. As a side-effect, if the i-th entry is nonempty then
information is printed about the structure of the point-stabilizer in F' and the number of candidates
found.

gap> FaithfulCandidates:= function( tbl, factname )
local factinfo, factchars, facttbl, fus, sizeN, faith, i;

# Fetch the data for the factor group.

factinfo:= MultFreeEndoRingCharacterTables( factname ) ;
factchars:= List( factinfo, x -> x.character );
facttbl:= UnderlyingCharacterTable( factchars([1] );
fus:= GetFusionMap( tbl, facttbl );

sizeN:= Size( tbl ) / Size( facttbl );

# Compute faithful possible permutation characters.
faith:= List( factchars, pi -> PermChars( tbl,
rec( torso:= [ sizeN * pi[1] 1],
normalsubgroup:= ClassPositionsO0fKernel( fus ),
nonfaithful:= pi{ fus } ) ) );

# Take only the multiplicity-free ones.
faith:= List( faith, x -> Filtered( x, pi -> ForAll( Irr( tbl ),
chi -> ScalarProduct( tbl, pi, chi ) < 2) ) );

# Print info about the candidates.
for i in [ 1 .. Length( faith ) ] do
if not IsEmpty( faith[i] ) then

VVVVVVVVVVVVVVVVVYVVYVYVYV



Print( i, ": subgroup ", factinfo[i].subgroup,
", degree ", faith[i][1][1],
" (", Length( faith[i] ), " cand.)\n" );
fi;
od;

# Return the candidates.
return faith;
end;;

V V V V V V V VYV

2.2 Verifying the Candidates

In the verification step, we check which of the given candidates of G are induced from a given subgroup
S. For that, we use the following function. Its arguments are the character table s of S, the character
tables tbl2 and tbl of G and its derived subgroup G’ of index 2 (if G is perfect then 0 must be
entered for tb12), the list candidates of characters of G, and one of the strings "all", "extending",
which means that we consider either all possible class fusions of s into tbl2 or only those whose
image does not lie in G’. Note that the table of the derived subgroup of G is needed because we want
to express the decomposition of the permutation characters relative to G’.

The idea is that we know that n different permutation characters arise from subgroups isomorphic with
S (with the additional property that the image of the embedding of S into G is not contained in G if
the last argument is "extending"), and that candidates is a set of possible permutation characters,
of length n. If the possible fusions between the character tables s and tbl2 lead to exactly the given
n permutation characters then we have proved that they are in fact the permutation characters of
G in question. In this case, VerifyCandidates prints information about the decomposition of the
permutation characters. If none of candidates arises from the possible embeddings of S into G then
the function prints that S does not occur. In all other cases, the function signals an error. (This will
not happen in the calls to this function below).

gap> VerifyCandidates:= function( s, tbl, tbl2, candidates, admissible )
local fus, der, pi;

if tbl2 = O then
tbl2:= tbl;
fi;

# Compute the possible class fusions, and induce the trivial character.
fus:= PossibleClassFusions( s, tbl2 );
if admissible = "extending" then

der:= Set( GetFusionMap( tbl, tbl2 ) );

fus:= Filtered( fus, map -> not IsSubset( der, map ) );
fi;
pi:= Set( List( fus, map -> Induced( s, tbl2,

[ TrivialCharacter( s ) 1, map )[1] ) );

# Compare the two lists.
if pi = SortedList( candidates ) then
Print( "G = ", Identifier( tbl2 ), ": point stabilizer ",
Identifier( s ), ", ranks ",
List( pi, x -> Length( ConstituentsOfCharacter(x) ) ), "\n" );
if Size( tbl ) = Size( tbl2 ) then
Print( PermCharInfo( tbl, pi ).ATLAS, "\n" );
else

VVVVVVVVVVVVVVVVVVYVVYVYVYV



> Print( PermCharInfoRelative( tbl, tbl2, pi ).ATLAS, "\n" );

> fi;

> elif IsEmpty( Intersection( pi, candidates ) ) then

> Print( "G = ", Identifier( tbl2 ), ": no ", Identifier( s ), "\n" );
> else

> Error( "problem with verify" );

> fi;

> end; ;

Since in most cases the character tables of possible point stabilizers are contained in the GAP Char-
acter Table Library, the above function provides an easy test. Alternatively, we could compute all
faithful possible permutation characters (not only the multiplicity-free ones) of the degree in question;
if there are as many different such characters as are known to be induced from point stabilizers and
if no other subgroups of this index exist then the characters are indeed permutation characters, and
we can compare them with the multiplicity-free characters computed before.

In the verification of the candidates, the following situations occur.

Lemma 2.1 Let ®:G — G be a group epimorphism, with K = ker(®) cyclic of order m, and let H
be a subgroup of G such that m is coprime to the order of the commutator factor group of H. Assume
that it is known that ®~'(H) is a direct product of H with K. (This holds for example if H is simple
and the order of the Schur multiplier of H is coprime to m.) Then the preimages under ® of the
G-conjugates of H contain one G-class of subgroups that are isomorphic with H and that intersect
trivially with K.

Lemma 2.2 Let ®:G — G be a group epimorphism, with K = ker(®) of order 3, such that the
derived subgroup G’ of G has index 2 in G and such that K is not central in G. (So ®1(G") is the
centralizer of K in é) Consider a subgroup H of G with a subgroup Hy = H NG’ of index 2 in H,
and assume that the preimage ® *(Hy) is a direct product of Ho with K. (This holds for example if
Hy is simple and the order of the Schur multiplier of Ho is coprime to 3.) Then each complement
of K in ® '(Ho) eatends in ® '(H) to exactly three complements of K that are isomorphic with H
and conjugate in &' (H).

Lemma 2.3 Let ®:G — G be a group epimorphism, with K = ker(®) of order 2. Consider a
subgroup H of G, with derived subgroup H' of index 2 in H and such that &~ (H') is a direct product
K x H'.

(i) Suppose that there is an element h € H\ H' such that the squares of the preimages of h in G
lie in the unique subgroup of index 2 in ® *(H'). (This holds for example if the preimages of h
are involutions.) Then ® ' (H) has the type K x H.

(ii) If ® 1(H) has the type K x H then this group contains exactly two subgroups that are isomorphic
with H. If H is a mazimal subgroup of G then these two subgroups are not conjugate in G.

(i11) Suppose that case (ii) applies and that there is h € H \ H' whose two preimages under ® are
not conjugate in G and such that each of the two subgroups of the type H in @71(H) contains
elements in only one conjugacy class of G that contain the preimages of h. Then the two
subgroups of the type H induce different permutation characters of G, in particular ezactly two
conjugacy classes of subgroups of the type H in G arise from the conjugates of H in G.

With character theoretic methods, we can check a weaker form of Lemma 2.3 (i). Namely, the
conditions are clearly satisfied if there is a conjugacy class C' of elements in H that is not contained
in H' and such that the class of G that contains the squares of the preimages of C' is not contained
in the images of the classes of 2 x H' that lie outside H’.

The function CheckConditionsForLemma3 tests this, and prints a message if Lemma 2.3 (i) applies
because of this situation. More precisely, the arguments are (in this order) the character tables of



H' H, G, Cl, and one of the strings "all", "extending"; the last argument expresses that either all
embeddings of H into G are considered or only those which do not lie inside the derived subgroup of

G.

The function assumes that s0 is the character table of the derived subgroup of the group of s, and
that H’ lifts to a direct product in G.

gap> CheckConditionsForLemma3:= function( sO, s, fact, tbl, admissible )

> local sOfuss, poss, der, sfusfact, outerins, outerinfact, preim,

> squares, dp, dpfustbl, sOindp, other, goodclasses;

>

> if Size( s ) <> 2 * Size( sO ) then

> Error( "<s> must be twice as large as <s0>" );

> fi;

>

> sOfuss:= GetFusionMap( s0, s );

> if sOfuss = fail then

> poss:= Set( List( PossiblePermutationCharacters( sO, s ),

> pi -> Filtered( [ 1 .. Length( pi ) 1,

> i =>pilil <> 0) ) );

> if Length( poss ) = 1 then

> sOfuss:= poss[1];

> else

> Error( "classes of <s0> in <s> not determined" );

> fi;

> fi;

> sfusfact:= PossibleClassFusions( s, fact );

> if admissible = "extending" then

> der:= ClassPositionsOfDerivedSubgroup( fact );

> sfusfact:= Filtered( sfusfact, map -> not IsSubset( der, map ) );

> fi;

> outerins:= Difference( [ 1 .. NrConjugacyClasses( s ) ], sOfuss );

> outerinfact:= Set( List( sfusfact, map -> Set( map{ outerins } ) ) );
> if Length( outerinfact ) <> 1 then

> Error( "classes of ‘", s, "’ inside ‘", fact, "’ not determined" );
> fi;

>

> preim:= Flat( InverseMap( GetFusionMap( tbl, fact ) ){ outerinfact[1] } );
> squares:= Set( PowerMap( tbl, 2 ){ preim } );

> dp:= sO * CharacterTable( "Cyclic", 2 );

> dpfustbl:= PossibleClassFusions( dp, tbl );

> sOindp:= GetFusionMap( sO, dp );

> other:= Difference( [ 1 .. NrConjugacyClasses( dp ) ], sOindp );

> goodclasses:= List( dpfustbl, map -> Intersection( squares,

> Difference( map{ sOindp }, map{ other } ) ) );
> if not IsEmpty( Intersection( goodclasses ) ) then

> Print( Identifier( tbl ), ": ", Identifier( s ),

> " lifts to a direct product,\n",

> "proved by squares in ", Intersection( goodclasses ), ".\n" );
> elif ForAll( goodclasses, IsEmpty ) then

> Print( Identifier( tbl ), ": ", Identifier( s ),

> " lifts to a nonsplit extension.\n" );

> else

> Print( "sorry, no proof of the splitting!\n" );

> fi;



> end;;

Lemma 2.3 (iii) can be utilized as follows. We assume the situation of Lemma 2.3, so ® *(H) is
a direct product (z) x H, where z is an involution. The derived subgroup of ® *(H) is Hy = H’,
and <I>71(H) contains two subgroups Hi, H2 which are isomorphic with H, and such that Hs =
Ho U {hz;h € Hy \ Ho}. If the embedding of Hi, say, into G has the properties that an element
outside Hj is mapped into a class C' of G that is different from zC and such that no element of Hy
lies in zC' then zC' contains elements of Hy but C' does not. In particular, the permutation characters
of the two actions of G on the cosets of Hy and Ha, respectively, are necessarily different.

We check this with the following function. Its arguments are one class fusion from the character
table of H; to that of G, the factor fusion from the character table of G to that of G, and the list of
positions of the classes of Hy in the character table of Hy. The return value is true if there are two
different permutation characters, and false if this cannot be proved using the criterion.

gap> NecessarilyDifferentPermChars:= function( fusion, factfus, inner )
local outer, inv;

outer:= Difference( [ 1 .. Length( fusion ) ], inner );

fusion:= fusion{ outer };

inv:= Filtered( InverseMap( factfus ), IsList );

return ForAny( inv, pair -> Length( Intersection( pair, fusion ) ) =1 );
end; ;

V V.V V V V Vv

The following observation is used to determine the number of conjugacy classes of certain subgroups.

Lemma 2.4 Let G be a group with [G : G'l = 2, and Z C Z(G) < G’ with |Z] = 2. Consider a
mazimal subgroup M of G with Z < M and M € G', and a subgroup H < M with [M : H| = 4 such
that U = HNG' is normal in M, U # H holds, and Z € H. Let N = ZH. Then the three subgroups
of indez two in N that lie above U are ZU, H, and a group H, say. If M/U is a dihedral group of
order eight then the groups H and H are conjugate in M, and M/U is a dihedral group of order eight
if and only if M \ H contains both elements whose squares lie in U and elements whose squares do
not lie in U.

Gl
ZH

MNG'

zZU

U

We want to detect that M /U is a dihedral group by character theoretic means but without using the
character table of M. A sufficient (but not necessary) condition is that the set D = {g € G | 1§; #
0,15 (g) = 0} is nonempty and that there are elements g1, g» € D with the properties 15(g?) = 0
and |g2] = 2.



The following function takes the character table of G and the three permutation characters 15, 15,
1§, and returns a list of length two, the i-th entry being the list of class positions of elements that
can serve as g;. So M /U is proved to be a dihedral group if both entries are nonempty.

ap> Proof0fD8Factor:= function( tblG, piU, piM, piN )
local D, map, D1, D2;

g

>

>

> D:= Filtered( [ 1 .. Length( piU ) ], i -> piM[i] <> 0 and piN[i] = 0 );
> map:= PowerMap( tblG, 2 );

> Di:= Filtered( D, i -> piU[ map[i]l 1 = 0 );

> D2:= Filtered( D, i -> OrdersClassRepresentatives( tblG )[i] = 2 );

> return [ D1, D2 ];

> end;;

2.3 Isoclinic Groups

For dealing with the character tables of groups of the type 2.G.2 that are isoclinic to those whose
tables are printed in the ATrAs ([CCNT85]), it is necessary to store explicitly the factor fusion from
2.G.2 onto G.2 and the subgroup fusion from 2.G into 2.G.2, in order to make the above functions
work. Note that these maps coincide for the two isoclinism types.

gap> IsoclinicTable:= function( tbl, tbl2, facttbl )
local subfus, factfus;

subfus:= GetFusionMap( tbl, tbl2 );
factfus:= GetFusionMap( tbl2, facttbl );
tbl2:= CharacterTableIsoclinic( tbl2 );
StoreFusion( tbl, subfus, tbl2 );
StoreFusion( tbl2, factfus, facttbl );
return tbl2;

end;;

V V V V V V V VYV

2.4 Tests for GAP

With the following function, we check whether the characters computed here coincide with the char-
acters stored in the data file.

gap> CompareWithDatabase:= function( name, chars )

> local info;

>

> info:= MultFreeEndoRingCharacterTables( name );

> info:= List( info, x -> x.character );;

> if SortedList( info ) <> SortedList( Concatenation( chars ) ) then
> Error( "contradiction 1 for ", name );

> fi;

> end;;

If the character tables of all maximal subgroups of G are known then we could use alternatively
the same method (and in fact the same GAP functions) as in the classification in [BL96]. This
is shown in the following sections where applicable, using the following function. (The function
PossiblePermutationCharactersWithBoundedMultiplicity is defined in the file tst/multfree.g of
the GAP Character Table Library [Brel2]; note that it returns not only faithful characters.)



gap> CompareWithCandidatesByMaxes:= function( name, faith )

> local tbl, poss;

>

> tbl:= CharacterTable( name );

> if not HasMaxes( tbl ) then

> Error( "no maxes stored for ", name );

> fi;

> poss:= PossiblePermutationCharactersWithBoundedMultiplicity( tbl, 1 );
> poss:= List( poss.permcand, 1 -> Filtered( 1,

> pi -> ClassPositionsOfKernel( pi ) = [ 1] ) );
> if SortedList( Concatenation( poss ) )

> <> SortedList( Concatenation( faith ) ) then

> Error( "contradiction 2 for ", name );

> fi;

> end;;

3 The Groups

In the following, we use ATLAS notation (see [CCN*85]) for the names of the groups. In particular,
2 X G and G x 2 denote the direct product of the group G with a cyclic group of order 2, and G.2
and 2.G denote an upward and downward extension, respectively, of G by a cyclic group of order 2,
such that these groups are not direct products.

For groups of the structure 2.G.2 where the character table of (G is contained in the ATLAS, we use
the name 2.G.2 for the isoclinism type whose character table is printed in the ATLAS, and (2.G.2)*
for the other isoclinism type.

Most of the computations that are shown in the following use only information from the GAP Char-
acter Table Library. The (few) explicit computations with groups are collected in Section 4.

3.1 G =2Mp;

The group 2.Mi2 has ten faithful multiplicity-free permutation actions, with point stabilizers of the
types M1 (twice), Ag.21 (twice), 32.2.54 (four classes), and 32 : 2.4, (twice).

gap> tbl:= CharacterTable( "2.M12" );;

gap> faith:= FaithfulCandidates( tbl, "M12" );;

1: subgroup $M_{11}$, degree 24 (1 cand.)

2: subgroup $M_{11}$, degree 24 (1 cand.)

5: subgroup $A_6.2_1 \leq A_6.272$, degree 264 (1 cand.)

8: subgroup $A_6.2_1 \leq A_6.2"2%, degree 264 (1 cand.)

11: subgroup $3°2.2.S_43%, degree 440 (2 cand.)

12: subgroup $372:2.A_4 \leq 372.2.S_4%, degree 880 (1 cand.)
13: subgroup $372.2.5_4$, degree 440 (2 cand.)

14: subgroup $3°2:2.A_4 \leq 372.2.S_43%, degree 880 (1 cand.)

There are two classes of M1 subgroups in M2 as well as in 2.M;12, so we apply Lemma 2.1.

gap> VerifyCandidates( CharacterTable( "M11" ), tbl, O,
> Concatenation( faith[1], faith[2] ), "all" );
G = 2.M12: point stabilizer M11, ranks [ 3, 3 ]

[ "1a+1la+12a", "la+11b+12a" ]

10



According to the list of maximal subgroups of 2.M12, any Ag.2? subgroup in M2 lifts to a group of
the structure Ag.Ds in Mi2, which contains two conjugate subgroups of the type Ag.21; so we get
two classes of such subgroups, with the same permutation character.

gap> Maxes( tbl );
[ "2xM11", "2.M12M2", "A6.D8", "2.M12M4", "2.L2(11)", "2x3°2.2.S84",
"2 .Mi2M7", "2.M12M8", "2.M12M9", "2.M12M10", "2.A4xS3" ]
gap> faith[5] = faith[8];
true
gap> VerifyCandidates( CharacterTable( "A6.2_1" ), tbl, 0, faith[5], "all" );
G = 2.M12: point stabilizer A6.2_1, ranks [ 7 ]
[ "la+llab+12a+54a+55a+120b" ]

The 32.2.84 type subgroups of M lift to direct products with the centre of 2.M;s, each such group
contains two subgroups of the type 32.2.54 which induce different permutation characters, for example
because the involutions in 32.2.S4 \ 32.2. 4, lie in the two preimages of the class 2B of M.

gap> s:= CharacterTable( "372.2.54" );;

gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;

gap> facttbl:= CharacterTable( "M12" );;

gap> factfus:= GetFusionMap( tbl, facttbl );;

gap> ForAll( PossibleClassFusions( s, tbl ),

> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );

true

gap> VerifyCandidates( s, tbl, O, Concatenation( faith[11], faith[13] ), "all" );

G = 2.M12: point stabilizer 372.2.S4, ranks [ 7, 7, 9, 9 ]

[ "la+lla+54a+55a+99a+110ab", "la+11b+54a+55a+99a+110ab",
"la+lla+12a+44ab+b4a+55a+99a+120b", "la+1lb+12a+44ab+54a+55a+99a+120b" ]

Each 32.2.5, type group contains a unique subgroup of the type 32.2.A44, we get two classes of such
subgroups, with different permutation characters because already the corresponding characters for
M2 are different; we verify the candidates by inducing the degree two permutation characters of the
32.2.5, type groups to 2.Mis.

gap> fus:= PossibleClassFusions( s, tbl );;

gap> deg2:= PermChars( s, 2 );

[ Character( CharacterTable( "3°2.2.84" ), [ 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, O

151

gap> pi:= Set( List( fus, map -> Induced( s, tbl, deg2, map )[1] ) );;

gap> pi = SortedList( Concatenation( faith[12], faith[14] ) );

true

gap> PermCharInfo( tbl, pi ).ATLAS;

[ "la+1la+12a+44ab+45a+54a+55ac+99a+110ab+120ab",
"la+11b+12a+44ab+45a+54a+55ab+99a+110ab+120ab" ]

gap> CompareWithDatabase( "2.M12", faith );

gap> CompareWithCandidatesByMaxes( "2.M12", faith );

3.2 G=2My2

The group 2.Mi2.2 that is printed in the ATLAS has three faithful multiplicity-free permutation
actions, with point stabilizers of the types Mi1 and L2(11).2 (twice), respectively.

gap> tbl2:= CharacterTable( "2.M12.2" );;

gap> faith:= FaithfulCandidates( tbl2, "M12.2" );;
1: subgroup $M_{11}$, degree 48 (1 cand.)

2: subgroup $L_2(11).2%, degree 288 (2 cand.)
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The two classes of subgroups of the type Mi; in 2.Mi2 are fused in 2.M;12.2, so we get one class of
these subgroups.

gap> VerifyCandidates( CharacterTable( "M11" ), tbl, tbl2, faith[1], "all" );
G = 2.M12.2: point stabilizer M11l, ranks [ 5 ]
[ "ta~{\\pm}+11ab+12a~{\\pm}" ]

The outer involutions in the maximal subgroups of the type L2(11).2 in M12.2 lift to involutions in
2.M3i2.2; moreover, those subgroups of the type L2(11).2 that are novelties (so the intersection with
M2 lies in Mi1 type subgroups) contain 2B elements, which lift to involutions in 2.Mj2.2, so the
L3(11) subgroup lifts to a group of the type 2 x Lz(11), and Lemma 2.3 (ii) yields two classes of
subgroups. The permutation characters are different, for example because each of the two candidates
contains elements in one of the two preimages of the class 2B.

(The function CheckConditionsForLemma3 fails here, because of the two classes of maximal subgroups
L2(11).2 in M;i2.2. One of them contains 2A elements, the other contains 2B elements. Only the latter
type of subgroups, whose intersection with M2 is not maximal in M2, lifts to subgroups of 2.M;2.2
that contain L2(11).2 subgroups.)

gap> s:= CharacterTable( "L2(11).2" );;

gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;

gap> facttbl:= CharacterTable( "M12.2" );;

gap> factfus:= GetFusionMap( tbl2, facttbl );;

gap> ForAll( PossibleClassFusions( s, tbl2 ),

> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );

true

gap> VerifyCandidates( s, tbl, tbl2, faith[2], "all" );

G = 2.M12.2: point stabilizer L2(11).2, ranks [ 7, 7 ]

[ "1a"++11ab+12a”{\\pm}+55a~++66a~++120b"-",
"la~++1lab+12a”{\\pm}+55a~++66a"++120b"+" ]

gap> CompareWithDatabase( "2.M12.2", faith );

The group (2.Mi2.2)* of the isoclinism type that is not printed in the ATLAS has one faithful
multiplicity-free permutation action, with point stabilizer of the type Mii; as this subgroup lies
inside 2.M2, its existence is clear, and the permutation character in both groups of the type 2.M;2.2
is the same.

gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;

gap> faith:= FaithfulCandidates( tbl2, "M12.2" );;

1: subgroup $M_{11}$, degree 48 (1 cand.)

gap> CompareWithDatabase( "Isoclinic(2.M12.2)", faith );

Note that in (2.M12.2)*, the subgroup of the type (2 x L2(11)).2 is a nonsplit extension, so the unique
index 2 subgroup in this group contains the centre of 2.M12.2, in particular there is no subgroup of

the type L2(11).2.

gap> PossibleClassFusions( CharacterTable( "L2(11).2" ), tbl2 );
[ ]

3.3 G =2My

The group 2.Mas2 has four faithful multiplicity-free permutation actions, with point stabilizers of the
types 2 : A5, A7 (twice), and 2% : L3(2), by Lemma 2.1.
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gap> tbl:= CharacterTable( "2.M22" );;

gap> faith:= FaithfulCandidates( tbl, "M22" );;

3: subgroup $274:A_5 \leq 274:A_6%, degree 924 (1 cand.)
4: subgroup $A_7$, degree 352 (1 cand.)

5: subgroup $A_7$, degree 352 (1 cand.)

7: subgroup $2°3:L_3(2)$, degree 660 (1 cand.)

Note that one class of subgroups of the type 2* : As in the maximal subgroup of the type 2% : Ag as
well as the A7 and 23 : L3(2) subgroups lift to direct products in 2.Maa. A proof for 2* : A5 using
explicit computations with the group can be found in Section 4.1.

gap> Maxes( tbl );

[ "2.L3(4)", "2.M22M2", "2xA7", "2xA7", "2.M22M5", "2x2°3:L3(2)",
"(2xA6).2_3", "2xL2(11)" ]

gap> s:= CharacterTable( "P1/G1/L1/V1/ext2" );;

gap> VerifyCandidates( s, tbl, 0, faith[3], "all" );

G = 2.M22: point stabilizer P1/G1/L1/V1/ext2, ranks [ 8 ]

[ "1a+21a+55a+126ab+154a+210b+231a" ]

gap> faith[4] = faith[5];

true

gap> VerifyCandidates( CharacterTable( "A7" ), tbl, O, faith[4], "all" );

G = 2.M22: point stabilizer A7, ranks [ 5 ]

[ "1a+21a+56a+120a+154a" ]

gap> VerifyCandidates( CharacterTable( "M22M6" ), tbl, O, faith[7], "all" );

G = 2.M22: point stabilizer 273:s1(3,2), ranks [ 7 ]

[ "1a+21a+55a+99a+120a+154a+210b" ]

gap> CompareWithDatabase( "2.M22", faith );

gap> CompareWithCandidatesByMaxes( "2.M22", faith );

34 G =2DMy?2

The group 2.M22.2 that is printed in the ATLAS has eight faithful multiplicity-free permutation
actions, with point stabilizers of the types 2* : S5 (twice), A7, 2% : L3(2) x 2 (twice), 2% : L3(2), and
L2(11).2 (twice).

gap> tbl2:= CharacterTable( "2.M22.2" );;

gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;

6: subgroup $274:S_5 \leq 274:S_6$, degree 924 (2 cand.)

7: subgroup $A_7$, degree 704 (1 cand.)

11: subgroup $2°3:L_3(2) \times 2$, degree 660 (2 cand.)

12: subgroup $27°3:L_3(2) \leq 273:L_3(2) \times 2$, degree 1320 (2 cand.)
16: subgroup $L_2(11).2%, degree 1344 (2 cand.)

The character table of the 2* : S5 type subgroup is contained in the GAP Character Table Library,
with identifier w(d5) (which denotes the Weyl group of the type Ds, cf. Section 4.2).

gap> s:= CharacterTable( "w(d5)" );;

gap> derpos:= ClassPositions0fDerivedSubgroup( s );;

gap> facttbl:= CharacterTable( "M22.2" );;

gap> factfus:= GetFusionMap( tbl2, facttbl );;

gap> ForAll( PossibleClassFusions( s, tbl2 ),

> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true

gap> VerifyCandidates( s, tbl, tbl2, faith[6], "all" );
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G = 2.M22.2: point stabilizer w(d5), ranks [ 7, 7 ]
[ "1a~++21a"++55a~++126ab+154a"++210b"-+231a"~-",
"1a~++21a"++55a"++126ab+154a"++210b"++231a"-" ]

The two classes of the type A7 subgroups in 2.Mss are fused in 2.Ms2.2.

gap> VerifyCandidates( CharacterTable( "A7" ), tbl, tbl2, faith[7], "all" );
G = 2.M22.2: point stabilizer A7, ranks [ 10 ]
[ "ta~{\\pm}+21a~{\\pm}+56a~{\\pm}+120a~{\\pm}+154a~{\\pm}" ]

The preimages of the 23 : L3(2) x 2 type subgroups of Ms2.2 in 2.M2.2 are direct products, by
the discussion of 2.Mz2 and Lemma 2.3 (i). So Lemma 2.3 (iii) yields two classes, with different
permutation characters.

gap> s:= CharacterTable( "2x273:L3(2)" );;

gap> s0:= CharacterTable( "27°3:s51(3,2)" );;

gap> CheckConditionsForLemma3( sO, s, facttbl, tbl2, "extending" );

2.M22.2: 2x273:1L3(2) lifts to a direct product,

proved by squares in [ 1, 5, 14, 16 ].

gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;

gap> ForAll( PossibleClassFusions( s, tbl2 ),

> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );

true

gap> VerifyCandidates( s, tbl, tbl2, faith[11], "extending" );

G = 2.M22.2: point stabilizer 2x273:L3(2), ranks [ 7, 7 ]

[ "la"++21a"++55a"++99a"++120a"-+154a~++210b"-",
"la”++21a”++55a"++99a"++120a"++154a”~++210b"+" ]

There is one class of subgroups of the type 2° : L3(2) in 2.Mas. One of the two candidates of degree
1320 is excluded because it does not arise from a possible class fusion.

gap> s:= CharacterTable( "M22M6" );;

gap> pil320:= PossiblePermutationCharacters( s, tbl2 );;
gap> Length( pil320 );

1

gap> IsSubset( faith[12], pil320 );

true

gap> faith[12]:= pi1320;;

gap> VerifyCandidates( s, tbl, tbl2, faith[12], "all" );
G = 2.M22.2: point stabilizer 2°3:s51(3,2), ranks [ 14 ]
[ "1a"{\\pm}+21a~{\\pm}+55a~{\\pm}+99a~{\\pm}+120a~{\\pm}+154a~{\\pm}+210b~{\\\
pm}" ]

By Lemma 2.3 (i), the preimages of the L2(11).2 type subgroups of M22.2 in 2.M22.2 are direct
products, so Lemma 2.3 (iii) yields two classes, with different permutation characters.

gap> s:= CharacterTable( "L2(11).2" );;

gap> s0:= CharacterTable( "L2(11)" );;

gap> CheckConditionsForLemma3( sO, s, facttbl, tbl2, "all" );

2.M22.2: L2(11).2 1lifts to a direct product,

proved by squares in [ 1, 4, 10, 13 ].

gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;

gap> ForAll( PossibleClassFusions( s, tbl2 ),

> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
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gap> VerifyCandidates( CharacterTable( "L2(11).2" ), tbl, tbl2, faith[16], "all" );

G = 2.M22.2: point stabilizer L2(11).2, ranks [ 10, 10 ]

[ "la"++21a"-+55a"++56a"{\\pm}+120a~-+154a~++210a"-+231a"-+440a"+",
"la"++21a”-+bba”"++56a"{\\pm}+120a~++154a~++210a"-+231a"-+440a"-" ]

gap> CompareWithDatabase( "2.M22.2", faith );

The group (2.M22.2)* of the isoclinism type that is not printed in the ATLAS has two faithful
multiplicity-free permutation actions, with point stabilizers of the types A and 22 : L3(2).

gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;

gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;

7: subgroup $A_7$, degree 704 (1 cand.)

12: subgroup $273:L_3(2) \leq 273:L_3(2) \times 2%, degree 1320 (2 cand.)
gap> faith[12]:= Filtered( faith[12], chi -> chi in pi1320 );;

gap> CompareWithDatabase( "Isoclinic(2.M22.2)", faith );

The two classes of subgroups lie inside 2.Ms2, so their existence has been discussed already above.

3.5 G =3.My

The group 3.Ma2 has four faithful multiplicity-free permutation actions, with point stabilizers of the
types 2% : A5, 2% : S5, 2% 1 L3(2), and L (11).

gap> tbl:= CharacterTable( "3.M22" );;

gap> faith:= FaithfulCandidates( tbl, "M22" );;

3: subgroup $274:A_5 \leq 274:A_6$, degree 1386 (1 cand.)
6: subgroup $274:5_5$%, degree 693 (1 cand.)

7: subgroup $273:L_3(2)$, degree 990 (1 cand.)

9: subgroup $L_2(11)$, degree 2016 (1 cand.)

The existence of one class of each of these types follows from Lemma 2.1.

gap> VerifyCandidates( CharacterTable( "P1/G1/L1/V1/ext2" ), tbl, 0, faith[3], "all" );
G = 3.M22: point stabilizer P1/G1/L1/V1/ext2, ranks [ 13 ]

[ "1a+21labc+55a+105abcd+154a+231abc" ]

gap> VerifyCandidates( CharacterTable( "M22M5" ), tbl, O, faith[6], "all" );
G = 3.M22: point stabilizer 274:s5, ranks [ 10 ]

[ "1a+21labc+55a+105abcd+154a" ]

gap> VerifyCandidates( CharacterTable( "M22M6" ), tbl, O, faith[7], "all" );
G = 3.M22: point stabilizer 273:s1(3,2), ranks [ 13 ]

[ "1a+2labc+55a+99abc+105abcd+154a" ]

gap> VerifyCandidates( CharacterTable( "M22M8" ), tbl, O, faith[9], "all" );
G = 3.M22: point stabilizer L2(11), ranks [ 16 ]

[ "1a+21abc+55a+105abcd+154a+210abc+231abc" ]

gap> CompareWithDatabase( "3.M22", faith );

gap> CompareWithCandidatesByMaxes( "3.M22", faith );

3.6 G =3My?2

The group 3.M32.2 has five faithful multiplicity-free permutation actions, with point stabilizers of the
types 2% : S5, 2% : S5, 2 : (A5 x 2), 2% : L3(2) x 2, and L2(11).2.
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gap> tbl2:= CharacterTable( "3.M22.2" );;

gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;

6: subgroup $274:S_5 \leq 274:S5_6%, degree 1386 (1 cand.)

8: subgroup $2°5:5_5$%, degree 693 (1 cand.)

10: subgroup $274:(A_5 \times 2) \leq 2°5:5_5$, degree 1386 (1 cand.)
11: subgroup $2°3:L_3(2) \times 2$, degree 990 (1 cand.)

16: subgroup $L_2(11).2%, degree 2016 (1 cand.)

Subgroups of these types exist by Lemma 2.2. The verification is straightforward in all cases except
that of 2* : (A5 x 2).

gap> VerifyCandidates( CharacterTable( "w(d5)" ), tbl, tbl2, faith[6], "all" );

G = 3.M22.2: point stabilizer w(d5), ranks [ 9 ]

[ "la~++21a"+bc+55a~++105abcd+154a~++231a"-bc" ]

gap> VerifyCandidates( CharacterTable( "M22.2M4" ), tbl, tbl2, faith[8], "all" );

G = 3.M22.2: point stabilizer M22.2M4, ranks [ 7 ]

[ "la~++21a"+bc+55a~++105abcd+154a~+" ]

gap> VerifyCandidates( CharacterTable( "2x2°3:L3(2)" ), tbl, tbl2, faith[11], "all" );
G = 3.M22.2: point stabilizer 2x273:L3(2), ranks [ 9 ]

[ "1a~++21a~+bc+55a~++99a"+bc+105abcd+154a”~+" ]

gap> VerifyCandidates( CharacterTable( "L2(11).2" ), tbl, tbl2, faith[16], "all" );
G = 3.M22.2: point stabilizer L2(11).2, ranks [ 11 ]

[ "la~++21a"-bc+55a~++105abcd+154a~++210a"-bc+231a"-bc" 1]

In the remaining case, we note that the 2% : (A5 x 2) type subgroup has index 2 in the maximal
subgroup of the type 2° : S5, whose character table is available via the identifier M22.2M4. It is
sufficient to show that exactly one of the three index 2 subgroups in this group induces a multiplicity-
free permutation character of 3.M>22.2, and this can be done by inducing the degree 2 permutation
characters of 2° : S5 to 3.Mas.2.

gap> s:= CharacterTable( "M22.2M4" );;
gap> lin:= LinearCharacters( s );
[ Character( CharacterTable( "M22.2M4" ), [
1,1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1
Character( CharacterTable( "M22.2M4" ), [ 1
1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ]
Character( CharacterTable( "M22.2M4" ), [ 1
-1, -1, 1, 1,1, 1,1, 1,1, -1, -1, -1, -1, -1 1),
Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1
-1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1]
gap> perms:= List( lin{ [ 2 .. 4 1 }, chi -> chi + 1lin[1]
gap> sfustbl2:= PossibleClassFusions( s, tbl2 );;
gap> Length( sfustbl2 );
2
gap> indl:= Induced( s, tbl2, perms, sfustbl2[1] );;
gap> ind2:= Induced( s, tbl2, perms, sfustbl2[2] );;
gap> PermCharInfo( tbl2, indl ).ATLAS;
[ "1ab+21lab+42aa+55ab+154ab+210ccdd", "la+2lab+42a+55a+154a+210bcd+462a",
"la+2laa+42a+55a+154a+210acd+462a" ]
gap> PermCharInfo( tbl2, ind2 ).ATLAS;
[ "1la+2laa+42a+55a+154a+210acd+462a", "la+2lab+42a+55a+154a+210bcd+462a",
"lab+21ab+42aa+55ab+154ab+210ccdd" ]
gap> ind1[2] = ind2[2];
true
gap> [ ind1[2] ] = faith[10];
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true
gap> CompareWithDatabase( "3.M22.2", faith );

3.7 G= 4.M22 and G = 12.M22

The group 4.Ms2 and hence also the group 12.Ms2 has no faithful multiplicity-free permutation action.

gap> tbl:= CharacterTable( "4.M22" );;

gap> faith:= FaithfulCandidates( tbl, "2.M22" );;
gap> CompareWithDatabase( "4.M22", faith );

gap> CompareWithCandidatesByMaxes( "4.M22", faith );

3.8 G = 4.M22.2 and G = 12M222

The two isoclinism types of groups of the type 4.M22.2 and hence also all groups of the type 12.M22.2
have no faithful multiplicity-free permutation actions.

gap> tbl2:= CharacterTable( "4.M22.2" );;

gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;

gap> CompareWithDatabase( "4.M22.2", faith );

gap> CompareWithDatabase( "12.M22.2", [] );

gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;

gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;

gap> CompareWithDatabase( "Isoclinic(4.M22.2)", faith );
gap> CompareWithDatabase( "Isoclinic(12.M22.2)", [] );

3.9 G=06.My

The group 6.M>2 has two faithful multiplicity-free permutation actions, with point stabilizers of the
types 2% : A5 and 2% : L3(2).

gap> tbl:= CharacterTable( "6.M22" );;

gap> faith:= FaithfulCandidates( tbl, "3.M22" );;

1: subgroup $274:A_5 \rightarrow (M_{22},3)$, degree 2772 (1 cand.)

3: subgroup $2°3:L_3(2) \rightarrow (M_{22},7)$, degree 1980 (1 cand.)

The existence of one class of each of these subgroups follows from the treatment of 2. M2 and 3. Mas.

gap> VerifyCandidates( CharacterTable( "P1/G1/L1/V1/ext2" ), tbl, 0, faith[1], "all" );
G = 6.M22: point stabilizer P1/G1/L1/V1/ext2, ranks [ 22 ]

[ "1a+2labc+55a+105abcd+126abcdef+154a+210bef+231abc" ]

gap> VerifyCandidates( CharacterTable( "M22M6" ), tbl, O, faith[3], "all" );

G = 6.M22: point stabilizer 2°3:s1(3,2), ranks [ 17 ]

[ "1a+2labc+55a+99abc+105abcd+120a+154a+210b+330de" ]

gap> CompareWithDatabase( "6.M22", faith );

gap> CompareWithCandidatesByMaxes( "6.M22", faith );

3.10 G =6.My.2

The group 6.M22.2 that is printed in the ATLAS has six faithful multiplicity-free permutation actions,
with point stabilizers of the types 2* : S5 (twice), 2% : L3(2) x 2 (twice), and L2(11).2 (twice).
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gap> tbl2:= CharacterTable( "6.M22.2" );;

gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;

6: subgroup $274:S_5 \leq 274:S5_6%, degree 2772 (2 cand.)
11: subgroup $27°3:L_3(2) \times 2%, degree 1980 (2 cand.)
16: subgroup $L_2(11).2$, degree 4032 (2 cand.)

We know that 2.M32.2 contains two classes of subgroups isomorphic with each of the required point
stabilizers, so we apply Lemma 2.2.

gap> s:= CharacterTable( "w(d5)" );;

gap> VerifyCandidates( s, tbl, tbl2, faith[6], "all" );

G = 6.M22.2: point stabilizer w(d5), ranks [ 14, 14 ]

[ "la~++21a"+bc+55a"++105abcd+126abcdef+154a~++210b"-ef+231a~-bc",
"la~++21a"+bc+55a"++105abcd+126abcdef+154a~++210b"+ef+231a"~-bc" ]

(Since 6.M22 contains subgroups of the type 2% . L3(2) x 2 in which we are not interested, we must
use "extending" as the last argument of VerifyCandidates for this case.)

gap> s:= CharacterTable( "2x273:L3(2)" );;
gap> VerifyCandidates( s, tbl, tbl2, faith[11], "extending" );
G = 6.M22.2: point stabilizer 2x273:L3(2), ranks [ 12, 12 ]
[ "la~++21a"+bc+55a"++99a"+bc+105abcd+120a~-+154a~++210b~-+330de",
"la”++21a”+bc+55a"++99a"+bc+105abcd+120a"++154a"++210b~++330de" ]
gap> VerifyCandidates( CharacterTable( "L2(11).2" ), tbl, tbl2, faith[16], "all" );
G = 6.M22.2: point stabilizer L2(11).2, ranks [ 20, 20 ]
[ "1a"++21a"-bc+55a"++56a”~{\\pm}+66abcd+105abcd+120a~-bc+154a”++210a"-cdghij+2\
31a"-bc+440a~+",
"la"++21a”-bc+b5a"++56a" {\\pm}+66abcd+105abcd+120a~+bc+154a”++210a" -cdghij+2\
31a”-bc+440a"-" 1]
gap> CompareWithDatabase( "6.M22.2", faith );

The group (6.Ma22.2)* of the isoclinism type that is not printed in the ATLAS has no faithful multipli-
city-free permutation action.

gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
gap> CompareWithDatabase( "Isoclinic(6.M22.2)", faith );

311 G =2,

The group 2.J3 has one faithful multiplicity-free permutation action, with point stabilizer of the type
Us(3), by Lemma 2.1.

gap> tbl:= CharacterTable( "2.J2" );;

gap> faith:= FaithfulCandidates( tbl, "J2" );;

1: subgroup $U_3(3)$, degree 200 (1 cand.)

gap> VerifyCandidates( CharacterTable( "U3(3)" ), tbl, 0, faith[1], "all" );
G = 2.J2: point stabilizer U3(3), ranks [ 5 ]

[ "1a+36at+50ab+63a" ]

gap> CompareWithDatabase( "2.J2", faith );

gap> CompareWithCandidatesByMaxes( "2.J2", faith );
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312 G=2.).2

The group 2.J2.2 that is printed in the ATLAS has no faithful multiplicity-free permutation action.

gap> tbl2:= CharacterTable( "2.J2.2" );;
gap> faith:= FaithfulCandidates( tbl2, "J2.2" );;
gap> CompareWithDatabase( "2.J2.2", faith );

The group (2.J2.2)" of the isoclinism type that is not printed in the ATLAS has three faithful
multiplicity-free permutation actions, with point stabilizers of the types Us(3).2 (twice) and 3.A¢.23.

gap> facttbl:= CharacterTable( "J2.2" );;

gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;

gap> faith:= FaithfulCandidates( tbl2, "J2.2" );;

1: subgroup $U_3(3).2$, degree 200 (1 cand.)

5: subgroup $3.A_6.2_3 \leq 3.A_6.272$, degree 1120 (1 cand.)

The existence of two classes of Us(3) type subgroups follows from Lemma 2.3 (ii).

gap> s0:= CharacterTable( "U3(3)" );;

gap> s:= CharacterTable( "U3(3).2" );;

gap> CheckConditionsForLemma3( sO, s, facttbl, tbl2, "all" );
Isoclinic(2.J2.2): U3(3).2 lifts to a direct product,
proved by squares in [ 1, 3, 8, 16 ].

gap> VerifyCandidates( s, tbl, tbl2, faith[1], "all" );

G = Isoclinic(2.J2.2): point stabilizer U3(3).2, ranks [ 4 ]
[ "1a"++36a"++50ab+63a"+" ]

Each maximal subgroup of the type 3.4¢.22 in J2.2 contains a subgroup U of the type 3.A4¢.23, which
lifts to a direct product N =2 x 3.4¢.23 in (2.J2.2)".

gap> s0:= CharacterTable( "3.A6" );;

gap> s:= CharacterTable( "3.A6.2_3" );;

gap> CheckConditionsForLemma3( sO, s, facttbl, tbl2, "all" );
Isoclinic(2.J2.2): 3.A6.2_3 lifts to a direct product,
proved by squares in [ 3, 10, 16, 25 ].

There is only one class of 3.4¢.23 type subgroups in each maximal subgroup M of G = (2.J2.2)" that
is a preimage of a 3.4¢.2? type subgroup in Jo.2.

This follows from the fact that the normalizer of H = 3.A4¢.23 in G is N; equivalently, the factor
group of M modulo U = H’ is a dihedral group of order 8. With character-theoretic methods, this
can be seen as follows.

gap> tblMbar:= CharacterTable( "3.A6.272" );;

gap> piMbar:= PossiblePermutationCharacters( tblMbar, facttbl );

[ Character( CharacterTable( "J2.2" ), [ 280, 40, 12, 1, 4, 4, 10, 0, 1, O,
0, 2, 2,0, 1, 1, 14, 10, 0, 2, 4, 0, 1, 0, 0, 1, 11 ) 1]

gap> piM:= piMbar[1]{ GetFusionMap( tbl2, facttbl ) };;

gap> piNbar:= PossiblePermutationCharacters( s, facttbl );

[ Character( CharacterTable( "J2.2" ), [ 560, 80, O, 2, 8, 8, 20, 0, 2, 0, O,
0, 0, 0,2,2,0,8,0,0,8,0,2,0,0,2,21)1]

gap> piN:= piNbar[1]{ GetFusionMap( tbl2, facttbl ) };;

gap> piU:= PossiblePermutationCharacters( s0O, tbl2 );

[ Character( CharacterTable( "Isoclinic(2.J2.2)" ),

[ 2240, 0, 320, 0, O, 8, 0, 32, O, 32, 0, 80, O, O, O, 8, 0, O, O, O, O,
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o, o, 0,8,0,8,0,0,0,0,0,0,0,000,00,0,0,0,0,0,0,
01)1

gap> Proof0fD8Factor( tbl2, piU[1], piM, pilN );

[[5,21,22], [291] 1]

It remains to verify the candidate.

gap> VerifyCandidates( s, tbl, tbl2, faith[5], "all" );

G = Isoclinic(2.J2.2): point stabilizer 3.A6.2_3, ranks [ 12 ]

[ "1a~++14c”{\\pm}+21ab+50ab+63a~{\\pm}+90a~++126a~++175a"-+216a"{\\pm}" ]
gap> faith[1]:= faith[1]{ [ 1, 1] };;

gap> CompareWithDatabase( "Isoclinic(2.J2.2)", faith );

3.13 G=2HS

The group 2.HS has five faithful multiplicity-free permutation actions, with point stabilizers of the
types Us(5) (twice), As, and M1 (twice).

gap> tbl:= CharacterTable( "2.HS" );;

gap> faith:= FaithfulCandidates( tbl, "HS" );;

3: subgroup $U_3(5) \leq U_3(5).2%, degree 704 (1 cand.)
5: subgroup $U_3(5) \leq U_3(5).2$, degree 704 (1 cand.)
8: subgroup $A_8 \leq A_8.2%, degree 4400 (1 cand.)

10: subgroup $M_{11}$, degree 11200 (1 cand.)

11: subgroup $M_{11}$, degree 11200 (1 cand.)

Lemma 2.1 applies in all cases; note that 2. HS does not admit an embedding of 2.As.

gap> VerifyCandidates( CharacterTable( "U3(5)" ), tbl, O,

> Concatenation( faith[3], faith[5] ), "all" );

G = 2.HS: point stabilizer U3(5), ranks [ 6, 6 ]

[ "1a+22a+154c+175a+176ab", "la+22a+154b+175a+176ab" ]

gap> PossibleClassFusions( CharacterTable( "2.A8" ), tbl );

[ ]

gap> VerifyCandidates( CharacterTable( "A8" ), tbl, O, faith[8], "all" );

G = 2.HS: point stabilizer A8, ranks [ 13 ]

[ "1a+22a+77a+154abc+175a+176ab+693a+770a+924ab" ]

gap> VerifyCandidates( CharacterTable( "M1i1" ), tbl, O,

> Concatenation( faith[10], faith[11] ), "all" );

G = 2.HS: point stabilizer M11, ranks [ 16, 16 ]

[ "1a+22a+56a+77a+154c+175a+176ab+616ab+770a+825a+1056a+1980ab+2520a",
"1a+22a+56a+77a+154b+175a+176ab+616ab+770a+825a+1056a+1980ab+2520a" ]

gap> CompareWithDatabase( "2.HS", faith );

gap> CompareWithCandidatesByMaxes( "2.HS", faith );

314 G=2HS2

The group 2.HS.2 that is printed in the ATLAS has two faithful multiplicity-free permutation actions,
with point stabilizers of the types Ag x 2 and Ag.2.

gap> tbl2:= CharacterTable( "2.HS.2" );;

gap> faith:= FaithfulCandidates( tbl2, "HS.2" );;

10: subgroup $A_8 \times 2 \leq A_8.2 \times 2$, degree 4400 (1 cand.)
11: subgroup $A_8.2 \leq A_8.2 \times 2§, degree 4400 (1 cand.)
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The existence of subgroups for each candidate follows from Lemma 2.3. (Since there are Ag x 2 type
subgroups inside 2.H S in which we are not interested, we must use "extending" as the last argument
of VerifyCandidates.)

gap> facttbl:= CharacterTable( "HS.2" );;

gap> factfus:= GetFusionMap( tbl2, facttbl );;

gap> s0:= CharacterTable( "A8" );;

gap> s:= sO * CharacterTable( "Cyclic", 2 );

CharacterTable( "A8xC2" )

gap> CheckConditionsForLemma3( sO, s, facttbl, tbl2, "all" );
2.HS.2: A8xC2 lifts to a direct product,

proved by squares in [ 1, 6, 13, 20, 30 ].

gap> VerifyCandidates( s, tbl, tbl2, faith[10], "extending" );

G = 2.HS.2: point stabilizer A8xC2, ranks [ 10 ]

[ "la~++22a"++77a"++154a"+bc+175a"++176ab+693a"++770a"~++924ab" ]
gap> s:= CharacterTable( "A8.2" );;

gap> CheckConditionsForLemma3( sO, s, facttbl, tbl2, "extending" );
2.HS.2: A8.2 lifts to a direct product,

proved by squares in [ 1, 6, 13 ].

gap> VerifyCandidates( s, tbl, tbl2, faith[11], "all" );

G = 2.HS.2: point stabilizer A8.2, ranks [ 10 ]

[ "la~++22a~-+77a"++154a"+bc+175a"++176ab+693a " ++770a~-+924ab" ]
gap> CompareWithDatabase( "2.HS.2", faith );

Note that any maximal Sg X 2 type subgroup in HS.2 contains two subgroups of the type Ss, and
the one that is contained in HS does not lift to a direct product in G = 2.HS.2 but to a subdirect
product S of Sg and a cyclic group of order four, since 2. HS does not contain Ss type subgroups.

Let M be a maximal subgroup of G that maps to a subgroup of the type Ss X 2 in the factor group
HS.2. By the above observations, we know three subgroups of index two in M: the subdirect product
S and the direct products Ss x 2 and Ag x 22. So we see that the factor group of M by the As type
subgroup is a dihedral group of order eight.

(The situation is similar to that in Section 3.12, but the sufficient condition checked by the function
Proof0fD8Factor is not satisfied here, as the following computation shows. We have U & Ag and
N = Ag x 22)

gap> tblMbar:= CharacterTable( "A8.2" ) * CharacterTable( "Cyclic", 2 );;

gap> piMbar:= PossiblePermutationCharacters( tblMbar, facttbl );

[ Character( CharacterTable( "HS.2" ), [ 1100, 60, 32, 11, 40, 16, 4, 0, 10,
o, 5, 3,1, 2,0, 0, 2, O, 1, 1, O, 134, 30, 10, 10, O, 11, 5, 3, O, 4,
4, 0, 1, 1, 0, 0, 0, 1 1) 1

gap> piM:= piMbar[1]{ GetFusionMap( tbl2, facttbl ) };;

gap> s:= s0 * CharacterTable( "Cyclic", 2 );;

gap> piNbar:= PossiblePermutationCharacters( s, facttbl );

[ Character( CharacterTable( "HS.2" ), [ 2200, 120, 0, 22, 0, 16, 8, 0, 20,
o, o, 6, 2, 0, 0, 0, 0, O, O, 2, O, 212, 20, 20, 12, O, 2, 8, 2, 0, O,
2, 0,0, 2,0,0,0,21)1]

gap> piN:= piNbar[1]{ GetFusionMap( tbl2, facttbl ) };;

gap> piU:= PossiblePermutationCharacters( sO, tbl2 );

[ Character( CharacterTable( "2.HS.2" ), [ 8800, O, 320, 160, 0, 88, 0, O,
32, 16, 0, 0, 80, O, 0, O, O, 8, 16, 8, O, O, O, O, O, O, O, O, O, 8,
o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O,
0, 0, 01) 1

gap> Proof0fD8Factor( tbl2, piU[1], piM, pil );

[[5, 17,261, [ 11
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The group (2.HS.2)" of the isoclinism type that is not printed in the ATLAS has no faithful multiplicity-
free permutation action.

gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "HS.2" );;
gap> CompareWithDatabase( "Isoclinic(2.HS.2)", faith );

315 G=3.Js

The group 3.J3 has no faithful multiplicity-free permutation action.

gap> tbl:= CharacterTable( "3.J3" );;
gap> faith:= FaithfulCandidates( tbl, "J3" );;
gap> CompareWithDatabase( "3.J3", faith );

3.16 G=3.J32

The group 3.J3.2 has no faithful multiplicity-free permutation action.

gap> tbl2:= CharacterTable( "3.J3.2" );;
gap> faith:= FaithfulCandidates( tbl2, "J3.2" );;
gap> CompareWithDatabase( "3.J3.2", faith );

3.17 G=3.McL

The group 3.McL has one faithful multiplicity-free permutation action, with point stabilizer of the
type 2.As, by Lemma 2.1.

gap> tbl:= CharacterTable( "3.McL" );;

gap> faith:= FaithfulCandidates( tbl, "McL" );;

6: subgroup $2.A_8%, degree 66825 (1 cand.)

gap> VerifyCandidates( CharacterTable( "2.A8" ), tbl, 0, faith[6], "all" );
G = 3.McL: point stabilizer 2.A8, ranks [ 14 ]

[ "1a+252a+1750a+2772ab+5103abc+5544a+6336ab+8064ab+9625a" ]

gap> CompareWithDatabase( "3.McL", faith );

gap> CompareWithCandidatesByMaxes( "3.McL", faith );

3.18 G =3.McL.2

The group 3.McL.2 has one faithful multiplicity-free permutation action, with point stabilizer of the
type (2.4s.2)", by Lemma 2.2.

gap> tbl2:= CharacterTable( "3.McL.2" );;

gap> faith:= FaithfulCandidates( tbl2, "McL.2" );;

9: subgroup $2.S_8%, degree 66825 (1 cand.)

gap> s:= CharacterTable( "Isoclinic(2.A8.2)" );;

gap> VerifyCandidates( s, tbl, tbl2, faith[9], "all" );

G = 3.McL.2: point stabilizer Isoclinic(2.A8.2), ranks [ 10 ]

[ "la"++252a~++1750a"~++2772ab+5103a"~+bc+5544a”~++6336ab+8064ab+9625a~+" ]
gap> CompareWithDatabase( "3.McL.2", faith );

22



3.19 G=2Ru

The group 2. Ru has one faithful multiplicity-free permutation action, with point stabilizer of the type
2F4(2)’, by Lemma 2.1.

gap> tbl:= CharacterTable( "2.Ru" );;

gap> faith:= FaithfulCandidates( tbl, "Ru" );;

2: subgroup ${"2F_4(2) "{\prime}} \leq {"2F_4(2) {\prime}}.2$, degree 16240 (
1 cand.)

gap> VerifyCandidates( CharacterTable( "2F4(2)’" ), tbl, 0, faith[2], "all" );
G = 2.Ru: point stabilizer 2F4(2)’, ranks [ 9 ]

[ "1a+28ab+406a+783a+3276a+3654a+4032ab" ]

gap> CompareWithDatabase( "2.Ru", faith );

3.20 G =2.Suz

The group 2.Suz has one faithful multiplicity-free permutation action, with point stabilizer of the
type Us(2), by Lemma 2.1.

gap> tbl:= CharacterTable( "2.Suz" );;

gap> faith:= FaithfulCandidates( tbl, "Suz" );;

4: subgroup $U_5(2)$, degree 65520 (1 cand.)

gap> VerifyCandidates( CharacterTable( "U5(2)" ), tbl, O, faith[4], "all" );
G = 2.Suz: point stabilizer U5(2), ranks [ 10 ]

[ "la+143a+364abc+5940a+12012a+14300a+16016ab" ]

gap> CompareWithDatabase( "2.Suz", faith );

3.21 G =2Suz?2

The group 2.Suz.2 that is printed in the ATLAS has four faithful multiplicity-free permutation actions,
with point stabilizers of the types Us(2).2 (twice) and 3° : (M1 x 2) (twice), respectively.

gap> tbl2:= CharacterTable( "2.Suz.2" );;

gap> faith:= FaithfulCandidates( tbl2, "Suz.2" );;

8: subgroup $U_5(2).2$, degree 65520 (1 cand.)

12: subgroup $3°5:(M_{11} \times 2)$, degree 465920 (1 cand.)

We verify the conditions of Lemma 2.3 (ii).

gap> s0:= CharacterTable( "U5(2)" );;

gap> s:= CharacterTable( "U5(2).2" );;

gap> facttbl:= CharacterTable( "Suz.2" );;

gap> CheckConditionsForLemma3( sO, s, facttbl, tbl2, "all" );
2.Suz.2: U5(2).2 lifts to a direct product,

proved by squares in [ 1, 8, 13, 19, 31, 44 ].

gap> VerifyCandidates( s, tbl, tbl2, faith[8], "all" );

G = 2.Suz.2: point stabilizer U5(2).2, ranks [ 8 ]

[ "1a"++143a"-+364a"+bc+5940a"++12012a"-+14300a"-+16016ab" ]
gap> s0:= CharacterTable( "SuzM5" );

CharacterTable( "3°5:M11" )

gap> s:= CharacterTable( "Suz.2M6" );

CharacterTable( "3°5: (M11x2)" )

gap> CheckConditionsForLemma3( sO, s, facttbl, tbl2, "all" );
2.Suz.2: 375:(M11x2) 1lifts to a direct product,
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proved by squares in [ 1, 4, 8, 10, 19, 22, 26, 39 ].

gap> VerifyCandidates( s, tbl, tbl2, faith[12], "all" );

G = 2.Suz.2: point stabilizer 375:(M11x2), ranks [ 14 ]

[ "1a~++364a~{\\pm}bc+5940a~++12012a"-+14300a"-+15015ab+15795a"++16016ab+54054\
a~++100100a"-b~{\\pm}" 1]

gap> faith[8]:= faith[8]{ [ 1, 1] ;

gap> faith[12]:= faith[12]{ [ 1, 1 1 };;
gap> CompareWithDatabase( "2.Suz.2", faith );

};
]

The group (2.5uz.2)* of the isoclinism type that is not printed in the ATLAS has no faithful multiplicity-
free permutation action.

gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "Suz.2" );;
gap> CompareWithDatabase( "Isoclinic(2.Suz.2)", faith );

3.22 G =3.Suz

The group 3.Suz has four faithful multiplicity-free permutation actions, with point stabilizers of the
types Ga(4), Us(2), 2176.U4(2), and 2*15 : 34, respectively, by Lemma 2.1.

gap> tbl:= CharacterTable( "3.Suz" );;

gap> faith:= FaithfulCandidates( tbl, "Suz" );;

1: subgroup $G_2(4)$, degree 5346 (1 cand.)

4: subgroup $U_5(2)$, degree 98280 (1 cand.)

5: subgroup $2°{1+6}_-.U_4(2)$, degree 405405 (1 cand.)

6: subgroup $2°{4+6}:3A_6$%, degree 1216215 (1 cand.)

gap> Maxes( tbl );

[ "3xG2(4)", "372.U4(3).2_3°", "3xU5(2)", "3x2"(1+6)_-.U4(2)", "376.M11",
"3xJ2.2", "3x27(4+6).3A6", "(A4x3.L3(4)).2", "3x27(2+8):(A5xS3)",
"3xM12.2", "3.37(2+4):2(A4x272).2", "(3.A6xA5):2", "(37(1+2):4xA6).2",
"3xL3(3).2", "3xL3(3).2", "3xL2(25)", "3.A7" ]

gap> VerifyCandidates( CharacterTable( "G2(4)" ), tbl, O, faith[1], "all" );

G = 3.Suz: point stabilizer G2(4), ranks [ 7 ]

[ "1a+66ab+780a+1001a+1716ab" ]

gap> VerifyCandidates( CharacterTable( "U5(2)" ), tbl, O, faith[4], "all" );

G = 3.Suz: point stabilizer U5(2), ranks [ 14 ]

[ "1a+78ab+143a+364a+1365ab+4290ab+5940a+12012a+14300a+27027ab" ]

gap> VerifyCandidates( CharacterTable( "SuzM4" ), tbl, O, faith[5], "all" );

G = 3.Suz: point stabilizer 271+6.u4q2, ranks [ 23 ]

[ "la+66ab+143a+429ab+780a+1716ab+3432a+5940a+6720ab+14300a+18954abc+25025a+42\

900ab+64350cd+66560a" ]

gap> VerifyCandidates( CharacterTable( "SuzM7" ), tbl, 0, faith[6], "all" );

G = 3.Suz: point stabilizer 27°4+6:3a6, ranks [ 27 ]

[ "1a+364a+780a+1001a+1365ab+4290ab+5940a+12012a+14300a+15795a+25025a+27027ab+\

42900ab+66560a+75075a+85800ab+88452a+100100a+104247ab+139776ab" ]

gap> CompareWithDatabase( "3.Suz", faith );

3.23 G =3.Suz.2

The group 3.Suz.2 has four faithful multiplicity-free permutation actions, with point stabilizers of
the types G2(4).2, Us(2).2, 275.U4(2).2, and 27 : 35, respectively. We know from the treatment
of 3.Suz that we can apply Lemma 2.2.
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gap> tbl2:= CharacterTable( "3.Suz.2" );;

gap> faith:= FaithfulCandidates( tbl2, "Suz.2" );;

1: subgroup $G_2(4).2$, degree 5346 (1 cand.)

8: subgroup $U_5(2).2$, degree 98280 (1 cand.)

10: subgroup $2°{1+6}_-.U_4(2).2$, degree 405405 (1 cand.)

13: subgroup $2°{4+6}:35_6$, degree 1216215 (1 cand.)

gap> Maxes( CharacterTable( "Suz.2" ) );

[ "Suz", "G2(4).2", "3_2.U4(3).(272)_{133}", "U5(2).2", "27(1+6)_-.U4(2).2",
"3°5: (M11x2)", "J2.2x2", "27(4+6):3S6", "(A4xL3(4):2_3):2",
"27(2+8) : (85xS3)", "M12.2x2", "37(2+4):2(S4xD8)", "(A6:2_2xA5).2",
"(372:8xA6).2", "L2(26).2_2", "A7.2" ]

gap> VerifyCandidates( CharacterTable( "G2(4).2" ), tbl, tbl2, faith[1], "all" );

G = 3.Suz.2: point stabilizer G2(4).2, ranks [ 5 ]

[ "1a~++66ab+780a~++1001a"++1716ab" ]

gap> VerifyCandidates( CharacterTable( "U5(2).2" ), tbl, tbl2, faith[8], "all" );

G = 3.Suz.2: point stabilizer U5(2).2, ranks [ 10 ]

[ "1a~++78ab+143a”~-+364a"++1365ab+4290ab+5940a"++12012a"~-+14300a~-+27027ab" ]

gap> VerifyCandidates( CharacterTable( "Suz.2M5" ), tbl, tbl2, faith[10], "all" );

G = 3.Suz.2: point stabilizer 27 (1+6)_-.U4(2).2, ranks [ 16 ]

[ "la~++66ab+143a~-+429ab+780a"~++1716ab+3432a"~++5940a"~++6720ab+14300a"-+18954a\

~-bc+25025a"++42900ab+64350cd+66560a"+" ]

gap> VerifyCandidates( CharacterTable( "Suz.2M8" ), tbl, tbl2, faith[13], "all" );

G = 3.Suz.2: point stabilizer 27(4+6):356, ranks [ 20 ]

[ "1a"++364a~++780a"++1001a"++1365ab+4290ab+5940a"++12012a~-+14300a"-+15795a"+\

+25025a"++27027ab+42900ab+66560a"++75075a"++85800ab+88452a"++100100a"++104247a\

b+139776ab" ]

gap> CompareWithDatabase( "3.Suz.2", faith );

3.24 G =6.Suz

The group 6.Suz has one faithful multiplicity-free permutation action, with point stabilizer of the
type Us(2), by Lemma 2.1.

gap> tbl:= CharacterTable( "6.Suz" );;

gap> faith:= FaithfulCandidates( tbl, "2.Suz" );;

1: subgroup $U_5(2) \rightarrow (Suz,4)$, degree 196560 (1 cand.)

gap> VerifyCandidates( CharacterTable( "U5(2)" ), tbl, O, faith[1], "all" );

G = 6.Suz: point stabilizer U5(2), ranks [ 26 ]

[ "la+12ab+78ab+143a+364abc+924ab+1365ab+4290ab+4368ab+5940a+12012a+14300a+160\
16ab+27027ab+27456ab" ]

gap> CompareWithDatabase( "6.Suz", faith );

3.25 G =6.5uz.2

The group 6.Suz.2 that is printed in the ATLAS has two faithful multiplicity-free permutation actions,
with point stabilizers of the type Us(2).2 (twice). We know from the treatment of 6.Suz that we can
apply Lemma 2.2, and get two classes in each case by the treatment of 2.Suz.2.

gap> tbl2:= CharacterTable( "6.Suz.2" );;

gap> faith:= FaithfulCandidates( tbl2, "Suz.2" );;

8: subgroup $U_5(2) .28, degree 196560 (1 cand.)

gap> VerifyCandidates( CharacterTable( "U5(2).2" ), tbl, tbl2, faith[8], "all" );
G = 6.Suz.2: point stabilizer U5(2).2, ranks [ 16 ]
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[ "1a"++12ab+78ab+143a~-+364a"+bc+924ab+1365ab+4290ab+4368ab+5940a"~++12012a~-+\
14300a"-+16016ab+27027ab+27456ab" ]

gap> faith[8]:= faith[8]{ [ 1, 11 };;

gap> CompareWithDatabase( "6.Suz.2", faith );

It follows from the treatment of (2.Suz.2)* that the group (6.Suz.2)* of the isoclinism type that is
not printed in the ATLAS does not have a faithful multiplicity-free permutation action.

gap> CompareWithDatabase( "Isoclinic(6.Suz.2)", [] );

3.26 G =3.0N

The group 3.0ON has four faithful multiplicity-free permutation actions, with point stabilizers of the
types L3(7).2 (twice) and L3(7) (twice). (The Schur multiplier of L3(7).2 is trivial, so the L3(7) type
subgroups lift to direct products with the centre of 3.ON, that is, we can apply Lemma 2.1.)

gap> tbl:= CharacterTable( "3.0N" );;

gap> faith:= FaithfulCandidates( tbl, "ON" );;

1: subgroup $L_3(7).2$, degree 368280 (1 cand.)

2: subgroup $L_3(7) \leq L_3(7).2%, degree 736560 (1 cand.)

3: subgroup $L_3(7).2$, degree 368280 (1 cand.)

4: subgroup $L_3(7) \leq L_3(7).2$, degree 736560 (1 cand.)

gap> VerifyCandidates( CharacterTable( "L3(7).2" ), tbl, O,

> Concatenation( faith([1], faith[3] ), "all" );

G = 3.0N: point stabilizer L3(7).2, ranks [ 11, 11 ]

[ "1a+495ab+10944a+26752a+32395b+52668a+58653bc+63612ab",
"1a+495cd+10944a+26752a+32395a+52668a+58653bc+63612ab" ]

gap> VerifyCandidates( CharacterTable( "L3(7)" ), tbl, O,

> Concatenation( faith[2], faith[4] ), "all" );

G = 3.0N: point stabilizer L3(7), ranks [ 15, 15 ]

[ "1a+495ab+10944a+26752a+32395b+37696a+52668a+58653bc+63612ab+85064a+122760ab\

"1a+495cd+10944a+26752a+32395a+37696a+52668a+58653bc+63612ab+85064a+122760ab\
n ]
gap> CompareWithDatabase( "3.0N", faith );

3.27 G=30N2

The group 3.ON.2 has no faithful multiplicity-free permutation action.

gap> tbl2:= CharacterTable( "3.0N.2" );;
gap> faith:= FaithfulCandidates( tbl2, "ON.2" );;
gap> CompareWithDatabase( "3.0N.2", faith );

3.28 G =2.Fiy

The group 2.F'i22 has seven faithful multiplicity-free permutation actions, with point stabilizers of
the types O7(3) (twice), OF (2) : S3 (twice), O (2) : 3, and OF (2) : 2 (twice).

gap> tbl:= CharacterTable( "2.Fi22" );;

gap> faith:= FaithfulCandidates( tbl, "Fi22" );;
2: subgroup $0_7(3)$, degree 28160 (2 cand.)

3: subgroup $0_7(3)$, degree 28160 (2 cand.)
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4: subgroup $0_8"+(2):5_3%, degree 123552 (2 cand.)
5: subgroup $0_8"+(2):3 \leq 0_8"+(2):S_3$, degree 247104 (1 cand.)
6: subgroup $0_87+(2):2 \leq 0_8"+(2):S_3$%, degree 370656 (2 cand.)

The two classes of maximal subgroups of the type O7(3) in Fizs induce the same permutation char-
acter and lift to two classes of the type 2 x O7(3) in 2.Fi22. We get the same two candidates for these
two classes. One of them belongs to the first class of O7(3) subgroups in 2.F%22, the other candidate
belongs to the second class; this can be seen from the fact that the outer automorphism of Fligo
swaps the two classes of O7(3) subgroups, and the lift of this automorphism to 2.Fis interchanges
the candidates —this action can be read off from the embedding of 2.Fi22 into any group of the type
2.Fig9.2.

gap> faith[2] = faith[3];

true

gap> tbl2:= CharacterTable( "2.Fi22.2" );;

gap> embed:= GetFusionMap( tbl, tbl2 );;

gap> swapped:= Filtered( InverseMap( embed ), IsList );

(03,41, 017,187, [ 25,261, [ 27, 28], [33, 341, [36, 371,
[ 42, 431, [ 51,521, [69,601, [63, 6561, [ 64,661, [ 71, 721,
(73, 751, [ 74, 76 1, [ 81,821, [ 85,871, [ 8, 8 1, [ 89, 90 1,
[ 93, 941, [ 95, 981, [ 96, 97 1, [ 99, 100 1, [ 103, 104 1,
[ 107, 110 1, [ 108, 109 1, [ 113, 114 ] 1]

gap> perm:= Product( List( swapped, pair -> ( pair[1], pair([2] ) ) );;

gap> Permuted( faith[2][1], perm ) = faith[2][2];

true

gap> VerifyCandidates( CharacterTable( "07(3)" ), tbl, O, faith[2], "all" );

G = 2.Fi22: point stabilizer 07(3), ranks [ 5, 5 ]

[ "1a+352a+429a+13650a+13728b", "la+352a+429a+13650a+13728a" ]

gap> faith([2]:= [ faith[2][1] 1;;

gap> faith[3]:= [ faith[3][2] 1;

All involutions in F'ige lift to involutions in 2.F'%22, so the preimages of the maximal subgroups of
the type OF (2).S5 in Fliss have the type 2 x Of (2).S3. We apply Lemma 2.3, using that the two
subgroups of the type OF (2).S3 contain involutions outside OF (2) which lie in the two nonconjugate
preimages of the class 2A of Flige; this proves the existence of the two candidates of degree 123 552.

gap> s:= CharacterTable( "08+(2).S3" );;

gap> s0:= CharacterTable( "08+(2).3" );;

gap> facttbl:= CharacterTable( "Fi22" );;

gap> CheckConditionsForLemma3( sO, s, facttbl, tbl, "all" );

2.Fi22: 08+(2).3.2 lifts to a direct product,

proved by squares in [ 1, 8, 10, 12, 20, 23, 30, 46, 55, 61, 91 ].

gap> derpos:= ClassPositionsO0fDerivedSubgroup( s );;

gap> factfus:= GetFusionMap( tbl, facttbl );;

gap> ForAll( PossibleClassFusions( s, tbl ),

> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );

true

gap> VerifyCandidates( CharacterTable( "08+(2).S3" ), tbl, 0, faith[4], "all" );

G = 2.Fi22: point stabilizer 08+(2).3.2, ranks [ 6, 6 ]

[ "1a+3080a+13650a+13728b+45045a+48048c",
"1a+3080a+13650a+13728a+45045a+48048b" ]

The existence of one class of OF (2).3 subgroups follows from Lemma 2.1, and the proof for OF (2).53
also establishes two classes of OfF (2).2 subgroups, with different permutation characters,
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gap> VerifyCandidates( CharacterTable( "08+(2).3" ), tbl, 0, faith[5], "all" );

G = 2.Fi22: point stabilizer 08+(2).3, ranks [ 11 ]

[ "1a+1001a+3080a+10725a+13650a+13728ab+45045a+48048bc+50050a" ]

gap> VerifyCandidates( CharacterTable( "08+(2).2" ), tbl, 0, faith[6], "all" );

G = 2.Fi22: point stabilizer 08+(2).2, ranks [ 11, 11 ]

[ "1a+352a+429a+3080a+13650a+13728b+45045a+48048ac+75075a+123200a" ,
"1a+352a+429a+3080a+13650a+13728a+45045a+48048ab+75075a+123200a" ]

gap> CompareWithDatabase( "2.Fi22", faith );

3.29 G =2.Fign.2

The group 2.F'iz2.2 that is printed in the ATLAS has six faithful multiplicity-free permutation actions,
with point stabilizers of the types O7(3), OF (2) : S3, OF (2) : 3 x 2, O (2) : 2, and F4(2) (twice).

gap> tbl2:= CharacterTable( "2.Fi22.2" );;

gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;

3: subgroup $0_7(3)$, degree 56320 (1 cand.)

5: subgroup $0_8"+(2):5_3 \leq 0_8"+(2):S_3 \times 2§, degree 247104 (

1 cand.)

6: subgroup $0_8"+(2):3 \times 2 \leq 0_8"+(2):S_3 \times 2$, degree 247104 (
1 cand.)

10: subgroup $0_87"+(2):2 \leq 0_8"+(2):S_3 \times 2%, degree 741312 (1 cand.)
16: subgroup ${"2F_4(2) {\primel}}.2$, degree 7185024 (1 cand.)

The third, fifth, and tenth multiplicity-free permutation character of Fiz2.2 are induced from sub-
groups of the types O7(3), OF (2).S3, and OF (2).2 that lie inside Fizo, and we have discussed above
that these groups lift to direct products in 2.F%22. In fact all such subgroups of 2.F'i22.2 lie inside
2.Fis2, and the two classes of such subgroups in 2.Figs are fused in 2.F%22.2, hence we get only one
class of these subgroups.

gap> VerifyCandidates( CharacterTable( "07(3)" ), tbl, tbl2, faith[3], "all" );

G = 2.Fi22.2: point stabilizer 07(3), ranks [ 9 ]

[ "1a~{\\pm}+352a~{\\pm}+429a"{\\pm}+13650a~{\\pm}+13728ab" ]

gap> VerifyCandidates( CharacterTable( "08+(2).S3" ), tbl, tbl2, faith[5], "all" );
G = 2.Fi22.2: point stabilizer 08+(2).3.2, ranks [ 10 ]

[ "1a”{\\pm}+3080a~{\\pm}+13650a~{\\pm}+13728ab+45045a"~{\\pm}+48048bc" ]

gap> VerifyCandidates( CharacterTable( "08+(2).2" ), tbl, tbl2, faith[10], "all" );
G = 2.Fi22.2: point stabilizer 08+(2).2, ranks [ 20 ]

[ "1a”{\\pm}+352a~{\\pm}+429a~{\\pm}+3080a~{\\pm}+13650a~{\\pm}+13728ab+45045a\
“{\\pm}+48048a"~{\\pm}bc+75075a"{\\pm}+123200a~{\\pm}" ]

The sixth multiplicity-free permutation character of F'is2.2 is induced from a subgroup of the type
O;’(Z).S X 2 that does not lie in Fliza. Let M be a maximal subgroup of G = 2.F'i22.2 that maps
onto a group of the type OF (2) : S5 x 2 in the factor group Flize.2. As we have discussed above, any
O7 (2).3 type subgroup of Fis lifts to a subgroup of the type 2 x OF (2).3 in 2.Fi20, and the outer
involutions in the subgroup Og‘ (2).3 x 2 of Fige.2 lift to involutions in 2.F422.2; so M contains two
subgroups isomorphic to H that do not contain the centre of 2.Fi22.2. We use Lemma 2.4 to show
that these groups are conjugate in M: The subgroup U has the type O; (2).3, the subgroups H and
UZ have the type OF (2) : 3 x 2, and so also N/Z has this type.

gap> tbl2:= CharacterTable( "2.Fi22.2" );;

gap> facttbl:= CharacterTable( "Fi22.2" );;

gap> tblMbar:= CharacterTable( "08+(2).S83" ) * CharacterTable( "Cyclic", 2 );;
gap> piMbar:= PossiblePermutationCharacters( tblMbar, facttbl );
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[ Character( CharacterTable( "Fi22.2" ), [ 61776, 6336, 656, 288, 666, 216,
36, 27, 40, 76, 16, 12, 20, 1, 36, 72, 8, 26, 18, 36, 24, 12, 8, 6, 3,
1, 4, 8, 0, 2, 6, 3, 0, 1, 1, O, 4, 10, 4, 4, 0, O, 4, 2, 4, 3, 0, 1,
i1, 0, 0, 3, 2, 1,1, 0, 2, 4, 1, 1576, 216, 316, 168, 56, 36, 32, 4,
46, 64, 10, 16, 10, 30, 10, 1, 9, 6, 4, 4, 8, 0, 6, 1, 1, 1, 24, 6, 6,
6, 8, 6, 6, 0, 2, 1, 1, 1, O, 4, 1, 1, O, 1, 4, 2, 0, O, O, 1, 1, O, 1
151
gap> piM:= piMbar[1]{ GetFusionMap( tbl2, facttbl ) };;
gap> tblNbar:= CharacterTable( "08+(2).3" ) #* CharacterTable( "Cyclic", 2 );;
gap> piNbar:= PossiblePermutationCharacters( tblNbar, facttbl );
[ Character( CharacterTable( "Fi22.2" ), [ 123552, 0, 1312, 192, 1332, 432,
72, 54, 80, O, O, 24, 16, 2, O, O, 16, 52, 0, 48, 0, 24, 16, 0, 6, 2,
4, 4, 0, 0, 12, 6, 0, 0, 2, 0, 8, 20, 8, 0, 0, O, O, 4, 0, 6, 0, O, 2,
o0, o, 0o, 4, 0, 2, 0, 4, 4, 0, 3152, 432, 0, 48, 80, 48, 0, 8, 92, 128,
20, 0, 20, 60, O, 2, 18, 12, O, 4, 4, 0, 0, 2, 0, 2, 24, 12, 12, 0, 8,
12, 0, 0, 0, 2, 2, 0, 0, 8, 2, 0, O, O, 4, 4, 0, 0, 0, 2, 0, 0, 21 ) 1]
gap> piN:= piNbar[1]{ GetFusionMap( tbl2, facttbl ) 1};;
gap> tblU:= CharacterTable( "08+(2).3" );;
gap> piU:= PossiblePermutationCharacters( tblU, tbl2 );
[ Character( CharacterTable( "2.Fi22.2" ), [ 494208, 0, 0, 4608, 640, 384,
5328, o0, 1728, 0, 288, O, 216, O, 160, O, O, 96, O, 32, 8, 0, O, O, O,
64, 96, 112, 0, 96, 0, O, 96, 48, 16, 0, 0, 24, 8, 0, 8, 8, 0, 0, 48

0, 24, 0, 0, 0, 0, 8, 0, 0, O, 16, 64, 16, 16, 0, 0, O, O, O, O, 8, O,
24, 0, 0, 0, 0, 8, 0, 0, 0, O, O, O, 16, 0, 8, 0, O, O, 8, 8, 0, 0, O,
o0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O,
o, o0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O,
0, 0, 0, 0,0,0,0,0,0,0,0,01)1

gap> Proof0fD8Factor( tbl2, piU[1], piM, pilN );

[ [ 91, 101, 104, 110, 114, 116, 124, 130, 135, 138, 146 1, [ 31 1]

Since also 2.Fi22 contains subgroups of the type Of (2).3 x 2, we must use "extending" as the last
argument of VerifyCandidates.

gap> s:= CharacterTable( "08+(2).3" ) * CharacterTable( "Cyclic", 2 );;

gap> VerifyCandidates( s, tbl, tbl2, faith[6], "extending" );

G = 2.Fi22.2: point stabilizer 08+(2).3xC2, ranks [ 9 ]

[ "1a~++1001a~-+3080a"++10725a~++13650a"++13728ab+45045a"++48048bc+50050a"+" ]

By Lemma 2.3, the subgroup 2F4(2) of Figo.2 lifts to 2 X 2F4(2) in 2.Fi22.2; for that, note that the
class 4D of 2F4(2) does not lie inside 2F4(2)' and the preimages in 2.Fi22.2 of the images in Fi2z.2
square into the subgroup 2Fy(2)’ of the direct product 2 x 2Fy(2)’. Since the group 2 x 2 F4(2) contains
two subgroups of the type 2Fy(2), with normalizer 2 x ?F4(2), there are two classes of such subgroups,
which induce the same permutation character.

gap> facttbl:= CharacterTable( "Fi22.2" );;

gap> s0:= CharacterTable( "2F4(2)’" );;

gap> s:= CharacterTable( "2F4(2)" );;

gap> CheckConditionsForLemma3( sO, s, facttbl, tbl2, "all" );
2.Fi22.2: 2F4(2)’.2 lifts to a direct product,

proved by squares in [ 5, 38, 53 ].

gap> VerifyCandidates( s, tbl, tbl2, faith[16], "all" );

G = 2.Fi22.2: point stabilizer 2F4(2)’.2, ranks [ 13 ]

[ "1a"++1001a"++1430a"++13650a"++30030a"++133056a"{\\pm}+289575a~-+400400ab+57\
9150a"++675675a"-+1201200a"-+1663200ab" ]

gap> faith[16]:= faith[16]1{ [ 1, 1 1 };;

gap> CompareWithDatabase( "2.Fi22.2", faith );
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The group (2.Fi22.2)" of the isoclinism type that is not printed in the ATLAS has five faithful
multiplicity-free permutation actions, with point stabilizers of the types Oz7(3), O (2) : S5 (twice),
and OF (2) : 2 (twice).

gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;

gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;

3: subgroup $0_7(3)$, degree 56320 (1 cand.)

5: subgroup $0_87"+(2):5S_3 \leq 0_87+(2):5_3 \times 2§, degree 247104 (

1 cand.)

7: subgroup $0_87+(2):5_3 \leq 0_87+(2):5_3 \times 2$, degree 247104 (

1 cand.)

10: subgroup $0_8"+(2):2 \leq 0_87+(2):S_3 \times 2§, degree 741312 (1 cand.)
11: subgroup $0_87+(2):2 \leq 0_8"+(2):S_3 \times 2%, degree 741312 (1 cand.)

The characters arising from the third, fifth, and tenth multiplicity-free permutation character of
Flig2.2 are induced from subgroups of 2. F'iz2, so these actions have been verified above.

The seventh multiplicity-free permutation character of F'iz2.2 is induced from a subgroup of the type
OF (2).S3 that does not lie in Fiss. By Lemma 2.3 (i), this subgroup lifts to a direct product N in
G = (2.Fi22.2)".

gap> tblU:= CharacterTable( "08+(2).3" );;

gap> tblNbar:= CharacterTable( "08+(2).S3" );;

gap> CheckConditionsForLemma3( tblU, tblNbar, facttbl, tbl2, "extending" );
Isoclinic(2.Fi22.2): 08+(2).3.2 lifts to a direct product,

proved by squares in [ 1, 7, 9, 11, 18, 21, 26, 39, 47, 52, 73 ].

The G-conjugacy of the two subgroups of the type OF (2).S3 in N follows from Lemma 2.4. Note
that there are two permutation characters of G that are induced from O; (2).S3 type subgroups, and
the permutation character 1§ is determined as the one that does not vanish outside G'.

gap> tblNbar:= CharacterTable( "08+(2).S83" );;

gap> piNbar:= PossiblePermutationCharacters( tblNbar, facttbl );

[ Character( CharacterTable( "Fi22.2" ), [ 123552, 0, 1312, 192, 1332, 432,
72, 54, 80, 0, O, 24, 16, 2, 0, O, 16, 52, 0, 48, 0, 24, 16, 0, 6, 2,
4, 4, 0, 0, 12, 6, 0, 0, 2, O, 8, 20, 8, 0, O, O, O, 4, 0, 6, 0, O, 2,
o, 0, 0, 4, 0, 2, O, 4, 4, 0, 0, 0, 632, 288, 32, 24, 64, 0, 0, 0, O,
32, 0, 0, 20, O, O, O, 8, 4, 12, 0, 12, 0, 2, O, 24, 0, O, 12, 8, O,
12, o0, 4, 0, 0, 2, 0, 0, 0, 2, 0, 2, 4, 0, 0, O, O, 0, 2, 0, 0 1),

Character( CharacterTable( "Fi22.2" ), [ 123552, 12672, 1312, 576, 1332,

432, 72, 54, 80, 152, 32, 24, 40, 2, 72, 144, 16, 52, 36, 72, 48, 24,

16, 12, 6, 2, 8, 16, O, 4, 12, 6, 0, 2, 2, 0, 8, 20, 8, 8, 0, O, 8, 4,
8, 6, 0,2,2,0,0,6, 4,2,2,0,4,8,2,0,0,0,0,0,0,0,0,0,
o, o, o, o0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,
o0, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, 0, O, 01 ) 1]

gap> piN:= piNbar[1]{ GetFusionMap( tbl2, facttbl ) };;

gap> Proof0fD8Factor( tbl2, piU[1], piM, piN );

[ [89, 90, 97, 98, 99, 100, 102, 103, 105, 106, 107, 108, 109, 115, 117,
119, 127, 128, 129, 132, 133, 134, 145, 149, 150 1, [ 31 1]

Since also 2.F'i2 contains subgroups of the type OF (2) : S5, we must use "extending" as the last
argument of VerifyCandidates.

gap> s0:= CharacterTable( "08+(2).3" );;
gap> s:= CharacterTable( "08+(2).S83" );;
gap> CheckConditionsForLemma3( sO, s, facttbl, tbl2, "extending" );
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Isoclinic(2.Fi22.2): 08+(2).3.2 lifts to a direct product,

proved by squares in [ 1, 7, 9, 11, 18, 21, 26, 39, 47, 52, 73 ].

gap> VerifyCandidates( s, tbl, tbl2, faith[7], "extending" );

G = Isoclinic(2.Fi22.2): point stabilizer 08+(2).3.2, ranks [ 9 ]

[ "1a~++1001a~++3080a"++10725a~-+13650a"++13728ab+45045a"~++48048bc+50050a"~-" ]

The existence of exactly one class of OF (2) : 2 type subgroups not contained in 2.Fi25 follows from the
above consideration; the corresponding permutation characters arise from the 11-th multiplicity-free
permutation character of Flizs.2.

gap> s:= CharacterTable( "08+(2).2" );;

gap> VerifyCandidates( s, tbl, tbl2, faith[11], "extending" );

G = Isoclinic(2.Fi22.2): point stabilizer 08+(2).2, ranks [ 19 ]

[ "1a~++352a~{\\pm}+429a~{\\pm}+1001a~++3080a~++10725a"-+13650a " ++13728ab+4504\
5a”++48048a~{\\pm}bc+50050a~-+75075a" {\\pm}+123200a~{\\pm}" ]

gap> CompareWithDatabase( "Isoclinic(2.Fi22.2)", faith );

3.30 G =3.Fiy

The group 3.F'22 has six faithful multiplicity-free permutation actions, with point stabilizers of the
types OfF (2) : S3, OF (2) : 3 (twice), OF (2) : 2, 2° : S6(2), and 2Fy(2)".

gap> tbl:= CharacterTable( "3.Fi22" );;

gap> faith:= FaithfulCandidates( tbl, "Fi22" );;

4: subgroup $0_8"+(2):S_3$, degree 185328 (1 cand.)

subgroup $0_8"+(2):3 \leq 0_8"+(2):5_3%, degree 370656 (2 cand.)
subgroup $0_8"+(2):2 \leq 0_87"+(2):5_3%, degree 555984 (1 cand.)
subgroup $276:5_6(2)$, degree 2084940 (1 cand.)

subgroup ${"2F_4(2) " {\prime}}$, degree 10777536 (1 cand.)

© 0 o wm

The preimages of the maximal subgroups of the type OF (2).S3 in Fiz2 have the type 3 x OF (2).Ss,
because the Schur multiplier of OF (2) has order 4 and the only central extension of S5 by a group of
order 3 is 3 x S3. Each such preimage contains one subgroup of the type Og (2).S3 with one subgroup
of the type OF (2).3, two conjugate Of (2).3 subgroups which are not contained in OF (2).S3, and one
class of Of (2).2 subgroups. The two classes of Of (2).3 subgroups contain elements of order 3 outside
Of (2) which lie in nonconjugate preimages of the class 3A of Fisa, so we get two classes of Of (2).3
subgroups in 3.Fi22 which induce different permutation characters.

gap> VerifyCandidates( CharacterTable( "08+(2).S3" ), tbl, 0, faith[4], "all" );
G = 3.Fi22: point stabilizer 08+(2).3.2, ranks [ 10 ]
[ "1a+351ab+3080a+13650a+19305ab+42120ab+45045a" ]
gap> s:= CharacterTable( "08+(2).3" );;
gap> fus:= PossibleClassFusions( s, tbl );;
gap> facttbl:= CharacterTable( "Fi22" );;
gap> factfus:= GetFusionMap( tbl, facttbl );;
gap> outer:= Difference( [ 1 .. NrConjugacyClasses( s ) ],
> ClassPositionsOfDerivedSubgroup( s ) );;
gap> outerfus:= List( fus, map -> map{ outer } );
[ [ 13, 13, 18, 18, 46, 46, 50, 50, 59, 59, 75, 75, 95, 95, 98, 98, 95, 95,
116, 116, 142, 142, 148, 148, 157, 157, 160, 160 1],
[ 14, 15, 18, 18, 47, 48, 51, 52, 59, 59, 76, 77, 96, 97, 99, 100, 96, 97,
116, 116, 143, 144, 149, 150, 158, 159, 161, 162 ],
[ 15, 14, 18, 18, 48, 47, 52, 51, 59, 59, 77, 76, 97, 96, 100, 99, 97, 96,
116, 116, 144, 143, 150, 149, 159, 158, 162, 161 ] ]
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gap> preim:= InverseMap( factfus ) [5];

[ 13, 14, 15 ]

gap> List( outerfus, x -> List( preim, i -> i in x ) );

[ [ true, false, false ], [ false, true, true ], [ false, true, true ] ]

gap> VerifyCandidates( s, tbl, 0, faith[5], "all" );

G = 3.Fi22: point stabilizer 08+(2).3, ranks [ 11, 17 ]

[ "1a+1001a+3080a+10725a+13650a+27027ab+45045a+50050a+96525ab" ,
"1a+351ab+1001a+3080a+7722ab+10725a+13650a+19305ab+42120ab+45045a+50050a+540\

54ab" ]

gap> VerifyCandidates( CharacterTable( "08+(2).2" ), tbl, 0, faith[6], "all" );

G = 3.Fi22: point stabilizer 08+(2).2, ranks [ 17 ]

[ "1a+351ab+429a+3080a+13650a+19305ab+27027ab+42120ab+45045a+48048a+75075a+965\

25ab" ]

Lemma 2.1 applies to the maximal subgroups of the types 2° : S5(2) and 2F4(2)’ in Fiso and their
preimages in 3.F'22.

gap> VerifyCandidates( CharacterTable( "276:s6f2" ), tbl, 0, faith[8], "all" );
G = 3.Fi22: point stabilizer 276:s6f2, ranks [ 24 ]

[ "1a+351ab+429a+1430a+3080a+13650a+19305ab+27027ab+30030a+42120ab+45045a+7507\
5a+96525ab+123552ab+205920a+320320a+386100ab" ]

gap> VerifyCandidates( CharacterTable( "2F4(2)’" ), tbl, 0, faith[9], "all" );
G = 3.Fi22: point stabilizer 2F4(2)’, ranks [ 25 ]

[ "1a+1001a+1430a+13650a+19305ab+27027ab+30030a+51975ab+289575a+386100ab+40040\
0ab+405405ab+579150a+675675a+1201200a+1351350efgh" ]

gap> CompareWithDatabase( "3.Fi22", faith );

3.31 G - 3F2222

The group 3.F'22.2 has seven faithful multiplicity-free permutation actions, with point stabilizers of
the types OF (2) : S3 x 2, OF (2) : 3 x 2, OF (2) : S5 (twice), OF (2) : 2 x 2, 27 : S6(2), and 2Fy(2).

gap> tbl2:= CharacterTable( "3.Fi22.2" );;

gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;

4: subgroup $0_8"+(2):S_3 \times 2$, degree 185328 (1 cand.)

6: subgroup $0_87+(2):3 \times 2 \leq 0_87+(2):5S_3 \times 2$, degree 370656 (
1 cand.)

7: subgroup $0_87+(2):5_3 \leq 0_87+(2):5S_3 \times 2$, degree 370656 (

2 cand.)

8: subgroup $0_87+(2):2 \times 2 \leq 0_87"+(2):S_3 \times 2§, degree 555984 (
1 cand.)

9: subgroup $0_87+(2):3 \leq 0_8"+(2):S_3 \times 2$, degree 741312 (1 cand.)
14: subgroup $2°7:5_6(2)$, degree 2084940 (1 cand.)

16: subgroup ${"2F_4(2) "{\prime}}.2$, degree 10777536 (1 cand.)

Let H be a subgroup of the type OQ'(Q) 2 S3 X 2 in Flig2.2; it induces the 4-th multiplicity-free
permutation character of Fiize.2. The intersection of H with Fiass is of the type OF (2) : Ss; it lifts to
a direct product in 3.F's2, which contains one subgroup of the type O; (2) : S5 that is normal in the
preimage of H. By Lemma 2.2, we get one class of subgroups of the type O;’ (2) : S3 x 2 1in 3.Fig.2.
The same argument yields one class of each of the types OF (2) : 3 x 2 and OF (2) : 2 x 2, which arise
from the 6-th and 8-th multiplicity-free permutation character of F'iz2.2, respectively.

gap> s:= CharacterTable( "08+(2).S3" ) * CharacterTable( "Cyclic", 2 );;
gap> VerifyCandidates( s, tbl, tbl2, faith[4], "all" );
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G = 3.Fi22.2: point stabilizer 08+(2).3.2xC2, ranks [ 7 ]

[ "1a~++351ab+3080a"++13650a"~++19305ab+42120ab+45045a"~+" ]

gap> s:= CharacterTable( "08+(2).3" ) * CharacterTable( "Cyclic", 2 );;

gap> VerifyCandidates( s, tbl, tbl2, faith[6], "all" );

G = 3.Fi22.2: point stabilizer 08+(2).3xC2, ranks [ 12 ]

[ "1a~++351ab+1001a~-+3080a"~++7722ab+10725a"++13650a"++19305ab+42120ab+45045a"\
++50050a"~++54054ab" ]

gap> s:= CharacterTable( "08+(2).2" ) * CharacterTable( "Cyclic", 2 );;

gap> VerifyCandidates( s, tbl, tbl2, faith[8], "all" );

G = 3.Fi22.2: point stabilizer 08+(2).2xC2, ranks [ 12 ]

[ "la~++351ab+429a"++3080a"++13650a~++19305ab+27027ab+42120ab+45045a "~ ++48048a"~\
++75075a"++96525ab" ]

Let H be a subgroup of the type Og‘ (2) : S3 in Fig2.2 that is not contained in F'izo; it induces the
7-th multiplicity-free permutation character of Fi22.2. The intersection of H with F'izs is of the type
O (2) : 3; it lifts to a direct product in 3.F422, which contains four subgroups of the type OF (2) : 3,
three of them not containing the centre of 3.Fis2. By Lemma 2.2, we get three subgroups of the type
OF (2) : S5 in 3.Fi20.2, two of which are conjugate; they induce two different permutation characters,
so we get two classes.

(Since there are O; (2).S3 type subgroups also inside 3.F'i22, we must use "extending" as the last
argument of VerifyCandidates.)

gap> s:= CharacterTable( "08+(2).83" );;

gap> derpos:= ClassPositionsO0fDerivedSubgroup( s );;
gap> facttbl:= CharacterTable( "Fi22.2" );;

gap> sfustbl2:= PossibleClassFusions( s, tbl2,

> rec( permchar:= faith[7][1] ) );;

gap> ForAll( sfustbl2,

> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true

gap> VerifyCandidates( s, tbl, tbl2, faith[7], "extending" );

G = 3.Fi22.2: point stabilizer 08+(2).3.2, ranks [ 9, 12 ]

[ "la~++1001a~++3080a~++10725a"-+13650a"++27027ab+45045a"~++50050a~-+96525ab" ,
"1a~++351ab+1001a"~++3080a"~++7722ab+10725a~-+13650a"++19305ab+42120ab+45045a"~\

++50050a"~-+54054ab" ]

The nineth multiplicity-free permutation character of Figs.2 is induced from a subgroup of the type
O7 (2).3 that lies inside Fig2 and is known to lift to s group of the type 3 x Of (2).3 in 3.Fia2. All
subgroups of index three in this group either contain the centre of 3.Fi22 or have the type O; (2).3,
and it turns out that the permutation characters of 3.F'i22.2 induced from these subgroups are not
multiplicity-free. So the candidate must be excluded.

gap> VerifyCandidates( CharacterTable( "08+(2).3" ), tbl, tbl2, faith[9], "all" );
G = 3.Fi22.2: no 08+(2).3
gap> faith[9]:= [I;;

Lemma 2.2 guarantees the existence of one class of subgroups of each of the types 27 : S5(2) and
2
Fy(2).

gap> VerifyCandidates( CharacterTable( "277:86(2)" ), tbl, tbl2, faith[14], "all" );
G = 3.Fi22.2: point stabilizer 2°7:56(2), ranks [ 17 ]

[ "1a~++351ab+429a"++1430a"++3080a " ++13650a"~++19305ab+27027ab+30030a"~++42120ab\
+45045a"++75075a"~++96525ab+123552ab+205920a "~ ++320320a"++386100ab" ]

gap> VerifyCandidates( CharacterTable( "2F4(2)" ), tbl, tbl2, faith[16], "all" );

G = 3.Fi22.2: point stabilizer 2F4(2)’.2, ranks [ 17 ]
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[ "1a"++1001a"++1430a"++13650a"++19305ab+27027ab+30030a~++51975ab+289575a"~-+38\
6100ab+400400ab+405405ab+579150a"++675675a"-+1201200a"-+1351350efgh" ]
gap> CompareWithDatabase( "3.Fi22.2", faith );

3.32 G =6.Fiy

The group 6.F'ize has six faithful multiplicity-free permutation actions, with point stabilizers of the
types Of (2) : S5 (twice), OF (2) : 3 (twice), and OF (2) : 2 (twice).

gap> tbl:= CharacterTable( "6.Fi22" );;

gap> facttbl:= CharacterTable( "3.Fi22" );;

gap> faith:= FaithfulCandidates( tbl, "3.Fi22" );;

1: subgroup $0_8"+(2):S_3 \rightarrow (Fi_{22},4)$, degree 370656 (2 cand.)
2: subgroup $0_87+(2):3 \rightarrow (Fi_{22},5)$, degree 741312 (1 cand.)
3: subgroup $0_87+(2):3 \rightarrow (Fi_{22},5)$, degree 741312 (1 cand.)
4: subgroup $0_87+(2):2 \rightarrow (Fi_{22},6)$, degree 1111968 (2 cand.)

From the discussion of the cases 2.Fia2 and 3.F'i22, we conclude that the maximal subgroups of the
type Of (2).S3 lift to groups of the type 6 x OF (2).S3 in 6.Fi22. So Lemma 2.3 (iii) yields two classes
of Og‘ (2) : Ss type subgroups, which induce different permutation characters.

gap> s:= CharacterTable( "08+(2).S3" );;

gap> s0:= CharacterTable( "08+(2).3" );;

gap> CheckConditionsForLemma3( sO, s, facttbl, tbl, "all" );

6.Fi22: 08+(2).3.2 lifts to a direct product,

proved by squares in [ 1, 22, 28, 30, 46, 55, 76, 104, 131, 141, 215 ].

gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;

gap> factfus:= GetFusionMap( tbl, facttbl );;

gap> ForAll( PossibleClassFusions( s, tbl ),

> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );

true

gap> VerifyCandidates( s, tbl, 0, faith[1], "all" );

G = 6.Fi22: point stabilizer 08+(2).3.2, ranks [ 14, 14 ]

[ "1a+351ab+3080a+13650a+13728b+19305ab+42120ab+45045a+48048c+61776cd",
"1a+351ab+3080a+13650a+13728a+19305ab+42120ab+45045a+48048b+61776ab" ]

Each subgroup of the type O;F(Q) : 3 in 3.F'i29 lifts to a direct product in 6.Fi22, which yields
one action in each case; since there are two different permutation characters already for 3.Fi22 (see
Section 3.30), we get two different permutation characters induced from Of (2) : 3.

gap> VerifyCandidates( CharacterTable( "08+(2).3" ), tbl, O,

> Concatenation( faith[2], faith[3] ), "all" );

G = 6.Fi22: point stabilizer 08+(2).3, ranks [ 17, 25 ]

[ "1a+1001a+3080a+10725a+13650a+13728ab+27027ab+45045a+48048bc+50050a+96525ab+\

123552cd",
"1a+351ab+1001a+3080a+7722ab+10725a+13650a+13728ab+19305ab+42120ab+45045a+48\

048bc+50050a+54054ab+61776abcd" ]

Each subgroup of the type O; (2) : 2 in 3.Fi22 lifts to a direct product in 6.Fi22, which yields two
actions; the permutation characters are different by the argument used for Og (2) : Ss.

gap> VerifyCandidates( CharacterTable( "08+(2).2" ), tbl, 0, faith[4], "all" );
G = 6.Fi22: point stabilizer 08+(2).2, ranks [ 25, 25 ]

[ "1a+351ab+352a+429a+3080a+13650a+13728b+19305ab+27027ab+42120ab+45045a+48048\
ac+61776cd+75075a+96525ab+123200a+123552cd",
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"1a+351ab+352a+429a+3080a+13650a+13728a+19305ab+27027ab+42120ab+45045a+48048\
ab+61776ab+75075a+96525ab+123200a+123552cd" ]
gap> CompareWithDatabase( "6.Fi22", faith );

(Note that the rank 17 permutation character above was missing in the first version of [LM].)

3.33 G =6.Fiy.2

The group 6.F'22.2 that is printed in the ATLAS has three faithful multiplicity-free permutation
actions, with point stabilizers of the types OF (2) : 3 x 2 and 2F4(2) (twice).

gap> tbl2:= CharacterTable( "6.Fi22.2" );;

gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;

6: subgroup $0_87+(2):3 \times 2 \leq 0_87+(2):5_3 \times 2$, degree 741312 (
1 cand.)

16: subgroup ${"2F_4(2) "{\prime}}.2$, degree 21555072 (1 cand.)

Let M be a maximal subgroup of 6.F'i22.2 that maps to a subgroup of the type Ogr (2).53 x 2 under
the canonical epimorphism to F'iz2.2. Then the conditions of Lemma 4.1 are satisfied for the factor
group F' of M modulo the normal subgroup of the type OF (2):

Condition (a) follows from the discussion in Section 3.29. The group M N 6.Fi22 has the structure
6 x Of (2).55 (see Section 3.32); this implies that the corresponding index 2 subgroup of F' has the
structure 6 x Ss, which is condition (b). For condition (c), note that the generators of the two direct
factors of order 3 in the Sylow 3 subgroup of F' are inverted by suitable involutions in F', thus they
are commutators and hence the Sylow 3 subgroup lies in F”.

Moreover, we know that M contains subgroups of the type Of (2).3 x 2 that do not lie inside 6.Fizo
and intersect the centre of 6.F'izo trivially, because the factor group 2.F'i22.2 contains subgroups of
this type with the analogous property (see Section 3.29), and the preimages of these groups in 6. Fi22.2
are split extensions of the normal subgroup of order 3 (see Section 3.32). So we conclude F' 2 G732 22,
and by the above computations, there is exactly one class of OF (2).3 x 2 type subgroups in 6.Fi22.2
that do not lie in 6.F'25.

(Since there are OF (2).3 x 2 type subgroups also inside 6.Fi22, we must use "extending" as the last
argument of VerifyCandidates.)

gap> s:= CharacterTable( "08+(2).3" ) * CharacterTable( "Cyclic", 2 );;

gap> VerifyCandidates( s, tbl, tbl2, faith[6], "extending" );

G = 6.Fi22.2: point stabilizer 08+(2).3xC2, ranks [ 16 ]

[ "1a~++351ab+1001a~-+3080a"++7722ab+10725a"++13650a"~++13728ab+19305ab+42120ab\
+45045a"++48048bc+50050a~++54054ab+61776abcd" ]

The subgroup of the type 6 x 2F4(2)' of 6.Fi99 extends to 6 x 2F4(2) in 6.Fi22.2, which contains two
subgroups of the type 2F1(2), by Lemma 2.3; so we get two classes of such subgroups, which induce
the same permutation character.

gap> VerifyCandidates( CharacterTable( "2F4(2)" ), tbl, tbl2, faith[16], "all" );
G = 6.Fi22.2: point stabilizer 2F4(2)’.2, ranks [ 22 ]

[ "1a~++1001a~++1430a"++13650a"++19305ab+27027ab+30030a"~++51975ab+133056a"{\\p\
m}+289575a~-+386100ab+400400ab+405405ab+579150a"~++675675a"~-+1201200a~-+1351350\
efgh+1663200ab+1796256abcd" ]

gap> faith[16]:= faith[16]{ [ 1, 1 1 };;

gap> CompareWithDatabase( "6.Fi22.2", faith );

The group (6.Fi22.2)" of the isoclinism type that is not printed in the ATLAS has three faithful
multiplicity-free permutation actions, with point stabilizers of the type Of (2) : S3 (three times).
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gap> facttbl:= CharacterTable( "Fi22.2" );;

gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;

gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;

7: subgroup $0_87"+(2):5_3 \leq 0_87+(2):5_3 \times 2$, degree 741312 (
2 cand.)

The existence of Og‘ (2) : Ss type subgroups not contained in 6.F%22 follows from Lemma 2.2 and the
existence of one class of these subgroups in (2.Fi22.2)"; note that we get three complements of the
normal subgroup of order 3 in each subgroup of the type 3.07 (2) : Ss, but Lemma 2.2 does not state
anything about the G-conjugacy of these groups.

So we argue as in the case of 6.F%22.2, and let M be a maximal subgroup of (6.Fi22.2)" that maps
to a subgroup of the type OF (2).S3 x 2 under the canonical epimorphism to Fiz2.2. As above, the
conditions of Lemma 4.1 are satisfied for the factor group F' of M modulo the normal subgroup of
the type Og’ (2). This time, we conclude F' 2 G223, so there are exactly three classes of O;‘ (2) : Ss
type subgroups in (6.F%22.2)* that do not lie in 6.Fi22.

Now the question remains how these three classes of point stabilizers must be mapped to the two
possible permutation characters we found above. For that, we first note that by the last statement of
Lemma 4.1, the intersections of the point stabilizers with 6.F"22 lie in two different conjugacy classes
of OF (2) : 3 type subgroups of 6.Fize. These are the point stabilizers of the two multiplicity-free
permutation characters of degree 741 321 that have been established in Section 3.32. This means that
the two possible permutation characters are indeed permutation characters.

Which one belongs to two multiplicity-free actions of (6.Fi22.2)*? Let us induce the trivial characters
of the two relevant point stabilizers in 6.Fi22 in two steps, first to the maximal subgroup 6 x Of (2).S3
of 6.F'i22 and then from this group to 6.F"22. The two characters obtained in the first step have degree
12, and the one whose extension to (6.Fi22.2)" belongs to two actions is induced from a non-normal
O7 (2).3 type subgroup of 6 x OF (2).S3, whereas the other character is induced from a normal (but
noncentral) subgroup of this type.

We execute the first step in the factor group of the type 6 x Ss3, then inflate the degree 12 characters
to 6 x OF (2).53, and finally induce the these characters to 6.Fiaz.

gap> s:= CharacterTable( "08+(2).S3" ) * CharacterTable( "Cyclic", 6 );;
gap> fact:= s / ClassPositionsOfSolvableResiduum( s );;
gap> Size( fact );
36
gap> OrdersClassRepresentatives( fact );
[1, 6, 3,2, 3,6,3,6, 3,6, 3,6,2,6,6, 2,6, 6]
gap> SizesCentralizers( fact );
[ 36, 36, 36, 36, 36, 36, 18, 18, 18, 18, 18, 18, 12, 12, 12, 12, 12, 12 ]
gap> ind:= InducedCyclic( fact, [ 7, 9, 11 1 );;
gap> List( ind, ValuesOfClassFunction );
rrfti2, o o0,0,0,0,0,0°¢6,06,0,00,0,0,0,0I1,
(12, 0, 0, 0, 0, O, 12, 0, O, O, O, O, O, O, O, O, O, 01 1]

(The first character has a trivial kernel, so it is the one that is induced from a non-normal subgroup
of order three.)

gap> rest:= RestrictedClassFunctions( ind, s );;

gap> fus:= PossibleClassFusions( s, tbl );;

gap> Length( fus );

4

gap> ind:= Set( List( fus, map -> Induced( s, tbl, rest, map ) ) );;
gap> Length( ind );

1

gap> rest:= RestrictedClassFunctions( faith[7], tbl );;
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gap> List( ind[1], pi -> Position( rest, pi ) );
[1,2]

So the induced characters are uniquely determined, and the first of the two characters in faith[7]
is afforded by two multiplicity-free actions of (6.Fi22.2)".

gap> s:= CharacterTable( "08+(2).S3" );;

gap> VerifyCandidates( s, tbl, tbl2, faith[7], "extending" );

G = Isoclinic(6.Fi22.2): point stabilizer 08+(2).3.2, ranks [ 12, 16 ]

[ "1a"++1001a"++3080a"++10725a"-+13650a"++13728ab+27027ab+45045a"++48048bc+500\

50a”-+96525ab+123552cd",
"1a"++351ab+1001a~++3080a"~++7722ab+10725a"-+13650a"~++13728ab+19305ab+42120ab\

+45045a"++48048bc+50050a~-+54054ab+61776abcd" ]

gap> faith[7]:= faith[71{ [ 1, 1, 2 1 };;

gap> CompareWithDatabase( "Isoclinic(6.Fi22.2)", faith );

3.3 G=2Co0

The group 2.C'o; has two faithful multiplicity-free permutation actions, with point stabilizers of the
types C'o2 and Cos, respectively, by Lemma 2.1.

gap> tbl:= CharacterTable( "2.Col" );;

gap> faith:= FaithfulCandidates( tbl, "Col" );;

1: subgroup $Co_2$, degree 196560 (1 cand.)

5: subgroup $Co_3$, degree 16773120 (1 cand.)

gap> VerifyCandidates( CharacterTable( "Co2" ), tbl, 0, faith[1], "all" );
G = 2.Col: point stabilizer Co2, ranks [ 7 ]

[ "1a+24a+299a+2576a+17250a+80730a+95680a" ]

gap> VerifyCandidates( CharacterTable( "Co3" ), tbl, 0, faith[5], "all" );
G = 2.Col: point stabilizer Co3, ranks [ 12 ]

[ "1a+24a+299a+2576a+17250a+80730a+95680a+376740a+1841840a+2417415a+5494125a+6\
446440a" ]

gap> CompareWithDatabase( "2.Col", faith );

3.35 G =3.Fy,

The group 3.F34 has two faithful multiplicity-free permutation actions, with point stabilizers of the
types Fizs and Oj,(2), respectively, by Lemma 2.1.

gap> tbl:= CharacterTable( "3.F3+" );;

gap> faith:= FaithfulCandidates( tbl, "F3+" );;

1: subgroup $Fi_{23}$, degree 920808 (1 cand.)

2: subgroup $0_{10}"-(2)$, degree 150532080426 (1 cand.)

gap> VerifyCandidates( CharacterTable( "Fi23" ), tbl, 0, faith[1], "all" );

G = 3.F3+: point stabilizer Fi23, ranks [ 7 ]

[ "1a+783ab+57477a+249458a+306153ab" ]

gap> VerifyCandidates( CharacterTable( "010-(2)" ), tbl, 0, faith[2], "all" );
G = 3.F3+: point stabilizer 010-(2), ranks [ 43 ]

[ "1a+783ab+8671a+57477a+64584ab+249458a+306153ab+555611a+1666833a+6724809ab+1\
9034730ab+35873145a+43779879ab+48893768a+79452373a+195019461ab+203843871ab+415\
098112a+1050717096ab+1264015025a+1540153692a+1818548820ab+2346900864a+32086535\
25a+10169903744a+10726070355ab+13904165275a+15016498497ab+17161712568a+2109675\
1104ab" ]

gap> CompareWithDatabase( "3.F3+", faith );
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3.36 G =3.F..2

The group 3.F5+.2 has two faithful multiplicity-free permutation actions, with point stabilizers of the
types Fizs x 2 and O7,(2).2, respectively, by Lemma 2.2.

gap> tbl2:= CharacterTable( "3.F3+.2" );;

gap> faith:= FaithfulCandidates( tbl2, "F3+.2" );;

1: subgroup $Fi_{23} \times 2$, degree 920808 (1 cand.)

3: subgroup $0_{10}"-(2).2$, degree 150532080426 (1 cand.)

gap> VerifyCandidates( CharacterTable( "2xFi23" ), tbl, tbl2, faith[1], "all" );
G = 3.F3+.2: point stabilizer 2xFi23, ranks [ 5 ]

[ "1a~++783ab+57477a"~++249458a"++306153ab" ]

gap> VerifyCandidates( CharacterTable( "010-(2).2" ), tbl, tbl2, faith[3], "all" );
G = 3.F3+.2: point stabilizer 010-(2).2, ranks [ 30 ]

[ "1a~++783ab+8671a"~-+57477a"++64584ab+249458a"++306153ab+555611a"-+1666833a"+\
+6724809ab+19034730ab+35873145a"++43779879ab+48893768a"-+79452373a"++195019461\
ab+203843871ab+415098112a"-+1050717096ab+1264015025a"++1540153692a"++181854882\
0ab+2346900864a"~-+3208653525a"++10169903744a~-+10726070355ab+13904165275a"++15\
016498497ab+17161712568a"~++21096751104ab" ]

gap> CompareWithDatabase( "3.F3+.2", faith );

3.37 G=2DB

The group 2.B has one faithful multiplicity-free permutation action, with point stabilizer of the type
Fizs, by Lemma 2.1.

gap> tbl:= CharacterTable( "2.B" );;

gap> faith:= FaithfulCandidates( tbl, "B" );;

4: subgroup $Fi_{23}$, degree 2031941058560000 (1 cand.)

gap> VerifyCandidates( CharacterTable( "Fi23" ), tbl, 0, faith[4], "all" );

G = 2.B: point stabilizer Fi23, ranks [ 34 ]

[ "1a+4371a+96255a+96256a+9458750a+10506240a+63532485a+347643114a+356054375a+4\
10132480a+4221380670a+4275362520a+8844386304a+9287037474a+13508418144a+3665765\
3760a+108348770530a+309720864375a+635966233056a+864538761216a+1095935366250a+4\
322693806080a+6145833622500a+6619124890560a+10177847623680a+12927978301875a+38\
348970335820a+60780833777664a+89626740328125a+110949141022720a+211069033500000\
a+284415522641250b+364635285437500a+828829551513600a" ]

gap> CompareWithDatabase( "2.B", faith );

4 Appendix: Explicit Computations with Groups

Only in the proofs for the groups involving Ma2, explicit computations with the groups were necessary
to determine multiplicity-free permutation characters. Additionally, the structure of certain small
factor groups of maximal subgroups in extension of F'izs had to be analyzed in order to determine
the multiplicity of actions whose existence had been established character-theoretically.

These computations are collected in this appendix.

4.1 2*: Ag type subgroups in 2.My,

We show that the preimage in 2. Mo of each maximal subgroup of the type 2% : Ag in Mas contains
one class of subgroups of the type 2 x 2* : A5. For that, we first note that there are two classes of
subgroups of the type 2% : As inside 2* : Ag, and that the As subgroups lift to groups of the type
2 X As because 2.M22 does not admit an embedding of 2. Ag.
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gap> tbl:= CharacterTable( "2.M22" );;
gap> PossibleClassFusions( CharacterTable( "2.A6" ), tbl );
[ 1]

Now we fetch a permutation representation of 2.M25 on 352 points, from the ATLAS of Group Repre-
sentations (see [WWT™]), via the GAP package AtlasRep (see [WPNT11]), and compute generators
for the second class of maximal subgroups, via the straight line program for Mass.

gap> info:= OneAtlasGeneratingSetInfo( "2.M22", NrMovedPoints, 352 );;
gap> gens:= AtlasGenerators( info.identifier );;

gap> slp:= AtlasStraightLineProgram( "M22", "maxes", 2 );;

gap> sgens:= ResultOfStraightLineProgram( slp.program, gens.generators );;

gap> s:= Group( sgens );; Size( s );
11520

gap> 275 * 360;

11520

The subgroup acts intransitively on the 352 points. We switch to the faithful representation on 192
points, and compute the normal subgroup N of order 2°.

gap> orbs:= Orbits( s, MovedPoints( s ) );;
gap> List( orbs, Length );

[ 160, 192 ]

gap> s:= Action( s, orbs[2] );;

gap> Size( s );

11520

gap> syl2:= SylowSubgroup( s, 2 );;

gap> repeat

> x:= Random( syl2 );

> n:= NormalClosure( s, SubgroupNC( s, [ x 1) );
> until Size( n ) = 32;

The point stabilizer S in this group has type As, and generates together with N one of the desired
subgroups of the type 2° : As. However, S does not normalize a subgroup of order 2%, and so there
is no subgroup of the type 2* : As.

gap> stab:= Stabilizer( s, 192 );;
gap> sub:= ClosureGroup( n, stab );;
gap> Size( sub );

1920

gap> Set( List( Elements( n ),

> x -> Size( NormalClosure( sub, SubgroupNC( sub, [ x 1) ) ) ) );
[1,2,32]

A representative of the other class of As type subgroups can be found by taking an element = of
order three that is not conjugate to one in S, and to choose an element y of order five such that the
product is an involution.

gap> syl3:= SylowSubgroup( s, 3 );;

gap> repeat three:= Random( stab ); until Order( three ) = 3;

gap> repeat other:= Random( syl3 );

> until Order( other ) = 3 and not IsConjugate( s, three, other );
gap> sylb:= SylowSubgroup( s, 5 );;

gap> repeat y:= Random( syl5 ) Random( s ); until Order( other*y ) = 2;
gap> ab:= Group( other, y );;
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gap> IsConjugate( s, ab, stab );
false

gap> sub:= ClosureGroup( n, ab );;
gap> Size( sub );

1920
gap> Set( List( Elements( n ),
> x -> Size( NormalClosure( sub, SubgroupNC( sub, [ x 1) ) ) ) );

[1, 2, 16, 32 1]

This proves the existence of one class of the desired subgroups. Finally, we show that the character
table of these groups is indeed the one we used in Section 3.3.

gap> g:= First( Elements( n ),

> x -> Size( NormalClosure( sub, SubgroupNC( sub, [ x]1 ) ) ) = 16 );;
gap> compl:= ClosureGroup( a5, g );;

gap> Size( compl );

960

gap> tbl:= CharacterTable( compl );;

gap> IsRecord( TransformingPermutationsCharacterTables( tbl,

> CharacterTable( "P1/G1/L1/Vi/ext2" ) ) );

true

4.2 2*: S5 type subgroups in My,.2

A maximal subgroup of the type 2% : Sg in M12.2 is perhaps easiest found as the point stabilizer
in the degree 77 permutation representation. In order to find its index 6 subgroups, the degree 22
permutation representation of Mbss.2 is more suitable because the restriction to the 2% : Sg type
subgroup has orbits of the lengths 6 and 16, where the action of the orbit of length 6 is the natural
permutation action of Ses.

So we choose the sum of the two representations, of total degree 99. For convenience, we find this
representation as the point stabilizer in the degree 100 representation of H.S.2, which is contained in
the ATLAS of Group Representations (see [WWTT]).

gap> info:= UneAtlasGeneratingSetInfo( "HS.2", NrMovedPoints, 100 );;
gap> gens:= AtlasGenerators( info.identifier );;

gap> stab:= Stabilizer( Group( gens.generators ), 100 );;

gap> orbs:= Orbits( stab, MovedPoints( stab ) );;

gap> List( orbs, Length );

[ 77, 221

gap> pnt:= First( orbs, x -> Length( x ) = 77 )[1];;

gap> m:= Stabilizer( stab, pnt );;

gap> Size( m );

11520

Now we find two nonconjugate subgroups of the type 2 : S5 as the stabilizer of a point and of a total
in Sg, respectively (cf. [CCNT85, p. 4]).

gap> orbs:= Orbits( m, MovedPoints( m ) );;

gap> List( orbs, Length );

[ 60, 16, 6, 16 ]

gap> six:= First( orbs, x -> Length( x ) = 6 );;

gap> p:= ( six[1], six[2] ) ( six[3], six[4] ) ( six[5], six[6] );;
gap> conj:= ( six[2], six[4], six[56], six[6], six[3] );;

gap> total:= List( [ 0 .. 4], i -=> p~( conj~i ) );;
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gap> stabl:= Stabilizer( m, six[1] );;

gap> stab2:= Stabilizer( m, Set( total ), OnSets );;
gap> IsConjugate( m, stabl, stab2 );

false

We identify the character tables of the two groups in the GAP Character Table Library.

gap> sl:= CharacterTable( stabl );;

gap> s2:= CharacterTable( stab2 );;

gap> NrConjugacyClasses( sl ); NrConjugacyClasses( s2 );

12

18

gap> libl:= CharacterTable( "2°4:s5" );;

gap> IsRecord( TransformingPermutationsCharacterTables( libl, sl ) );
true

gap> 1ib2:= CharacterTable( "w(d5)" );;

gap> IsRecord( TransformingPermutationsCharacterTables( 1lib2, s2 ) );
true

The first subgroup does not lead to multiplicity-free permutation characters of 2.M22.2. Note that
there are two classes of subgroups of this type in M22.2, one of them is contained in M2 and the
other is not. The action on the cosets of the former is multiplicity-free, but it does not lift to a
multiplicity-free candidate of 2.M35.2; and the action on the cosets of the latter is not multiplicity-
free.

gap> tbl:= CharacterTable( "M22" );;
gap> tbl2:= CharacterTable( "M22.2" );;
gap> pi:= PossiblePermutationCharacters( s1, tbl2 );
[ Character( CharacterTable( "M22.2" ), [ 462, 30, 12, 2, 2, 2, 0, 0, 0, O,
0, 56, 0, 0, 12, 2, 2, 0, 0, 0, 0 1),
Character( CharacterTable( "M22.2" ), [ 462, 46, 12, 6, 6, 2, 4, 0, 0, 2,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 01 ) 1]
gap> PermCharInfoRelative( tbl, tbl2, pi ).ATLAS;
[ "1a~++21(a"+) " {2}+55a"++154a"++210a"+",
"1a"{\\pm}+21a~{\\pm}+55a~{\\pm}+154a~{\\pm}" ]

So only the second type of 2% : S5 type subgroups can lift to the multiplicity-free candidate in question,
and this situation is dealt with in Section 3.4.

gap> pi:= PossiblePermutationCharacters( s2, tbl2 );

[ Character( CharacterTable( "M22.2" ), [ 462, 30, 3, 2, 2, 2, 3, 0, 0, 0, O,
28, 20, 4, 8,1, 2,0,1,0,01) 1]

gap> PermCharInfoRelative( tbl, tbl2, pi ).ATLAS;

[ "1a"++21a"++b6ba"++154a"++231a"-" ]

4.3 Multiplicities of Multiplicity-Free Actions of 6.F'i5.2

We collect the information used in Section 3.33 in a lemma.

Lemma 4.1 Up to isomorphism, there are exactly two groups G of order 72 with the following
properties:

(a) the Sylow 2 subgroup of G is a dihedral group,

(b) G has a normal subgroup isomorphic to 6 X S3, and
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(c) G/G" is a 2-group.

In the GAP library of small groups, they have the identifiers [ 72, 22 1 and [ 72, 23 1. Let us
denote these groups by Gr2,22 and Gra,23, let G be one of them, and let N be any normal subgroup of
G that satisfies condition (b).

If G = G72,22 then there is exactly one conjugacy class of cyclic subgroups of order 6 in G that have
trivial intersection with Z(N); if G = Gr72,23 then there are no such subgroups in G.

If G = Gr2,23 then there are exactly three conjugacy classes of nonabelian subgroups of order 6 in G
that do not lie in N and have trivial intersection with Z(N); if G = Gr72,22 then there are no such
subgroups in G.

Let Uy, Us, Us denote representatives of the three classes of nonabelian subgroups of order 6 in G72,23
mentioned above; the Sylow 3 subgroups of these groups are pairwise different, one of them is normal
in N and the other two are conjugate in N.

The proof is given by the following calculations using GAP. We use the classification of groups of
order 72, which had been obtained in [Neu67]. The groups are available in GAP via the database of
small groups, see [BE99].

gap> id_d8:= IdGroup( DihedralGroup( 8 ) );;

gap> id_2xs3:= IdGroup( DirectProduct( CyclicGroup(2), SymmetricGroup(3) ) );;
gap> id_6xs3:= IdGroup( DirectProduct( CyclicGroup(6), SymmetricGroup(3) ) );;
gap> grps:= AllSmallGroups( Size, 72,

> g —> IdGroup( SylowSubgroup( g, 2 ) ) = id_d8 and

> ForAny( NormalSubgroups( g ),

> n -> IdGroup( n ) = id_6xs3 ) and

> ForAl1( AbelianInvariants(g), IsEvenInt ), true );
[ <pc group of size 72 with 5 generators>,

<pc group of size 72 with 5 generators> ]
gap> List( grps, IdGroup );
[ 072,227, [72,231]1]1
gap> is_good_1:= function( R, N )
> return Size( R ) = 6 and IsCyclic( R ) and
> Size( Intersection( R, Centre( N ) ) ) = 1;
> end;;
gap> is_good_2:= function( R, N )
> return Size( R ) = 6 and not IsCyclic( R ) and

> not IsSubset( N, R ) and

> Size( Intersection( R, Centre( N ) ) ) = 1;

> end;;

gap> cand:= Filtered( NormalSubgroups( grps[1] ),

> n -> IdGroup( n ) = id_6xs3 );;

gap> classreps:= List( ConjugacyClassesSubgroups( grps[1] ),

> Representative );;

gap> List( cand, N -> Number( classreps, R -> is_good_1( R, N ) ) );
[1, 1]

gap> List( cand, N -> Number( classreps, R -> is_good_2( R, N ) ) );
[0, 0]

gap> cand:= Filtered( NormalSubgroups( grps[2] ),

> n -> IdGroup( n ) = id_6xs3 );;

gap> classreps:= List( ConjugacyClassesSubgroups( grps([2] ),

> Representative );;

gap> List( cand, N -> Number( classreps, R -> is_good_1( R, N ) ) );
[0]
gap> List( cand, N -> Number( classreps, R -> is_good_2( R, N ) ) );
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[3]
gap>
gap>

N:= cand[1];;
subs:= Filtered( classreps, R -> is_good_2( R, N ) );;
)

gap> syl3:= List( subs, x -> SylowSubgroup( x, 3 ) );;
gap> Length( Set( syl3 ) );

3

gap> Number( syl3, x -> IsNormal( N, x ) );

1
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